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Abstract— Pancreatic surgery is associated with a high risk
for postoperative complications and death of patients. Com-
plications occur in a variable interval after the procedure.
Often, a patient has already left the ICU and is not prop-
erly monitored anymore when the complication occurs. Risk
stratification models can assist in identifying patients at risk in
order to keep these patients in ICU for longer. This, in turn,
helps to identify complications earlier and increase survival
rates. We trained multiple machine learning models on pre-,
intra- and short term postoperative data from patients who
underwent pancreatic resection at the Department of Surgery,
Campus Charité Mitte | Campus Virchow-Klinikum, Charité
– Universitätsmedizin Berlin. The presented models achieve
an area under the precision-recall curve (AUPRC) of up to
0.51 for predicting patient death and 0.53 for predicting a
specific major complication. Overall, we found that a classical
logistic regression model performs best for the investigated
classification tasks. As more patient data becomes available
throughout the perioperative stay, the performance of the risk
stratification model improves and should therefore repeatedly
be computed.

I. INTRODUCTION
Despite advances in surgical techniques, pancreas resec-

tions are still associated with considerable rates of post-
operative complications. According to recent studies, more
than one out of four patients experiences at least one major
complication within the perioperative stay and, subsequently,
overall mortality remains as high as 7% [1]. Of particular
relevance are post-operative pancreatic fistulas (POPF), i.e.
microlesions of the pancreatic organ surface, that may trigger
intraabdominal infections and often require additional inter-
ventional treatment. Moreover, post-pancreatectomy haemor-
rhage (PPH), i.e. internal bleeding, occurs as an acute and
life-threatening event. Identifying patients at risk is of crucial
importance to initiate therapeutic measures at an early stage
and prevent patients’ conditions from deteriorating.

Typical complications, like POPF or PPH, occur within
variable intervals after the actual surgical procedure [2]. At
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Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of
Health, 13353 Berlin, Germany
firstname.lastname@charite.de

This research was partly funded by the Federal Ministry of Education
and Research of Germany in the framework of KI-LAB-ITSE (01IS19066).

this time, the patient has usually already left the intensive
care unit (ICU) with its superior monitoring capabilities and
has been transferred to the normal surgical ward with only
limited surveillance infrastructure. It is therefore difficult to
detect severe complications in a timely manner under the
present circumstances, although early detection is crucial for
efficient treatment [3]. The aim of this project is to evaluate
approaches to assist the treating physicians in identifying
patients at risk for postoperative complications.

Considering their potential in pattern recognition, machine
learning models appear to be a particularly promising ap-
proach to using patient data for event forecasting. To predict
the specific endpoints listed in Section III-A, we trained
different models as described in Section III-B based on pre-,
intra-, and postoperative static patient data. This dataset was
furthermore augmented by postoperative dynamic data of
four continuously measured vital parameters recorded on the
ICU over up to 72 hours after surgery.

II. RELATED WORK

The use of machine learning for surgical risk assessment
is not a novel development, however, the majority of studies
only take preoperative risk factors into account. In a notable
recent work, Chiew et al. [4] try to predict postoperative
mortality and prolonged ICU stay using different machine
learning models. An important finding is that the area under
the receiver operating characteristic curve (AUROC) is not
a good metric for judging machine learning models in this
area since the class-balance is skewed towards having more
samples in the negative class than in the positive one. By
predicting all samples as part of the negative class, a decent
AUROC is achieved while having a very low sensitivity thus
creating no meaningful prediction. The authors recommend
using the area under the precision-recall curve (AUPRC)
instead, which does not take the overwhelming number of
true negatives into account, thus being a better display of a
classifier’s performance in the presence of highly imbalanced
data [5]. The authors report an AUPRC of 0.23 for the patient
mortality endpoint.

Another notable work is DyCRS [6], a Hidden Markov
Model adaptation for predicting postoperative complications
after elective colectomy surgeries. Contrary to Chiew et al.,
DyCRS uses static patient data such as gender and age in
combination with dynamic postoperative features such as
heart rate and blood pressure and reports an AUPRC of 0.52.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

This work is licensed under a Creative Commons Attribution 3.0 License.
For more information, see http://creativecommons.org/licenses/by/3.0/

2211



III. MATERIALS & METHODS
With the approval from the Charité’s Ethics Committee

(Approval ID: EA2/035/14), we used perioperative patient
data from the Department of Surgery, Campus Virchow
Klinikum, Charité – Universitätsmedizin Berlin to train mul-
tiple machine learning models. In the following, we describe
the data and models in detail.

A. Materials

The dataset consists of 521 cases of pancreatic resections
and contains static (or tabular) and dynamic (or time-series)
data.

