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A B S T R A C T   

Detection of the QRS complex is a long-standing topic in the context of electrocardiography and many algorithms 
build upon the knowledge of the QRS positions. Although the first solutions to this problem were proposed in the 
1970s and 1980s, there is still potential for improvements. Advancements in neural network technology made in 
recent years also lead to the emergence of enhanced QRS detectors based on artificial neural networks. In this 
work, we propose a method for assessing the certainty that is in each of the detected QRS complexes, i.e. how 
confident the QRS detector is that there is, in fact, a QRS complex in the position where it was detected. We 
further show how this metric can be utilised to distinguish correctly detected QRS complexes from false 
detections.   

1. Introduction 

The beating of the heart is one of the most basic and most important 
vital signs considered in medicine. Consequently, parameters describing 
the heartbeat are important tools for monitoring a patient’s condition. 
One such parameter is the heart rate (HR) describing how fast the heart 
beats [1]. To compute parameters such as HR, we need to find out when 
the heart beats. This can be done by monitoring the heart’s electrical 
activity, a method called electrocardiography. Electrocardiography 
produces an electrocardiogram (ECG), a biomedical signal that corre
sponds to said electrical activity. In this ECG, there are many different 
waves and spikes. The most striking deflection is the QRS complex which 
corresponds to the contraction of the heart’s ventricles and hence to the 
heartbeat [2]. Thus, accurate detection of QRS complexes is important 
to compute vital parameters such as HR. Furthermore, downstream 
analyses heavily rely on the precise knowledge of the QRS complex’s 
position. One example is alarm generation in patient monitors. These 
monitors check that vital parameters (e.g. HR) are in a predefined 
healthy range (e.g. between 60 min− 1 and 120 min− 1) and alarm 
otherwise. In addition, arrhythmia detection in patient monitors also 
relies on prior QRS detection [3]. Thus, errors in QRS detection propa
gate in multiple ways (see Fig. 1), leading to false alarms and subse
quently alarm fatigue [4,5]. To prevent this, QRS detection needs to be 
as good as possible. Perfect accuracy is not always achievable due to 
different kinds of noise in the ECG signal, such as muscle artefacts or 
electrode motion [6]. In such cases were QRS detection is impaired, we 

want to at least know that it is impaired and hence results are not reli
able. The aim of this paper is to introduce a certainty metric indicating 
how reliable the QRS detector’s results are. 

The rest of this work is structured as follows: In the remainder of 
Section 1 we give an overview on the state of the art in QRS detection 
and introduce the problem of uncertainty in QRS detection. Further
more, we discuss potential applications of the certainty metric which is 
the main contribution of this work. Lastly, for Section 1, we give an 
overview of related work. In Section 2 we describe the materials this 
work is based upon, i.e. QRS detectors utilising artificial neural networks 
(ANNs) and ECG databases. In Section 3 we explain the inner workings 
of ANN-based QRS detectors as well as their shortcomings. Furthermore, 
we define the concept of certainty in QRS detection to address said 
shortcomings. In Section 4 we present the results of our evaluations on 
the proposed certainty metric. Also, we show how different factors such 
as noise, different beat types and training parameters influence cer
tainty. In Section 5 we discuss the potential of certainty for increasing 
the QRS detectors performance as well as the reliability of downstream 
algorithms such as alarm generation in patient monitors. Finally, we 
describe limitations and future work. 

1.1. State of the art 

QRS detection is a long-standing field with its roots tracing back to 
the 1970s [7] and 1980s [8]. Initially, QRS detection relied on digital 
filters and moving window integration. Since then, a variety of 
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approaches to QRS detection has been studied [9]. One of these ap
proaches is QRS detection based on ANNs. This approach is the basis of 
this work and will be covered in greater detail in Section 2.1. 

Nowadays QRS detectors exhibit good performance with sensitivity 
(Se) and positive predictive value (PPV) above 99% [9] on low-noise 
ECGs. In reality, however, there is noise leading to impaired perfor
mance in QRS detection [6]. Detecting and dealing with periods of 
impaired signal quality and detection performance manifests a problem 
in the state-of-the-art of QRS detection which we will discuss next. 

1.2. Problem with the state of the art QRS detection 

Most of the current approaches to QRS detection have in common 
that they yield the positions of the QRS complexes as their sole output.1 

While there are digital filters in place to reduce the influence of noise, 
there is no feedback given on data quality or the interpretability of the 
ECG. Consequently, ECGs with regularly shaped QRS complexes and low 
levels of noise are dealt with in the same way as ECGs with abnormal 
QRS complexes2 and high levels of noise. Thus, errors in QRS detection 
pass unnoticed corrupting all analyses that build upon information on 
QRS positions. Consequently, vital parameters are erroneously 
computed and false alarms are triggered, leading to stress and even harm 
for patients and staff [4]. Hence, a mechanism for reporting certainty 
along with the QRS positions is required in QRS detectors. 

1.3. Contribution of this work 

In this work, we address the problem of uncertainty in QRS detec
tion. We define a certainty metric for QRS detectors which are based on 
ANNs. Furthermore, we modify these detectors in order to have them 
report said certainty metric along with their detections. In addition, we 
investigate how the certainty metric can be used to distinguish between 
correctly detected QRS complexes and false detections. 

The problem of low signal quality in ECG signal was already 
addressed in a variety of manners by related work which we discuss in 
Section 1.5. However, none of the predominant approaches quantifies 
how well a specific QRS detector can interpret the ECG signal which is 
the unique characteristic of this work. 

Hence, the research questions answered in this work are: 
RQ1 How to quantify how well a QRS detector can interpret a given 

ECG signal? (This is achieved by the certainty metric and through the 
example of ANN-based QRS detectors.) 

RQ2 How can the certainty metric from RQ1 be utilised to distin
guish between true and false detections? 

RQ3 How do different factors such as signal-to-noise ratio (SNR) and 
beat types influence the certainty metric from RQ1? 

1.4. Potential applications 

The concept of certainty in QRS detection can be used for a variety of 
tasks. In the following, we want to give some examples. 

Alarm generation in patient monitors. In intensive care units (ICUs), 
patient monitors are used for early detection of life-threatening situa
tions in patients. ECG signals are used to detect conditions such as 
tachycardia, bradycardia, or arrhythmia. However, the quality of the 
ECG signal gets impaired for various reasons, such as patient movement, 
loose electrodes, changes in posture, or power-line interference [6]. 
Certainty can help to identify such impairments and selecting the ECG 
lead that is least affected. Thus, the quality of QRS detection is improved 
and hence we can achieve higher accuracy in derived metrics, such as 
heart rate. This, in turn, leads to fewer false alarms. 

Holter record review. When reviewing long-term ECG recordings 
generated by wearable Holter monitors, huge amounts of data have to be 
checked manually by a healthcare professional. Certainty can help by 
providing an estimate for signal quality, giving guidance for the 
reviewer in the task of finding potential errors in QRS detection. 
Moreover, this kind of signal quality assessment is specific to the task of 
QRS detection, i.e. only indicating bad signal quality where QRS 
detection is impaired by this. 

