

TrussFormer: 3D Printing Large Kinetic Structures
Robert Kovacs1, Alexandra Ion1, Pedro Lopes1, Tim Oesterreich1, Johannes Filter1, Philip Otto1,

Tobias Arndt1, Nico Ring1, Melvin Witte1, Anton Synytsia2, and Patrick Baudisch1
1Hasso Plattner Institute,

University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

2College of Engineering,
Oregon State University, USA

anton.synytsia@gmail.com

ABSTRACT
We present TrussFormer, an integrated end-to-end system
that allows users to 3D print large-scale kinetic structures,
i.e., structures that involve motion and deal with dynamic
forces. TrussFormer builds on TrussFab, from which it
inherits the ability to create static large-scale truss structures
from 3D printed connectors and PET bottles. TrussFormer
adds movement to these structures by placing linear actuators
into them: either manually, wrapped in reusable components
called assets, or by demonstrating the intended movement.
TrussFormer verifies that the resulting structure is
mechanically sound and will withstand the dynamic forces
resulting from the motion. To fabricate the design,
TrussFormer generates the underlying hinge system that can
be printed on standard desktop 3D printers. We demonstrate
TrussFormer with several example objects, including a
6-legged walking robot and a 4m-tall animatronics dinosaur
with 5 degrees of freedom.

Author Keywords
Fabrication; 3D printing; variable geometry truss; large scale
mechanism.

INTRODUCTION
Personal fabrication tools [3], such as 3D printers, afford
rapid prototyping [21] and empower non-experts with the
ability to fabricate interactive objects [14]. The latter
includes animated objects, such as kinematic animals [9] or
actuated paper origami [23], and simple machines [25].

More recently, HCI researchers have started to explore how
to enable non-expert users to fabricate large-scale structures.
While professional users may have access to large-scale 3D
printing equipment [16], non-experts are generally limited to
the use of desktop 3D printers, causing these systems to
achieve scale by combining 3D print with ready-made
objects, such as empty plastic bottles [17]. The resulting

systems also support users in creating structures capable of
dealing with the substantial forces such structures are subject
to. TrussFab [17], for example, achieves this by allowing
users to combine already sturdy primitives and by checking
stability during editing.

Figure 1: (a) TrussFormer is an end-to-end system that allows

users to design and 3D print large-scale kinetic truss
structures that deform and animate. (b) TrussFormer verifies

that the designed structure can handle the forces resulting
from its motion, as shown on this animatronics 4m tall T-Rex.

While large-scale fabrication systems like TrussFab have
been shown to support a wide range of applications, from
furniture to tradeshow pavilions, such systems are limited to
creating static structures.

In this paper, we present a system that allows users to create
large kinetic structures, i.e., structures that involve motion
and deal with dynamic forces, as they occur as part of
animatronics devices, such as the animated Tyrannosaurus
Rex, illustrated by Figure 1, and other large-scale machinery.
TrussFormer embodies the required engineering knowledge
from creating the appropriate mechanism, verifying its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

UIST '18, October 14–17, 2018, Berlin, Germany
© 2018 Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5948-1/18/10…$15.00
https://doi.org/10.1145/3242587.3242607

structural soundness, and generating the underlying hinge
system printable on desktop 3D printers.

TRUSSFORMER
TrussFormer helps users to create the shape and design the
motion of large-scale kinetic structures. It does this by
incorporating linear actuators into rigid truss structures in a
way that they move “organically”, i.e., hinge around multiple
points at the same time. These structures are also known as
variable geometry trusses [1]. Figure 2 illustrates this on the
smallest elementary truss, (a) the rigid tetrahedron. (b) We
swap one of the edges with a linear actuator, (c) resulting in
a variable geometry truss. The only required change for this
is to introduce hubs that enable rotation at the nodes. We call
these hinging hubs.

Figure 2: (a) The static tetrahedron (b-c) is converted into a

deformable structure by swapping one edge with a linear
actuator. The only required change is to introduce connectors

that enable rotation.

This simple approach to create variable geometry truss
mechanisms scales well to arbitrary larger structures. Our T-
Rex model from Figure 1 contains five linear actuators and
thus offers five degrees of freedom (DoF). It can (a) lift or
lower its neck (1 DoF), (b) turn its head left and right
(1 DoF), (c) sweep its tail (2 DoF), and (d) open its mouth
(1 DoF), as shown in Figure 3.

Figure 3: The T-Rex offers 5 degrees of freedom.

In the following, we demonstrate how TrussFormer allows
non-expert users to create such structures in six steps.