Static Data: The static part of the data can be split into
20 pre-, 15 intra- and 8 postoperative features. The preoper-
ative information includes standard patient data such as age
(63.9±12.5), sex (44.7% female), weight (74.9kg±15.3kg)
and height (1.72m ± 0.10m), as well as comorbidities.
Examples of intraoperative data are the type and duration
of the surgery and blood loss. Postoperative information is
aggregated in two well-known scores reproducing patient
condition, namely the second version of the Simplified Acute
Physiology Score (SAPS II) [7] and the Therapeutic In-
tervention Scoring System (TISS-10) [8]. These scores are
calculated directly after ICU admission and every day at 6
a.m. thereafter for a maximum of three days. SAPS II is
a score for quantifying the severity of the disease and the
morbidity of the patient. TISS-10 quantifies the amount of
care needed by a patient, taking into account 10 therapeutic
intervention items the patient might receive.

Dynamic Data: The continuous vital parameters are
collected for a maximum of 72 hours during patient surveil-
lance on the ICU. Most variables are measured approxi-
mately once every 30 minutes. Vital parameters included in
the dataset are heart rate (HR), sytolic blood pressure (BPsys)
and body temperature (T), as well as information about the
volume of urine output (VU).

Endpoints: For each patient, we used machine learning
analysis to predict the following endpoints or labels:

1) Death of the patient (DoP)
2) Re-admission to the ICU (ReA)
3) Post-operative pancreatic fistula (POPF)
4) Post-pancreatectomy haemorrhage (PPH)

All four endpoints are highly imbalanced with a fraction of
6.7% (DoP), 20.9% (ReA), 16.5% (POPF), 10.2% (PPH)
representing the positive class. It is important to note, that
the labels do not provide any information regarding the point
in time of the complication or event. It may have occurred
shortly after surgery or any time throughout the inpatient
course.

B. Methods

Our aim was to predict the endpoints DoP, ReA, POPF,
and PPH. Since the data correspond to different points
in time during the inpatient stay, we further investigated
whether predictions at an earlier stage – i.e. right after
surgery or even preoperatively – are reasonable. Overall, five
different machine learning models were applied:

1) Logistic regression (LR) with L2 regularisation,
2) Decision tree (DT) with a maximum depth of 4 and

Gini impurity as split criterion,
3) Support vector machine (SVM) with a radial basis

function kernel,
4) Gradient boosting machine (GBM) with exponential

loss and 100 estimators,
5) Combination of feed-forward neural network (NN) and

Gated recurrent unit (GRU).
In contrast to the first four models, the last one utilises

separate inputs and processing of static and dynamic data.
It consists of an NN for the static data, with two hidden
layers having 12 and 8 neurons, respectively, and a single
GRU with dropout for the dynamic data. Their last layers
are then concatenated and followed by a final dense output
layer. Both components are L1-regularised and use the ReLu
activation function.

Data Preprocessing: The static part of the data was
preprocessed depending on the feature types. Binary features
can be given to the models directly, whereas categorical
features were one-hot-encoded and numerical features were
normalised between 0 and 1.

For the time-series data on heart rate, sytolic blood pres-
sure, and body temperature, two preprocessing steps were
required: missing value handling and time interval alignment.
first, missing values were inferred using the longitudinal
imputation method ’last observation carried forwards’. Then,
since the time intervals between measurements were not
always of the same length, the values were aligned to exactly
30 minutes using cubic spline interpolation. The volume of
urine output had to be preprocessed separately, as it was not
measured regularly, but rather at specific instances, i.e. when
the discharge bag had to be emptied. Thus it was converted
from absolute volume to relative volume per time interval
(also 30 minutes).

For the combined NN and GRU model, the lengths of
time-series data were aligned across patients by masking
shorter sequences with −1 values at the end.

Feature Extraction: From the resulting time-series, we
extracted mean value, variance, minimum, maximum, and
linear slope as features to be added to the easier models
that cannot deal with time-series-data directly. The combined
NN and GRU model is able to work with the dynamic data
directly, without the necessity to use extracted features.

Feature Selection: A correlation analysis of the static
data showed that some features are highly correlated (ρ >
0.7), namely the day of the week, the kind of resection
performed, and the expertise of the conducting surgeon
quantified by the number of procedures performed in his/her
career. To avoid unstable models, we selected the single fea-
ture that showed the highest predictive potential in a simple
LR baseline model only trained on static data, discarding the
other correlated features.

To reduce the complexity of the prediction task and
thereby improve the models’ performances, we moreover
performed a feature selection for all models except NN
and NN+GRU. As feature selection method, we chose a
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stepwise feature selection by cross validation as described
in [9] using leave-one-subject-out cross-validated AUPRC
as performance metric. This was performed for all models,
endpoints and points in time during the perioperative stay.