Active learning. In active learning, the machine learning model is 
allowed to request labels while not being in the training phase anymore 
(i.e. while doing predictions). The ultimate goal of this approach is to 
reduce the amount of training data needed. Whenever the model is 
uncertain about a given sample, a label is requested to improve the 
model for this very kind of sample [11]. In QRS detection, a QRS posi
tion could be requested from a medical professional whenever the ANN 
is uncertain (e.g. due to a previously unseen QRS shape), thus improving 
the model itself. 

1.5. Related work 

There are different approaches to dealing with noise in ECGs. In the 
following, we give an overview of the options one has when confronted 
with a noisy ECG. All approaches have in common, that they are sepa
rated from the actual QRS detection taking place either before or after. 
The unique characteristic of the certainty metric is, that it is built into 
the QRS detector and can hence give an immediate assessment on how 
much the noise impairs the task of QRS detection. 

Denoising. Denoising techniques aim at separating signal and noise. 
This allows removal of noise while retaining only the clean signal. A 
survey on noise removal techniques can be found in [12]. Some kinds of 
noise such as power-line interference or baseline wander are easily 
removed by band-pass filters. There are, however, other kinds of noise 
such as muscle artefacts and electrode motion artefacts that are hard to 
separate from the signal [6]. This is because the frequency spectrum of 
these kinds of noise is very similar to the frequency spectrum of the 
signal (i.e. the heart’s electrical activity). Therefore, separating signal 
from noise is not always feasible. 

Signal quality indicators (SQIs). Apart from noise removal there are 
also approaches to noise assessment trying to determine the noise’s in
tensity and even its type. Such metrics of overall signal quality are called 
signal quality indicators (SQIs). A 2014 review gives an overview of the 
predominant methods of signal quality assessment with special regard to 
their influence on heart rate and blood pressure derived metrics [13]. A 
2016 paper assesses the interplay between SQIs and heartbeat (QRS) 
detection [14]. The limitation of the use of SQIs regarding this work is 
that SQIs provide am general signal-quality assessment. What we aim at 
in this work is a quality assessment for a specific task, i.e. whether the 
signal is usable for a specific QRS detector. This is not reliably achieved 
with SQIs. 

Use of other physiological signals. With high levels of noise on the ECG, 
detection of QRS complexes using the ECG signal alone might not be 
feasible. In such a case, additional pulsatile physiological signals such as 

Fig. 1. Alarm generation in patient monitors relies on QRS detection in mul
tiple ways. 

1 There are few exceptions where the QRS detector has a notion of uncer
tainty and reports this information, e.g. [10].  

2 Abnormal QRS complexes are caused by pathologies and exhibit a deviant 
shape. Therefore, they are harder to detect since QRS detectors are optimised 
for regularly shaped QRS complexes. This is either by design or accidentally by 
having normal beats as majority class in the training data. 
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photoplethysmography (PPG) and arterial blood pressure (ABP) can be 
used to facilitate QRS detection. This approach is called multimodal beat 
detection and was covered extensively by the 2014s PhysioNet/ 
Computing in Cardiology Challenge of which [15] is the summary paper. 
This approach is, however, only feasible if other physiological signals 
are available which is not always the case. 

ECG signal reconstruction. ECG signal reconstruction aims at repro
ducing the ECG signal from other physiological signals. This can be used 
when the ECG signal drops out (e.g. due to loose electrodes) or the 
signal-to-noise ratio becomes too low (i.e. too much noise). This topic 
was covered extensively by the 2010s PhysioNet/Computing in Cardi
ology Challenge of which [16] is the summary paper. Although the re
sults of the challenge seem promising, the practical applicability for QRS 
detection in noisy ECGs is limited since additional physiological signals 
(other than the one to reconstruct) such as other ECG leads, ABP, PPG, or 
others are required. As in multimodal beat detection, signal availability 
is a limitation here. Even if other signals are available, one could use 
these signals for beat detection right away without the detour via signal 
reconstruction that might introduce additional errors. 

Two-step QRS detection. We found one unpublished QRS detector, 
GQRS, with separate postprocessing utility.3 This way, QRS detection 
becomes a two-step procedure. The detector is optimised for Se. The 
postprocessing tool, GQPOST, however, removes some of the detections 
according to a given threshold thereby increasing PPV at the expense of 
Se. This is similar to our approach since here, too, postprocessing is a 
specialised step that accounts for uncertainty in the prior detection 
process. However, since this is unpublished work, we do not know by 
which criteria QRS detections are rejected or retained. 

Other applications of neural networks in electrocardiography. Apart from 
QRS complex detection and signal quality assessment for noisy ECGs, 
there are also other applications for neural network technology in the 
field of electrocardiography. Although this field is too extensive to fully 
cover it here, we want to at least mention some applications. 

In long-term ECG recordings having only few leads, detection of 
atrial fibrillation (AFib) is an established topic. Recent approaches are 
using convolutional neural network (CNNs) [17] and long short-term 
memory neural network (LSTMs) [18]. This topic was also covered by 
the 2017s Physionet/CinC Challenge [19]. 

In short-term 12-lead ECGs, the detection of various cardiovascular 
diseases (CVDs) using neural networks is a recent topic of research in
terest. [20] and [21] provide two solutions to this problem. Further
more, this is also the topic of the 2020s Physionet/CinC Challenge which 
additionally underlines the recency of this topic [22]. 

2. Materials 

In this section, we introduce the materials that lay the foundations 
for our work. Materials are two-fold: First, we introduce three QRS de
tectors based on neural networks. We will modify these detectors in a 
way that they not only yield QRS positions but also a certainty score for 
each detected QRS position. Second, we introduce the ECG databases we 
use to evaluate our approach. Here we rely on a combination of clean 
ECGs and noise template (as created by [6]) which we merge in order to 
achieve a well-defined SNR. 

2.1. QRS detection with artificial neural networks 

In this section, we describe three ANN-based QRS detectors. Thereby 
we show an evolution from the beginning of ANN-based QRS detection 
in 1997 to very recent developments. Furthermore, we uncover how 
detection errors and uncertain detections manifest in this specific 
approach to QRS detection. 

García-Berdonés detector. Detecting QRS complexes using artificial 

neural networks was first introduced by [23] in 1997 by means of a 
multilayer perceptron (MLP). We will refer to this detector as the 
García-Berdonés detector after its first author. Their approach involves 
three main steps. These steps also manifest the core concept of all sub
sequent ANN-based QRS detectors.  

1. For each sample (“A”) in the ECG signal, take a neighbourhood of n 
samples. This neighbourhood is called window and corresponds to a 
small snippet of the ECG signal (Fig. 2).  

