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Abstract— In emergency medicine, workforce planning needs
to satisfy a number of constraints. There are hard constraints
regarding qualifications and soft constraints regarding the
wishes of the personnel. One instance of such a planning
problem is the assignment of lifeguards at the coasts of the
North Sea and the Baltic Sea in Germany. These lifeguards
are volunteers and thus accounting for wishes is crucial while
qualification constraints must be satisfied nevertheless. This
paper presents a genetic algorithm that solves this problem with
sub-second runtime. We compare this genetic algorithm to a
brute force solution creating optimal solutions at the expense of
larger runtime complexity. The genetic approach outperforms
the brute force approach in terms of runtime when there are
more than 3 places of deployment while consistently producing
optimal solutions within less than 10 generations.

I. INTRODUCTION

In Germany, the coasts of the North Sea and the Baltic
Sea are guarded by voluntary lifeguards during the sum-
mer. These lifeguards are sent there by life-saving associ-
ations, among others the German Life-Saving Association
(“Deutsche Lebens-Rettungs-Gesellschaft”, DLRG). There
are different stations where lifeguards can be deployed to.
The DLRG is responsible for 83 stations [1]. Volunteers
are deployed to said stations for at least a week. Within
these stations are different places where lifeguards can fulfil
their duty, such as on a boat or a lifeguard tower. The
assignment of lifeguard personnel to concrete places can
change from day to day and is subject to a variety of hard
and soft constraints. Workforce planning is currently done
manually by a team lead. This is a time-consuming and
error-prone activity. Furthermore, manual assignment might
cause resentment by the personnel since they might suspect
unfair treatment. This is not just a problem with volunteer
lifeguards but an overall problem in emergency medicine:
Satisfying hard and soft requirements under conditions that
change daily. This paper is concerned with these constraints
and how assignments can be found to satisfy them taking
volunteer lifeguarding as a tangible example.

The rest of this work is structured as follows. In section I
we give an overview of the domain of lifeguarding in
Germany as well as the personnel assignment problem. In
section II we describe two approaches solving the problem.
Furthermore, we describe the evaluation procedure used to
test these approaches. In section III we present the evaluation
results. Finally, in section IV, we discuss the results and
summarise this work.
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A. Background

In this section, we give a brief overview of lifeguarding
with special focus on the situation in Germany. Especially
the qualification and certification system of lifeguards is
relevant in the context of this work. All active lifeguards
in Germany have a basic training and certification that is
equivalent to the international ILS Lifesaver certificate, as
defined by the International Life Saving Federation (ILSF)
[2]. Furthermore, lifeguards can have additional qualification
that are required for special tasks, i.e.: Medics provide
extended medical assistance [3], Rescue Boat Drivers drive
rescue boats [4] (equivalent to ILS Rescue Boat Driver [2]),
and Team Leads (“Wachführer”) lead the team of lifeguards
and are responsible for a station [5]

These qualifications are relevant because certain tasks can
only be done by sufficiently qualified personnel:

• Rescue boats need to be driven by a Rescue Boat Driver
• Lifeguard towers should be staffed with at least one

medic to be able to provide sufficient medical assistance
• Team Leads should be stationed at the main tower since

this tower provides the required management tools
According to these rules, an assignment needs to be made

between personnel having a set of qualifications (example
in Table I) and places requiring personnel with specific
qualifications (example in Table II).

Person Available Qualifications
Alice Lifeguard, Medic
Bob Lifeguard, Driver

Charlie Lifeguard
Dave Lifeguard, Team Lead
. . . . . .

TABLE I: Example of lifeguard personnel with available
qualifications.

Place Required Qualifications
Tower 1 (main tower) Team Lead, Lifeguard

Tower 2 Medic, Lifeguard
Tower 3 Medic, Lifeguard
Boat 1 Driver, Lifeguard
Boat 2 Driver, Lifeguard

TABLE II: Example of places for lifeguard deployment with
required qualifications. For example, Boat 1 should be staffed
with two people, one should be qualified as a driver and the
other one should be qualified as a lifeguard.