Model Training and Evaluation: For model evaluation,
we performed leave-one-subject-out cross-validation within
each analysis and report the AUPRC, as well as the precision
at a fixed recall value of 0.6. We want to evaluate whether
the models’ performances increases as the patients progresses
through the perioperative stay. A later stage in this periop-
erative stay corresponds to more features being available to
the model. Hence, we first trained all models using only
preoperative features to assess how well complications can
be predicted using only basic patient information and comor-
bidities. Then, we added intraoperative features to assess the
prediction performance with data available at the end of the
surgery. After that, we additionally included postoperative,
static features, and finally postoperative times-series data to
determine the importance of vital parameters for the models.

IV. RESULTS

All baseline models were implemented in Python using
the scikit-learn1 framework and default parameters, whereas
the deep model was implemented using Keras2.

For all endpoints, the models improve with an increasing
amount of available data as depicted in Fig. 1, which
illustrates the AUPRC of all models evaluated at different
stages during the inpatient stay. Considering each endpoint

separately, however, different models achieve the highest
AUPRC. Notably, DT performed specifically well when
adding postoperative and dynamic data. In contrast, LR
showed the lowest variance across all models and stage
defined databases revealing the most stable prediction per-
formance. Overall, it seems more difficult to predict the two
specific complications POPF and PPH as compared to the
other two more general endpoints DoP and ReA.

Taking a closer look at the commonly used LR model,
Fig. 2 shows the AUPRC for the different endpoints based
on the full static and dynamic dataset. The coresponding best
F1-Scores for the endpoints DoP, ReA, POPF and PPH are
0.54, 0.44, 0.37 and 0.35, respectively.

For the experiments having all input features available,
the selected features on average consist of 40%± 11pp pre-,
23%±11pp intra-, 13%±10pp postoperative, and 24%±13pp
dynamic features, indicating the importance of comorbidities.

Finally, Table I shows the precision of all models for a
fixed recall value of 0.6 on the complete dataset including
all available features. The best result for each endpoint is
indicated by a bold font style.

V. DISCUSSION

Our results reveal two main findings: Firstly, for varying
endpoints and feature sets, different models show the best

1www.scikit-learn.org
2www.keras.io
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Fig. 1: AUPRC of all models for all examined endpoints. The x-axis depicts the amount of data available to the models
starting with only preoperative data and gradually adding intra- and postoperative data, as well as dynamic data.
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Fig. 2: Precision-Recall curves for the LR model trained on
the dataset representing the complete perioperative patient
stays (after feature selection). The locations of the highest
F1-Scores are indicated by the dots.

TABLE I: Precision values at a fixed recall value of 0.6 based
on the complete dataset.

Model DoP ReA POPF PPH
LR 0.38 0.33 0.25 0.15
DT 0.37 0.18 0.19 0.11

SVM 0.27 0.29 0.25 0.15
GBM 0.38 0.30 0.30 0.19

NN+GRU 0.24 0.30 0.22 0.09

performance. This motivates an evaluation of numerous types
of models for risk prediction tasks. The inferiority of the
more complex NN/+GRU model (except for ReA) may arise
from the dataset encompassing too few cases and being im-
balanced. More research and particularly larger datasets are
needed in order to evaluate whether prediction performance
can be further increased with models of higher complexity.

Secondly, AUPRC generally increases with more available
features per case. This manifests a demand for closer patient
monitoring and elaborate data collection in order to enable
a better prediction of complications on a per-patient basis.
It also shows that machine learning-based risk stratification
should be repeatedly performed throughout the inpatient stay
in order to increase prediction confidence.

Comparing the different endpoints, ReA revealed the most
stable prediction characteristics as indicated by the lowest
variance across all models. This could be due to the smallest
class imbalance compared to the other endpoints or the
significance of the collected data for ReA. A very imbalanced
dataset is challenging for machine learning classifiers, which
is again aggravated by the low amount of data overall.

Even though our results compare well with other AUPRC
reported in aforementioned related work, the yet overall
modest precision and recall results may so far only serve
as an indicator to support medical professionals in identify-
ing patients with elevated risk for complications or death.
However, those patients might subsequently be taken under
enhanced surveillance after surgery, either by extending their
stay on the ICU or by establishing advanced monitoring
capacities at surgical wards, e.g. by equipping them with
wearable devices. On the other hand, identifying patients
with only low risk is equally important in everyday clinical
practice. ICU capacity is scarce and costly, thus being able
to discharge patients early based on a low risk profile for
complications or low re-admission probability is of high use.

Future work should be concerned with the collection
and analysis of more patient data which could improve
the classification metrics and reduce the impact of class
imbalances. The availability of larger datasets could also
allow for deeper, more complex models, which have shown a
better performance for many use-cases. Finally, a promising
research area for expanding the available amount of data is
the application of federated learning, which would not only
increase the dataset but enable anonymity of shared data.
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