2. Use an MLP for binary classification of each window, whether it 
contains a QRS complex (class 1) or not (class 0). By processing all 
windows in this manner, we create a new signal which we call trigger 
signal. Ideally, the trigger signal exhibits a square pulse shape with 
pulse plateaus at the positions where the ECG signal exhibits QRS 
complexes (Fig. 6).  

3. Find the midpoint of each pulse plateau. These midpoints correspond 
to the precise QRS positions in the ECG signal. 

Šarlija detector. Advancements in neural network technology also 
lead to improved architectures for ANN-based QRS detectors. In 2017, 
[24] proposed a QRS detector based on a CNN instead of a MLP. We will 
refer to this detector as the Šarlija detector after its first author. Another 
novelty of the ̌Sarlija detector is, that the pulse width in the trigger signal 
is uncoupled from the window size provided to the CNN. The CNN is 
trained to classify a window as “contains QRS complex” (class 1) if and 
only if the QRS complex is in a predefined detection area in the middle of 
the window (Fig. 3). Hereby, the CNN can be provided with a larger 
section of the ECG signal, hence providing more contextual information 
around the QRS complex, without inappropriately increasing the width 
of the pulse plateaus in the trigger signal. 

Xiang detector. In 2018, [25] proposed a non-sequential CNN 
approach to QRS detection. We will refer to this detector as the Xiang 
detector after its first author. There are two signals generated from the 
provided ECG signal. The first signal is subjected to a difference oper
ation and fed into a “part level CNN”. The second signal is subjected to a 
window average and a difference operation and fed into an “object-level 
CNN”. Afterwards, a MLP utilises the outputs of the two CNNs to make 
the final decision on whether a QRS complex was detected in the 
detection area or not. Thus, generating the samples for the trigger signal 
(Fig. 4). 

Comparison and synthesis. All of the described approaches follow the 
same overall structure, shown in Fig. 5. First, there is a preprocessing 
step. This preprocessing step might apply some operations to the input 
ECG signal (e.g. filtering, difference operation, window averaging). 
These operations are specific to each detector. However, the 

Fig. 2. All samples (blue dots) within a window (blue frame) are fed into the 
MLP for classification of the window as “does contain QRS complex” (class 1) or 
“does not contain a QRS complex” (class 0). Samples outside the window (black 
dots) are omitted, at least for this window. “A” marks the midpoint of the 
window and hence the centre of the neighbourhood. “B” marks the midpoint of 
the QRS complex as defined in the ground-truth data (see Section 2.2). 3 https://www.physionet.org/physiotools/wag/gqrs-1.htm. 
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preprocessing step always culminates in creating windows from the 
signal. In a second step, these windows are then used as input for an ANN 
classifier. The concrete architecture of the ANN is like the preprocessing 
step specific to each detector. The ANN generates from the windows 
another signal which we call trigger signal. Ideally, this trigger signal is a 
square pulse signal having a value of 0 in areas where no QRS complex is 
present and a plateau of value 1 where a QRS complex is present (Fig. 6). 
Finally, a postprocessing step is used to transform the trigger signal into 
QRS positions. The QRS positions are in the middle of the plateaus in the 
trigger signal. 

Uncertainty and intermediate values. In practice, there is uncertainty: 

The output of the ANN (be it CNN or MLP) is not discrete (0 or 1) but a 
continuous value between 0 and 1, for example, 0.8. This is due to the 
nature of ANN classifiers. Such intermediate values occur when the ANN 
cannot definitely place the given window in one of the two classes (0 – 
no QRS complex; or 1 – QRS complex). Hence, intermediate values 
indicate that the ANN is uncertain whether a QRS complex is present or 
not. We use the term flawed trigger signal for trigger signals exhibiting 
such uncertainty and will utilise this behaviour later-on for computing 
the certainty metric. Therefore, we modify the postprocessing step, as 
shown in Fig. 7. 

Furthermore, the output is not always consistent. For example, there 
is ripple, meaning a few samples where the trigger signal has a value 
close to zero in the middle of a plateau with values close to 1 [23] 
(Fig. 8). Hence, there are postprocessing steps involved to make sense 
from the trigger signal. This postprocessing step is where the certainty 
metric will be computed. Therefore, we will provide a detailed expla
nation of postprocessing in Section 3. 

Implementation. We implemented all ANN-based QRS detectors dis
cussed in this section (Section 2.1). As programming language for 
implementation, we chose Python4 3 (≥3.6) for all components. For 
implementing ANNs, we used the Keras5 (≥2.2.0) [26] in conjunction 
with Tensorflow6 (≥1.9.0) [27]. Furthermore, we used the native Py
thon WFDB package7 for reading the ECG files from the ECG databases 
described in Section 2.2. These databases were provided via Physionet 
[28]. 

2.2. ECG databases 

For evaluation, we are using two types of ECG databases: First, the 
MIT-BIH Arrhythmia Database (mitdb) [29] as a source for clean ECGs 
with low levels of noise. And second, the MIT-BIH Noise Stress Test 
Database (nstdb) [6] which provides ECGs with added noise as well as 
the noise templates. Both databases are described in the following. 

MIT-BIH Arrhythmia Database. The mitdb8 contains 48 clean, two- 
channel ECGs. These ECGs contain cardiac arrhythmias and are fully 
annotated by two independent cardiologists. These annotations include 
information on heart rhythms, abnormal beat, but also specific QRS 
positions [29]. We use these expert annotations of QRS positions as 
ground truth for our works on QRS detection. Specifically, when 
generating windows from the ECG signal, we check with the annotation 
file whether there is a QRS complex in the time-frame covered by the 
window or in the detection area of the window, respectively (cf. Fig. 3). 
If so, the windows is labelled as class 1 (contains a QRS complex). 
Otherwise, it is labelled as class 0 (contains no QRS complex). 

An alternative to the mitdb is the MIT-BIH Normal Sinus Rhythm 
Database (nsrdb).9 This database also provides high-quality, low-noise 
ECGs. However, the nsrdb provides only ECGs from hearts exhibiting a 
sinus rhythm which is the physiological state of the heart. Since ECGs 
(especially long-term ECGs) usually contain some pathology of the 
heart, mitdb might be closer to the real use case of a QRS detector. 

Fig. 3. All samples within area A (defined by window size) are used as input for 
the neural network. However, only if the QRS complex is within area B (defined 
by detection size), a detection shall be indicated. 

Fig. 4. Gross architecture of the Xiang detector. Blue boxes are part of the 
preprocessing step. Orange boxes are part of the ANN classifier. Purple indicates 
postprocessing with specific QRS positions only available after postprocessing. 
Before, there is only the trigger signal. 

Fig. 5. Overall, abstract architecture of all ANN-based QRS detectors consid
ered by this work (García-Berdonés, Šarlija, and Xiang). There is always a 
preprocessing step, an ANN used for classification, and a postprocessing step. 
The concrete implementations of these steps vary. The final output is always a 
(list of) QRS position(s). 