Additionally, since the lifeguards are volunteers, wishes
need to be taken into account. People might wish being to
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be deployed together with a certain person (person wishes,
example in Table III) or to be deployed to a specific
place (place wishes, example in Table IV). Also, wishes
are prioritized. While some wishes are extremely important
to the involved people, other wishes might be only minor
preferences.

Person A Person B Priority
Alice Dave 0.3
Bob Charlie 0.7

TABLE III: Example of person wishes: Persons A and B
want to be deployed together with a priority between 0.0
and 1.0 (higher means more important).

Person Place Priority
Alice Tower 2 0.5
Bob Boat 1 1.0

Charlie Tower 1 0.2

TABLE IV: Example of place wishes: A persons wants to
be deployed to a specific place with a priority between 0.0
and 1.0 (higher means more important).

The artefact that needs to be generated from these lists of
qualifications and wishes is an allocation of people to places
(example in Table V) that satisfies all required qualifications
with personnel having these qualifications and if possible
accounts for wishes.

Place Persons
Tower 1 (main tower) Dave (as Team Lead), Charlie (as Lifeguard)

Tower 2 Alice (as Medic), Bob (as Lifeguard)
. . . . . .

TABLE V: Exemplary allocation: Places get filled with
sufficiently qualified personnel while accounting for wishes
when possible.

One might raise the question of why this needs to be done
algorithmically when the assignment problem could also be
solved manually. First, this task is quite complex for a human
as it involves integrating multiple sources of information
and repeatedly checking for violations. Conversely, this is
easily done algorithmically. Second, the problem needs to
be solved daily, hence multiple times, with slightly changing
inputs. Having an algorithm for this saves time and effort.
Third, and most importantly to the authors, humans are
susceptible to benefit oneself. A human doing the assign-
ment might, consciously or unconsciously, prioritise its own
wishes higher than the wishes of colleagues. And even if
they do not, they might be suspected of such doing which,
in turn, causes resentment with subsequent impairment of
morale. To address these issues, we propose an impartial
algorithmic solution to the described problem.

B. Related Work

Workforce planning is an immanent challenge faced by
organizations with a non-trivial structure. Hence, the problem
of allocating workforce to engagements is not a novel one.

However, existing works mainly focus on matching required
and available qualifications as hard constraints while not
accounting for softer requirements like wishes [6]. This
might be a reasonable strategy for regular employments with
monetary compensation. However, organizations relying on
volunteers which is common in emergency medicine in Ger-
many can not count on such a rather naive approach ignoring
the wishes of their workforce. There are works on satisfying
hard constraints while optimizing soft constraints in terms
of workforce planning. In [7], an evolutionary algorithm
outperforms a mixed integer programming solver in such a
task, which is why we also rely on an evolutionary/genetic
approach in this case.

II. METHODS

We solved the lifeguard assignment problem described in
the previous section with two different approaches. First,
we implemented a brute force algorithm evaluating every
possible allocation and penalising for violations of quali-
fications and wishes. This algorithm serves as a generator
for ground truth solutions since it deterministically finds
the optimal allocation. Second, we implemented a genetic
algorithm generating possibly slightly suboptimal solutions
in a much shorter time. Before we explain both approaches
in detail, we want to describe how penalisation is done.

A. Penalisation

We face the problem of having two different types of
constraints: Matching available and required qualifications
and fulfilling wishes. Qualifications are more important since
tasks being done by insufficiently qualified personnel will
create potentially dangerous situations which we want to
avoid. This could be expressed using a generate-and-test
pattern: Possible allocations are generated and subsequently
tested for qualifications violations. While this would be
sufficient for a brute force approach, generate-and-test does
not fit the genetic approach. We, therefore, decided to
use a penalisation system with two orders of magnitude.
Allocations get assigned a penalty that describes how bad
the allocation is (higher penalty means worse). Violations of
wishes get penalised according to their priority, e.g. if a wish
of priority 0.5 is violated, the penalty is increased by 0.5.
Qualification violations are penalised by a higher order of
magnitude so that no amount of fulfilled wishes can justify
a qualification violation. For example, we might penalise a
missing driver by increasing the penalty by 100.