Fig. 6. ECG signal (in blue) and the corresponding trigger signal (in orange) in 
its supposed square pulse shape. Pulse plateaus can easily be distinguished from 
the rest of the trigger signal and hence detecting the QRS complexes is easily 
done via the trigger signal. 

Fig. 7. The change this work proposes to the architecture shown in Fig. 5 
(marked with a red frame). We propose generating not only QRS positions but 
also a certainty score for each position. Therefore, the postprocessing part needs 
to be changed. 

4 https://www.python.org/.  
5 https://keras.io/.  
6 https://www.tensorflow.org/.  
7 https://github.com/MIT-LCP/wfdb-python.  
8 https://physionet.org/content/mitdb/1.0.0/.  
9 https://www.physionet.org/content/nsrdb/1.0.0/. 
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Hence we decided to use mitdb rather than nsrdb as a source for low- 
noise ECG signals. 

MIT-BIH Noise Stress Test Database. The nstdb10 contains ECGs with 
different levels of noise (SNR ∈ { − 6 dB, 0 dB, 6 dB, 12 dB, 18 dB, 
24 dB}) over some periods. These noisy ECGs where created using two 
clean recordings from the mitdb (#118 and #119) and noise templates. 
These noise templates were created by attaching ECG electrodes to the 
subject’s limbs in a way that the heart’s electrical activity is not visible 
in the recording. The subjects were then asked to be physically active. 
Afterwards, three kinds of noise were identified through visual inspec
tion: baseline wander (bw), electrode motion (em), and muscle artefacts 
(ma). The authors of the database considered em as most troublesome 
since “it can mimic the appearance of ectopic beats and cannot be 
removed easily by simple filters, as can noise of other types” [6]. Thus, 
we too use em as a template for adding noise to clean ECGs. 

3. Methods 

In Section 2.1 we explained, how the trigger signal does not always 
exhibit the expected square pulse shape but rather tends to be flawed 
when the neural network does not definitely recognise the deflection in 
question as a QRS complex. In this section, we describe how interme
diate signal amplitudes and ripple can be dealt with. On top of that, we 
define the concept of certainty in QRS detection as well as metrics for 
measuring certainty. These are the main contributions of this work. 
Beyond this, we demonstrate how certainty metrics can be utilised to 
distinguish between correctly detected QRS complexes and false de
tections. This, in turn, improves the accuracy of derived metrics (e.g. 
heart rate), avoiding false alarms and wrong diagnoses. 

3.1. Finding QRS complexes with a flawed trigger signal 

The first step in making sense from a flawed trigger signal is finding 
potential square pulses and hence candidates for QRS complexes. These 
candidates might be actual QRS complexes but could also be false de
tections. To distinguish actual QRS complexes from these candidates, we 
will refer to QRS complex candidates as trigger points throughout the rest 
of this work. Actual QRS complexes are referred to as QRS complexes. 

The García-Berdonés detector [23] uses discretization and ripple 
removal as a means to make sense from the flawed trigger signal and to 
generate trigger points. Discretization is done via Eq. (1) whereas ts is 
the raw trigger signal as ds is the discretized signal. The relevant deci
sion here is which value to choose for the discretization threshold (th). 
García-Berdonés et al. summarise this problem as follows: “Low (large) 
thresholds will decrease (increase) the number of missing detections but 
will increase (decrease) the number of false detections.” [23] 

ds(x) =
{

1, if ts(x) ≥ th
0, otherwise (1) 

After discretization, ripple has to be removed. Whereas ripple refers 
to a few consecutive samples of the discretized signal with value 
0 within a plateau of samples with value 1 (Fig. 9). For this, we have to 
define a tolerance value (to) to specify how many consecutive 0-samples 
within a plateau of 1-samples count as ripple and when we consider this 
as two plateaus. For example, with to = 2, two consecutive samples with 
value 0 within 1-samples are considered to be ripple and the signal gets 
corrected to show one plateau (Eq. (2)). With to = 1 we interpret this 
pattern as two plateaus (without correction, Eq. (3)). 

(1, 1, 1, 0, 0, 1, 1, 1)→(1, 1, 1, 1, 1, 1, 1, 1) with to = 2 (2)  

(1, 1, 1, 0, 0, 1, 1, 1)→(1, 1, 1, 0, 0, 1, 1, 1) with to = 1 (3) 

The problem we are facing in postprocessing is, that reasonable 
default values for the parameters th and to are hard to determine. García- 
Berdonés et al. propose various values between 0.001 and 0.999 for th 
[23], while ̌Sarlija et al. and Xiang et al. do not address the problem at all 
[24,25]. 

Through discretization and ripple removal a rectified trigger signal is 
created, as to be seen in Fig. 10. In this rectified trigger signal, plateaus 
are easily recognisable, and hence trigger point generation can be done 
by finding the midpoints of these plateaus. In the following, we want to 
show how the trigger signals (flawed and rectified) can be utilised to 
determine how much certainty there is in each trigger point. 

3.2. Naive definition of the certainty metric 

In an ideal case, where QRS detection is easy for the detector, the 
trigger signal will exhibit a square pulse shape. Consequently, the more 
the shape of the trigger signal differs from its supposed square pulse 
shape, the more uncertainty there is in the corresponding trigger point. 
We quantify this difference with two different metrics for certainty, 
naive certainty (C) and adaptive certainty (C′). Later in this work, we 
compare both metrics against each other. In the remainder of this sec
tion, we will define and demonstrate naive certainty. In Section 3.3, we 
will explain some shortcomings of naive certainty which we address 
with adaptive certainty. 

Naive certainty (C) compares the area under the flawed trigger signal 
with the area under the rectified trigger signal. According to this, we 
define a certainty metric Ci as the certainty of trigger point i in Eq. (4). 

Ci =

∫ ei
bi

tf (x)dx
∫ ei

bi
tr(x)dx

(4) 

Whereas bi and ei are the begin and end of plateau i, as shown in 
Fig. 11. tf is the flawed trigger signal and tr is the rectified trigger signal. 

Fig. 12 shows a raw ECG signal, the corresponding trigger signal, and 
trigger points with colour-coded certainty. As to be seen, false-positive 
trigger points exhibit lower certainty (deep blue colour) that true posi
tive trigger points having a greenish-yellow colour indicating high cer
tainty. Hence, if we treat this approach as a generate-and-test-pattern, 
certainty may be utilised in the test step to distinguish between true and 
false detections. This is shown in Eq. (5). TPa is the set of actual trigger 
points that supposedly correspond to QRS complexes. TPc the set of 

Fig. 8. ECG signal (in blue) and a corresponding trigger signal (in orange) that 
does not show the expected square pulse shape. In this case, plateaus are harder 
to detect and the detection process requires additional steps, i.e. discretization 
and ripple removal. 

Fig. 9. Trigger signal with a 7-sample plateau having a ripple of 2 sam
ples within. 10 https://physionet.org/content/nstdb/1.0.0/. 
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trigger point candidates containing some trigger points with low cer
tainty which probably do not correspond to QRS complexes. Finally, ct 
the certainty threshold used to distinguish between true and false de
tections. We show a method for finding suitable values for ct in Section 
3.4. 

TPa = {tp|tp ∈ TPc ∧ certainty(tp) > ct} (5)  

3.3. Adaptive definition of the certainty metric 

Naive certainty is defined as the ratio between the area under the 
flawed trigger signal and the area under the rectified trigger signal. 
However, this ratio tends to be skewed when the width of the rectified 
trigger signal varies. Examples of this can be seen in Fig. 25 and Fig. 26 
and we will discuss this issue in greater detail in Section 5.3. For now, we 
want to provide an alternative definition of certainty which we call 
adaptive certainty since it adapts to the plateau width the ANN classifier 
should produce. 

For the definition of adaptive certainty, we use the expected plateau 
width (we). The expected plateau width is the width of the square pulse 
the ANN classifier should produce under ideal circumstances. This width 
is equal to the width of the window that is used as input for the ANN – or 

the width of the detection area in the window, respectively. Eq. (6) 
shows the definition of adaptive certainty (C′). 

C
′

i =

∫ ei
bi

tf (x)dx
we

(6) 

In Sections 4.2 and 5.3, we will show how the two certainty metrics 
behave in comparison when using certainty to distinguish correct de
tections from false ones. 

3.4. Certainty threshold determination 

For distinguishing true and false trigger points using certainty, we 
have to find a proper certainty threshold. In the following, we describe a 
method for determining a suitable threshold. As a general notion, a 
lower certainty threshold will cause the QRS detector to yield more 
trigger points, including false ones, leading to lower PPV for the de
tector. On the contrary, higher certainty thresholds will yield fewer 
trigger points, potentially discarding true ones, leading to a lower Se of 
the detector. 

If we plot the number of trigger points yielded against the certainty 
threshold, we expect to see a graph similar to the one shown in Fig. 13. 
For low certainty thresholds, the number of trigger points, including 
false ones, is high. Then, with increasing certainty threshold, low cer
tainty (supposedly false) trigger points are discarded, leading to a 
plateau with a close to constant number of trigger points even if the 
certainty threshold increases further. At the far right side of the graph, 
the number of trigger points starts decreasing again, as even high cer
tainty (supposedly true) trigger points are discarded. We expect to have 
an optimal certainty threshold in terms of F1 score (F1)11 on the plateau 
to be found in the middle of the plot. 

To evaluate whether QRS certainty behaves as expected and 
described, we need to test the approach proposed above on ECG data. In 
the following, we describe how evaluation is done. 

3.5. Evaluation 

When assessing certainty in QRS detection, situations have to be 
created, in which a QRS detector is to some degree uncertain about a 
detected QRS complex. With ANN-based QRS detectors, we can create 
such a situation by making the test data differ from the training data. We 
achieve this by using noisy test data, to make QRS detection harder. 

Fig. 10. ECG signal (in blue) together with a flawed trigger signal (in orange) 
that does not exhibit the expected square pulse shape. Furthermore, a rectified 
version of the flawed trigger signal is shown in green. 

Fig. 11. Schematic drawing of flawed (orange) and rectified (green) trigger 
signal showing begin and end of a plateau, i.e. first and last sample above a pre- 
defined threshold. 

Fig. 12. Three information are to be found in this figure. The bottom plot 
shows the raw ECG signal. The top plot shows the trigger signal generated from 
the ECG signal. The circles in the top plot are potential trigger points with 
colour-coded certainty. 

Fig. 13. Speculative figure showing the number of retained trigger points 
(# RTP) plotted subject to the certainty threshold (ct). Higher ct correspond to 
lower # RTP since more trigger points are removed because their certainty is 
below the certainty threshold. This figure does not show real measurements but 
rather how the measurements (shown later in this work) are supposed to look 
like. In area A, low certainty (supposedly false) trigger points are included. In 
area B, we supposedly discard false trigger points while retaining true ones. In 
area C, the certainty threshold is sufficiently high to even discard trigger points 
with a rather high certainty, hence removing even supposedly true trigger 
points from the output. 

11 F1 is the harmonic mean of the PPV and Se, hence taking false positives and 
false negatives into account: F1 = 2⋅ PPV⋅Se

PPV+Se = 2TP
2TP+FP+FN. 
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Noisy test data are created using the ECG databases described in 
Section 2.2. We use clean ECGs from the mitdb and add noise provided 
by the em noise template in the nstdb. The exact method used for 
adding noise is described in Section 3.6. 

On these noisy ECG data, we perform QRS detection as per our 
proposed method yielding trigger points12 in conjunction with a cer
tainty measure for each detection. On these trigger points, we apply the 
certainty threshold determination method described in Section 3.4. This 
means that we will plot the number of retained trigger points (# RTP) 
subject to the certainty threshold (ct) and verify that it, indeed, shows 
the shape described in Section 3.4 and Fig. 13. Furthermore, we will 
examine Se, PPV, and their harmonic mean F1 subject to ct. We will 
evaluate the following hypotheses:  

• Low ct are associated with higher values for PPV and lower values for 
Se  

• High ct are associated with higher values for Se and lower values for 
PPV  

• Intermediate ct yield the highest F1 

Furthermore, we will evaluate how increasing levels of noise influ
ence certainty measures, hypothesising that certainty decreases with 
increasing levels of noise. In addition, we will compare naive certainty 
and adaptive certainty with respect to Se, PPV, and F1 using different 
discretization thresholds (th). With this evaluation, we want to find out 
whether varying plateau width in the rectified trigger signal are actually 
a problem. If this is the case, adaptive certainty should outperform naive 
certainty with respect to Se, PPV, and F1. 

Apart from noise, we investigate how certainty is influenced by 
deviant beat types in Section 4.3, how certainty levels vary with 
different detectors in Section 4.4, and the influence of training param
eters on certainty in Section 4.5. 

3.6. Artificially adding noise to a signal 

We want to evaluate how noise in the ECG signal affects QRS cer
tainty and subsequently the performance of the QRS detector. We use 
the mitdb as source for low-noise (clean) ECG signals. The nstdb is 
used as a source for noise templates. To add noise to the clean signal, we 
perform the following steps:  

1. Determine the signal power of the clean signal and the noise 
template.  

2. Scale the samples of the noise template up or down to achieve a 
specific SNR.  

3. Add samples of noise template to clean signal. 

The SNR is defined in terms of signal power, as shown in Eq. (7). The 
power of an electrical signal s can be defined in terms of its root mean 
square amplitude (Eq. (8)). Using this, we can define SNR in terms of 
signal and noise samples (Eq. (9)). Assuming clean signal and noise 
template have the same length in terms of number of samples (m = n), 
we can simplify the equation by removing 1

m and 1n (Eq. (10)). 