B. Brute Force Approach

The brute force approach assesses all possible allocations,
hence producing an optimal solution. This is achieved as
follows:

1) Generate all possible allocations
2) Compute penalty for each allocation
3) Select the allocation with the lowest penalty as the final

solution
This is, however, slow since all permutations of the list of

personnel need to be created. Therefore, this algorithm has
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a runtime complexity of O(n!) where n is the number of
lifeguards. Obviously, this does not scale. We can neverthe-
less use this algorithm to benchmark the genetic approach
introduced in the next section.

C. Genetic Approach

Genetic algorithms start with a first-generation set of
individuals (in our case allocations). For each individual,
the fitness (the opposite of penalty) is computed and the
fittest individuals are selected to pass into the next gener-
ation. While passing, the individuals might be changed by
crossover (combining two individuals) or mutation (slight
changes in a single individual). [8]

In our genetic approach to the lifeguard assignment prob-
lem, the initial individual generation produces random allo-
cations, as shown in Table V. These allocations can include
qualification and wish violations since they are randomly
generated. However, the generation process ensures, that the
allocations are consistent, i.e. no place is overfull or underfull
and persons are not assigned to multiple places.

The fitness is assessed as described in subsection II-A:
Qualification violations increase the penalty by 100 and
wish violations are penalised according to their priority.
It is important to notice here that fitness/penalty needs to
be minimised which is contrary to the general notion of
fitness. Thus, the individuals with the lowest fitness/penalty
get selected to pass to the next generation.

Our algorithm does not use crossover, as combining two
allocations while simultaneously ensuring consistency is not
easily done. Therefore, mutation of individuals is the only
means of altering allocations. Mutations ensure consistency
by taking an existing allocation, selecting two people from it
by random and swapping these people. For example, Charlie
on Tower 1 is swapped with Bob on Tower 2, the result is
that Bob is now on Tower 1 and Charlie on Tower 2.

D. Evaluation

Evaluation of the described approach is complicated since
there are no publicly available data on lifeguard qualifications
and wishes. To evaluate our solution anyway, we observed
the lifeguards in Binz for two weeks to derive statistical
properties which we can use to generate artificial data.

35th week 20201 36th week 20202

total # of lifeguards (n) 23 (100%) 10 (100%)
# of medics (nmedic) 16 (∼ 70%) 6 (60%)
# of drivers (ndriver) 5 (∼ 20%) 3 (30%)
# of team leads (nlead) 2 (∼ 10%) 1 (10%)
# of places to be staffed (m) 10 5
personnel-place ratio (n : m) ∼ 2 : 1 2 : 1

TABLE VI: Total numbers and percentages of qualifications
during the observed period.

Using these percentages, we generated artificial data on
available personnel, places to be staffed, and wishes. Input
parameter for the data generator is the number of places

1Last week in high season.
2First week in low season.

the simulated station has (m). From this, we can derive
the number of personnel (n) via the ratio between # of
personnel and # of places, which is 2:1 (n = 2 ·m). Every
artificially generated person has a 100% probability of having
the lifeguard qualification since this is a prerequisite for
being part of the team. The probability of an additional medic
qualification is 50% which is slightly lower than stated in
Table VI but from interviewing the lifeguards we learned
that there are unusually many medics among them. The
probability of an additional driver qualification is 25%, the
average between the 35th and the 36th week. The probability
of an additional team lead qualification is 10% as it is the
case in both observed weeks.

For artificially generating places, we used the same per-
centages in order to account for stations being staffed ac-
cording to their qualification. This is shown in Table VII.

Type of Place Required
Qualifications # of occurrences

Main Tower Team Lead,
Lifeguard mmain = ⌈m · 10%⌉

Rescue Boat Driver, Lifeguard mboat = ⌈m · 25%⌉
Normal Tower Medic, Lifeguard mtower = m−mmain −mboats

TABLE VII: Types of places and how often they occur.