SNR =
Psignal

Pnoise
(7)  

Ps =
1
n

∑n

i=0
s(i)2 (8)  

SNR =
1
m

∑m
i=0signal(i)2

1
n

∑n
i=0noise(i)2 (9)  

SNR =

∑n
i=0signal(i)2

∑n
i=0noise(i)2 (10) 

Since we do not want to describe the current SNR which we would 
get when adding the samples of signal and noise without scaling the 
noise, we define a target SNR (SNRt) in Eq. (11) where k is the factor 
used for scaling each of the noise’s samples. Eqs. (12)–(15) show, how to 
find k. 

SNRt =

∑n
i=0signal(i)2

∑n
i=0(k⋅noise(i))2 (11)  

SNRt =

∑n
i=0signal(i)2

k2⋅
∑n

i=0noise(i)2 (12)  

k2 =

∑n
i=0signal(i)2

SNRt⋅
∑n

i=0noise(i)2 (13)  

k2 =
SNR
SNRt

(14)  

k =

̅̅̅̅̅̅̅̅̅̅̅
SNR
SNRt

√

(15) 

Now we can scale up all samples of the noise template by multiplying 
them with k. Finally, we can add the samples of the scaled noise template 
to the clean signal to produce a noisy ECG signal with constant SNR. This 
noisy ECG signal can then, in turn, be used for evaluating how the cer
tainty metric behaves when signal quality is impaired. 

4. Results 

In the following, we evaluate the certainty metrics proposed in this 
work. We show how certainty can be used to distinguish correctly 
detected QRS complexes from false detections. To perform this distinc
tion, we have to find a suitable certainty threshold. This threshold is 
under the influence of external factors, such as noise. Higher levels of 
noise cause larger artefacts that show stronger resemblance to QRS 
complexes than smaller artefacts would do. Hence, there is not a single 
and always adequate certainty threshold, rather we have to determine 
the certainty threshold for each record separately. 

4.1. Certainty threshold determination 

For finding a certainty threshold suitable for the signal’s level of 
noise, we proposed considering the number of detected trigger points 
(# RPT) subject to the certainty threshold (ct). Fig. 14 shows a plot of this 
relationship. As assumed, # RPT decreases rapidly with increasing ct for 
small ct, then # RPT reaches an area of low slope until, for large ct, # RPT 
starts decreasing again with increasing ct. This holds even for higher 
levels of noise, as Fig. 15 shows. More noise causes # RPT to be higher for 
small ct, due to a higher number of low-certainty trigger points caused 

Fig. 14. The number of detected trigger points (# RPT) subject to the certainty 
threshold (ct) for records with SNR = 6dB. The line shows the median, the error 
bars show the 1st and 3rd quartile. As suspected in Section 3, there is an area of 
low slope in the middle of the plot. certainty thresholds forming this area of low 
slope are produce best QRS detection performance, as Fig. 16 shows. 12 Candidates for QRS positions. 
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by noise. Using the proposed method, values for ct between 0.1 and 0.8 
seem to be reasonable. 

To evaluate whether ct values in the area of low slope are actually 
corresponding to the best detector performance, we assess Se, PPV, and 
F1 subject to ct. Fig. 16 shows the results of this evaluation for the # RPT/ 
ct plot shown in Fig. 14. Fig. 17 shows the results of this evaluation for 
the # RPT/ct plot shown in Fig. 15. These results are discussed in Section 
5.1. The effect that increased levels of noise have on the certainty metric 
is discussed in Section 5.2. 

4.2. Comparison of certainty metrics 

In Section 3 we introduced two alternative definitions for certainty. 
Naive certainty (C) is defined in terms of the rectified trigger signal and 
adaptive certainty (C′) is defined in terms of the expected plateau width. 
In the following, we compare C and C′ under two different conditions. 
For the first comparison, we used a low discretization threshold for the 
trigger signal (th = 0.05). For the second comparison, we used a high 
discretization threshold for the trigger signal (th = 0.5). 

Fig. 18 shows the # RPT/ct plots of C and C′ for th = 0.05. We can see 
that the plots only differ for high certainty thresholds (ct > 0.8) where 
adaptive certainty retains more detected trigger points (higher # RPT). 
Fig. 19 shows that with C′ we achieve higher Se (and consequently 
higher F1) than with C for high certainty thresholds (ct > 0.8). Higher Se 
means more true positives in relation to false negatives. Consequently, 
C′ reduces the number of false negatives compared to C. 

For th = 0.5 we can see in Fig. 20 that the # RPT/ct plot of C′ shows 
fewer detected trigger points than C for equal certainty thresholds in the 
area of low slope (ct ∈ [0.1, 0.9]). Fig. 21 shows that C′ shows higher 
PPVs for equal certainty thresholds than C. Consequently, F1 is also 
higher for C′. Higher PPVs mean that there are more true positives in 
relation to false positive. Consequently, C′ reduces the number of false 
positives compared to C. 

These results and the reasons for this behaviour are discussed in 
Section 5.3. 

4.3. Impact of varying beat types on certainty 

We trained a García-Berdonés detector that was modified to report 
certainty along with its detections on the mitdb recordings 100 to 104. 
These ECG recordings contain only negligible amounts of non-normal 
beats.13 Afterwards, we used this pre-trained detector to detect QRS 
complexes on recording 106 that exhibits 520 premature ventricular 
contractions (PVCs) (non-normal beats) in its 2027 QRS complexes. 
Fig. 22 shows how certainty in PVCs is lower than certainty in normal 
beats. False positive detections, however, exhibit even lower certainty 
than PVCs. 

To check whether the certainty values of (A) normal beats and PVCs 
and (B) PVCs and false detections are statistically significantly different, 

we performed a Mann-Whitney U test14 with a significance level 
α = 0.05. For (A) normal beats and PVCs we computed p = 0.0381 which 
indicates statistically significant difference. For (B) PVCs and false de
tections we computed p = 4.93 × 10− 91 which also indicates statistically 
significant difference. 

4.4. Certainty differences between detectors 

We compare certainties across the three detectors discussed in this 
work, i.e. García-Berdonés detector, ̌Sarlija detector, and Xiang detector. 
Therefor, we used the same procedure as in Section 4.3. We trained the 
detectors on mitdb recordings 100 to 104 with negligible amounts of 
non-normal beats and tested on recording 106 which contains approx
imately 25% non-normal beats. Using this approach, we evaluate both 
the detector’s ability to recognise previously seen beat types and its 
ability to generalise to deviant shapes. In practice, it would make more 
sense to train the detector on a variety of beat types. However, we 
decided to use this approach in order to make detection harder and 
hence certainty differences more striking. Fig. 23 shows certainty dif
ferences across different detectors. Interestingly, the Xiang detector 
shows higher certainty values while both the García-Berdonés detector 
and the ̌Sarlija detector exhibit lower certainty values on a similar level. 
Apparently, the two-part approach using an object-level CNN and a part- 
level CNN – which is the novelty in the Xiang detector – makes a bigger 
difference in terms of certainty than the use of a CNN instead over an 
MLP – which is the novelty of the Šarlija detector over the García- 
Berdonés detector. 

4.5. Impact of training parameters 

With ANN-based QRS detection, there is a large number of param
eters that need to be set. Hyperparameter optimisation concerning pa
rameters like learning rate, number of training epochs, etc. is a general 
problem in machine learning, especially with neural networks. The 
problem is already covered by other works [30] and there exist tools for 
optimising hyperparameters in different machine learning toolkits such 
as scikit-learn’s hyper-parameter optimisers,15 the Keras Tuner16 and 
Tensorflow’s HParams Dashboard.17 Hence, we will not cover this topic 
here. A special parameter to ANN-based QRS detectors is the window 
size which is why we will investigate this parameter more closely. 

As a general notion, larger windows provide more information to the 
ANN but are computationally more expensive and hence makes the 
detector slower. In contrast, smaller windows provide less information 
and make detection faster. In the García-Berdonés detector, the window 
size must be smaller than RR interval because otherwise the square 
pulses in the trigger signal would fuse and QRS detection would become 
impossible. With the ̌Sarlija detector and the Xiang detector this problem 
is averted by distinguishing between window size and detection size (cf. 
Section 2.1). 

An analysis on the García-Berdonés detector shows, that certainty 
increases with larger window sizes but quickly converges so that even 
larger window sizes provide no additional benefit at some point. This is 
to be seen in Fig. 24 

5. Discussion 

In Section 3 we showed that an ANN-based QRS detector reacts to 

Fig. 15. Median # RPT subject to ct for records with different signal-to-noise 
ratios. For all SNRs there is an area of low slope for intermediate ct values. 
For more extreme ct values (ct < 0.1 or ct > 0.8), the # RPT decreases consid
erably with increasing ct. 

13 https://archive.physionet.org/physiobank/database/html/mitdbdir/tables. 
htm. 

14 From the boxplot (Fig. 22) we cannot assume normal distribution which 
rules out the Student’s t-test. Also, the samples are unpaired which rules of the 
Wilcoxon signed-rank test.  
15 https://scikit-learn.org/stable/modules/classes.html.  
16 https://www.tensorflow.org/tutorials/keras/keras_tuner.  
17 https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hp 

arams. 
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hard-to-interpret ECG signals with distinct changes in the trigger signal. 
These changes are caused either by deviant beat types or by noise. To 
quantify these changes, we provided two definitions for a certainty 
metric, thus answering RQ1 (cf. Section 1.3). 

Furthermore, we introduced a method for finding a suitable certainty 
threshold to distinguish between true and false QRS complex detections 
(Section 3.4), thus answering RQ2. The performance results of this 
method are presented in Section 4.1 and further discussed in Section 5.1. 

Regarding RQ3, we examined how different factors such as 
increasing levels of noise (Sections 4.1 and 4.2), deviant beat types 
(Section 4.3), different detector architectures (Section 4.4), and training 
parameters (Section 4.5) influence certainty. 

Especially the effects of increasing levels of noise are discussed in 

greater detail in Section 5.2, since this also has implications on the 
certainty threshold for rejecting false positives. Finally, in Section 5.3 
we compare the two alternative definitions of certainty (naive certainty 
and adaptive certainty) we provided. 

5.1. Certainty threshold evaluation 

The graphs shown in Figs. 14 and 15 behave both as predicted in 
Section 3.4 (cf. Fig. 13). To evaluate whether ct values yielded by this 
approach actually correspond to the highest QRS detection perfor
mance, we plotted Se, PPV, and F1 subject to ct in Figs. 16 and 17 . These 
figures show that Se, PPV, and F1 respond to changes in ct as expected 
and described previously. There is an area of high values and a low slope 

Fig. 16. Performance of an ANN-based QRS detector for different values for ct. SNR = 6 db. The line shows median, the error bars show the 25th and 75th per
centiles. certainty thresholds between 0.1 and 0.8 yield are associated with high performance. This range of ct values is also the area of low slope in Fig. 14. 

Fig. 17. Median performance of an ANN-based QRS detector for different values for ct and SNR. Although there are differences in performance, the overall shape of 
the plots is similar for all SNRs. Se decreases with increasing ct and has a cutoff at ct ≈ 0.8 due to increasing numbers of false negatives. The PPV increases with 
increasing ct due to more false positives getting discarded. F1 is the harmonic mean of Se and PPV and has hence an inverted U shape. 

Fig. 18. # RPT/ct plot comparison for adaptive certainty and naive certainty 
using a low discretization threshold of th = 0.05. Adaptive certainty shows 
higher numbers of detected trigger points (# RPT) for high certainty thresh
olds (ct > 0.8). 

Fig. 19. Comparison of performance characteristics for adaptive certainty and naive certainty. Adaptive certainty shows higher Se for high certainty thresholds 
(ct > 0.8). Since F1 is the harmonic mean of Se and PPV and both certainties show the same performance in terms of PPV, F1 is also higher for adaptive certainty and 
ct > 0.8. This means that adaptive certainty produces fewer false negatives than naive certainty for high certainty thresholds. 

Fig. 20. # RPT/ct plot comparison for adaptive certainty and naive certainty 
using a high discretization threshold of th = 0.5. Adaptive certainty shows lower 
numbers of detected trigger points (# RPT) for the area of low slope 
(ct ∈ [0.1, 0.9]). 
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in the F118 between ct = 0.1 and ct = 0.8. Thus, searching for areas of 
low slope in the # RPT/ct plot is suitable for finding proper certainty 
thresholds. 

5.2. Effects of noise 

When increasing the level of noise we can make two observations, to 
be seen in Fig. 17:  

1. The numbers of true positives and false negatives do not change 
severely with increasing levels of noise. Thus, Se curves are 
approximately the same for different levels of noise.  

2. The number of false positives increases with increasing levels of 
noise. Therefore the curve of the PPV shows lower values with higher 
levels of noise. 

We can conclude that with increasing levels of noise, the influence of 
false positives on the overall performance of the QRS detector increases. 
Hence, we have to choose higher values for ct to discard these false 
positives. This is supported by Fig. 17 showing that for higher levels of 
noise (lower SNR), a F1 value close to maximum is reached with higher 
ct only (i.e. ct ≈ 0.7). In the corresponding # RPT/ct plot (Fig. 15) this is 
also to be seen: Curves for higher levels of noise (e.g. blue curve, 
SNR = 0 dB) have higher slopes for lower ct values (ct ∈ [0.1, 0.4]) than 
curves for lower levels of noise (e.g. green curve, SNR = 6 dB). 