Person wishes (who wants to be together with whom?) are
generated by randomly selecting persons (without replace-
ment), generating pairs of these randomly selected persons,
and assigning a random priority between 0.1 and 1. The
number of person wishes is random between 1 and m.

Place wishes (who wants to be where?) are generated
by randomly selecting persons (without replacement) and
randomly selecting places (with replacement). Subsequently,
pairs of persons and places are formed and a random priority
between 0.1 and 1 is assigned. The number of place wishes
is random between 1 and m.

III. RESULTS

We evaluated our genetic approach (subsection II-C)
against the supposedly much slower but in terms of results
optimal brute force approach (subsection II-B) using data
generated as described in subsection II-D. In this section,
we show the results of this evaluation in terms of result
optimality and runtime.

A. Optimality of Results

Figure 1 shows that the genetic approach generates optimal
or close to optimal solutions for up to m = 5 in less than 10
generations with a population size of 100 individuals. This
is achieved in less than 0.1 seconds on a Intel R© CoreTM i7-
7700HQ CPU, as shown in Figure 2. Larger problem sizes
are hard to evaluate since the runtime of the brute force
approach increases in a factorial manner. Hence, problem
sizes of m > 5 take very long time3. However, we can
assume, that the genetic algorithm continues to find optimal
or close to optimal solutions with few generations (< 100),
since this is a continued finding in throughout m ∈ {3, 4, 5}.

3Several minutes on the benchmark machine for m = 5.
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(a) # of places (m) > 3 (b) # of places (m) > 4 (c) # of places (m) > 5

Fig. 1: These three plots show on the y axis the difference between the penalty on the optimal solution (as obtained via
brute force) and the genetic solution after a number of generations, on the x axis. Population size is 100 individuals. Note
the differently scaled y axes.

B. Runtime Comparison

We already noticed in subsection II-B that the brute force
approach has a runtime complexity of O(n!) or, respectively,
O(m!) since n = 2 · m (see subsection II-D) and constant
factors are ignored in Big-O notation. Hence, the genetic
algorithm is bound to outperform the brute force approach
as problem size increases. Figure 2 shows that the break even
point is between m = 3 and m = 4.

Fig. 2: Runtime comparison between the genetic and the
brute force approach shows that the genetic approach is
faster for assignment problems with # of places (m) > 3.
The runtimes were obtained through genetically evolving 100
individuals over 10 generations. The y scale is logarithmic.

IV. DISCUSSION

The proposed genetic algorithm solves the lifeguard as-
signment problem with optimal or close to optimal results
in terms of qualifications and wishes. We showed this for
assignment problems with up to m = 5 places of possible
assignment and n = 2 ·m = 10 lifeguards and only refrained
from larger problem sizes because the brute force algorithm
solving as ground truth for optimal solutions would take too

long. In terms of runtime, the genetic algorithm shows an
approximately linear runtime complexity with respect to the
problem size m. This is because the runtime of the genetic
algorithm mainly depends upon the population size and the
number of generations. Conversely, the runtime of the brute
force algorithm increases factorially with the problem size.
Consequently, the genetic algorithm is faster for m ≥ 4.

A current limitation is that we do not account for addi-
tional qualification, such as advanced medical qualifications.
Further work is needed to address this issue, for example by
introducing additional qualifications as a soft constraint.

In summary, the genetic algorithm presented in this paper
is sufficiently suitable to allocate lifeguards – or emergency
medical personnel in general – to appropriate places account-
ing for required qualifications at the places and available
qualifications of the lifeguards. In addition, wishes of the
lifeguards in terms of where they want to be deployed and
with whom they want to be deployed are also taken into
account. The algorithm is sufficiently fast to be used in
practice, even with large lifeguarding stations having many
places and lifeguards. Furthermore, the usage of an algorithm
for allocating lifeguards removes the risk of corruption,
bribery, or favouring, as well as suspicions thereof.
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