5.3. Why does adaptive certainty outperform naive certainty? 

Generating a rectified trigger signal from a flawed trigger signal is 
done by an algorithm expecting a discretization threshold as an addi
tional parameter. For certainty assessment, low discretization thresholds 
are used to avoid prematurely rejecting plateaus. However, a too low 
threshold can create too wide plateaus for actual QRS complexes, 
leading to lower certainty when using C. This is shown in Fig. 25. 
Consequently, the plateau is rejected due to too low certainty, creating a 
false negative. Using C′, the plateau width is predefined and fixed and 
thus the problem does not occur. 

With higher discretization thresholds, we face the opposite situation. 
Plateaus caused by noise are narrow and hence only covering parts 
where the flawed trigger signal has high values. This is shown in Fig. 26. 
Consequently, the plateau’s certainty is higher, and therefore the 
plateau is retained even though it is caused by noise, creating a false 
positive. 

Fig. 21. Comparison of performance characteristics for adaptive certainty and naive certainty. Adaptive certainty shows higher PPVs. Since the F1 is the harmonic 
mean of Se (Se) and PPV and both certainties show the same performance in terms of Se, the F1 is also higher for adaptive certainty. This means that adaptive 
certainty produces fewer false positives than naive certainty. 

Fig. 22. Values of the certainty metric in different beat types. False detections 
exhibit the lowest certainty, followed by non-normal beat types such as PVCs. 
As expected, the highest certainty is to be found with normal beats since this is 
the kind of beat the detector was trained on. 

Fig. 23. Values of the certainty metric as produced by different detectors. The 
Xiang detector exhibits higher certainty values than both other detectors. Note 
that the y axis is scaled to [0.8 ; 1.0]. 

Fig. 24. Median certainty subject to window size as produced by a García- 
Berdonés detector. The light blue are represents the IQR. We can observe that 
certainty increases with increasing window size up to a point of convergence 
which is at 15 in this case. 

18 F1 is the harmonic mean of Se and PPV. Thus, F1 can be considered a good 
metric for the overall performance in QRS detection, since it combines the 
measure for the occurrence of false positives (PPV) and the measure for the 
occurrence of false negatives (Se). 
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5.4. Conclusion 

In this work, we defined the concept of certainty in ANN-based QRS 
detection. We examined one exemplary use case for certainty within the 
QRS detector itself: Distinguishing correctly detected QRS complexes 
from false detections. This helps in making sense from the trigger signal 
without having to rely heavily on arbitrarily set thresholds. However, 
improving the performance of the QRS detector itself is not the only 
possible use case. Detecting QRS complexes is not a self-purpose but 
rather a single step in a pipeline. From the knowledge of the QRS 
complex positions, we can derive metrics like heart rate which in turn 
can be used for triggering alarms in patient monitor or making di
agnoses. With certainty assessment in the QRS detector, we cannot only 
derive the heart rate but also give an estimate on how reliable this in
formation is, thus retaining more information for higher-level decisions 
(such as raising an alarm or not). 

It has to be noticed that certainty is not only influenced by the shape 
of the QRS complex but also by the neural network and how it was 
trained. The more training and test data differ, the lower the certainty is. 
Hence, low certainty does not necessarily imply bad signal quality but 
rather that the neural network in use can hardly make sense from the 
signal. 

5.5. Limitations and future work 

We proposed the certainty metric as a SQI that is specific to the task 
of QRS detection with a specific detector. However, this approach still 
has some limitations that demand future work. 

Different detectors. So far, we defined the certainty metric only in 
terms of ANN-based QRS detectors. This limits the practical applicability 
since ANN-based QRS detection is only one of many approaches [9]. 
Also, due to the window-based approach, QRS detection with ANNs 
introduces a time lag which further limits its applicability for real-time 
use cases such as patient monitoring. Other approaches to QRS detection 

need to be investigated in order to define certainty for a larger variety of 
detectors. To this end, future work needs to investigate how uncertainty 
manifests in different detectors and how it can be quantified. 

Different signals. While this paper defines certainty in terms of QRS 
detection, i.e. heartbeat detection in ECG signals, other physiological 
signals can be used for beat detection as well. For example, there are 
ABP and PPG signals, where pulse waves can be detected in. Future work 
needs to investigate whether the concept of certainty can also be applied 
to beat detection in other physiological signals. 

Usefulness in practice. In this work, we only investigated how the 
certainty metric can be used within the field of QRS detection itself. For 
example, to improve QRS detection by choosing a suitable certainty 
threshold. It remains to be investigated, how the certainty reported by 
the QRS detection can be utilised in later-on, for example for alarm 
generation in medical monitors. Further work has to be done in deter
mining the potential of certainty for practical purposes, such as dis
tinguishing real medical emergencies from false alarms due to bad signal 
quality. 
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[21] F. Ertuğrul, E. Acar, E. Aldemir, A. Öztekin, Automatic diagnosis of cardiovascular 
disorders by sub images of the ecg signal using multi-feature extraction methods 
and randomized neural network, Biomed. Signal Process. Control 64 (2021) 
102260. 

[22] E.A.P. Alday, A. Gu, A.J. Shah, C. Robichaux, A.-K.I. Wong, C. Liu, F. Liu, A.B. Rad, 
A. Elola, S. Seyedi, et al., Classification of 12-lead ecgs: the physionet/computing in 
cardiology challenge 2020, Physiol. Meas. 41 (12) (2020) 124003. 
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Glossary 

bw: baseline wander 
em: electrode motion 
ma: muscle artefacts 
mitdb: MIT-BIH Arrhythmia Database 
nsrdb: MIT-BIH Normal Sinus Rhythm Database 
nstdb: MIT-BIH Noise Stress Test Database 
ABP: arterial blood pressure 
adaptive certainty: c 
AFib: atrial fibrillation 
ANN: artificial neural network 
certainty: m 
CNN: convolutional neural network 
CVD: cardiovascular disease 
ECG: electrocardiogram 
expected plateau width: The width of the square pulse the ANN classifier should produce 

under ideal circumstances. This width is equal to the width of the window that is used 
as input for the ANN. Denoted with we 

F1: F1 score 
flawed trigger signal: A trigger signal that does not exhibit a square pulse shape. Interme

diate values (between 0 and 1) and ripple are to be found. Denoted with tf 
HR: heart rate 
IQR: interquartile range 
LSTM: long short-term memory neural network 
MLP: multilayer perceptron 
naive certainty: Certainty metric defined via the flawed trigger signal and the rectified 

trigger signal. Denoted with C 
PPG: photoplethysmography 
PPV: positive predictive value 
PVC: premature ventricular contraction 
rectified trigger signal: Square pulse signal generated from the flawed trigger signal by 

means of discretization and ripple removal. Denoted with tr 
Se: sensitivity 
SNR: signal-to-noise ratio 
SQI: signal quality indicator 
trigger point: a 
trigger signal: i 
window: s 
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