Step 1: Creating a static structure
As shown in Figure 4, this particular model was created by
first modeling the T-Rex as a static structure in TrussFormer.

Our editor’s ability to create static structures is based on
TrussFab [17]: users design the shape of their T-Rex using
structurally stable primitives (tetrahedra and octahedra).

Figure 4: Modeling the static shape of the T-Rex. Here, the
user creates the jaws of the T-Rex by attaching tetrahedron

primitives through the steps (a, b, c).

Step 2: Adding movement
To add movement to the static structure, users select the
demonstrate movement tool and pull the T-Rex head
downwards, as shown in Figure 5. TrussFormer responds by
placing an actuator that turns the T-Rex body into a structure
that organically moves and bends down. Together with the
Demonstrate movement tool, TrussFormer provides three
different approaches to animating structures, ranging from
this (1) automated placement (for novice users), through (2)
placing elements with predefined motion, called assets, to (3)
manual placement (as users acquire engineering knowledge).
We discuss these in section “Adding motion to the structure”.

Figure 5: (a) The user selects the demonstrate movement tool

and pulls the T-Rex head downwards. (b) TrussFormer
responds by adding an actuator to the T-Rex body so that it is

capable of performing this type of motion. At this point the
system also places 9 hinging hubs to enable this motion

(marked with blue dots).

Step 3: Stability check across poses
During this step, TrussFormer also verifies that the
mechanism is structurally sound. In the background,
TrussFormer finds the safe range of expansion and
contraction of the placed actuator by simulating the
occurring forces in a range of positions. If there is a pose
where the forces exceed the pre-determined breaking limits
or the structure would tip over, TrussFormer sets the limits
for the actuator so it will not extend beyond them. This check
prevents users from producing invalid configurations.

Step 4: Animation
To animate the structure users open the animation pane in
the toolbar, as shown in Figure 6. First, they control the
movement of the structure manually using sliders, to try out

the movement. When they find the desired pose, they simply
add it as a keyframe to the animation timeline. With this
TrussFormer allows users to orchestrate the movement of all
actuators using a simple timeline/keyframe editor. In Figure
6 we program a “feeding” behaviour, where the T-Rex opens
its mouth while reaching down and waving its tail.

Figure 6: Animating the structure. Users sets the desired pose
using the sliders in the animation pane and orchestrates the

movement by placing key-frames on the timeline.

Step 5: Checking forces during the motion
Once a movement has been defined, TrussFormer computes
the dynamic forces. As shown in Figure 7a, the user creates
an animation that moves the T-Rex body up and down.
(b) TrussFormer computes the forces while T-Rex’s body
comes back up quickly after dipping down; the large
acceleration of the long neck leads to very high inertial
forces, exceeding the breaking limit of the construction,
(c) causing the structure to fail at the indicated time point.
These situations are hard to foresee, because the inertial
forces can be multiple times higher than the static load in the
structure. (d) TrussFormer addresses this by automatically
correcting the animation sequence by either limiting the
acceleration or the range of the movement, assuring that the
structure will now withstand the movement.

Figure 7: Verifying the inertial forces: (a-b) The forces are

increasing with the acceleration of the structure. (c) The
structure breaks when the direction of the movement changes

rapidly. (d) TrussFormer resolves this by making the
movement slower.

Step 6: Fabrication
When users are satisfied with their design (structure,
movement and animation), they click the fabricate button,
shown in Figure 8a. This invokes (1) TrussFormer’s hinge
generation algorithm, which analyzes the structure’s motion
and generates the appropriate 3D printable hinge and hub
geometries, annotated with imprinted IDs for assembly. In
the case of the T-Rex, the system exports 42 3D printed hubs,
consisting of 135 unique hinging pieces. (2) Next,
TrussFormer exports the created animation patterns as
Arduino code that users upload to their microcontroller.
(3) Lastly, it outputs a specification, containing the force,
speed, and motion range of the actuators, in order to achieve
the desired animation pattern. Users find these actuators as
standardized components.

Figure 8: (a) To fabricate our T-Rex model, TrussFormer
exports: (b) the appropriate 3D printable hinging-hubs,

(c) and the specifications for the actuators that inform the
users which one to buy. TrussFormer also exports the

animation sequence for an Arduino.

CONTRIBUTION, BENEFITS, AND LIMITATIONS
Our main contribution is TrussFormer: an end-to-end system
that enables non-expert users to create large-scale kinetic
structures, such as the devices used in large-scale
animatronics.

TrussFormer helps users in the 3 main steps along the design
process. (1) It enables users to animate large truss structures
by adding linear actuators to them. It offers three tools for
this purpose: manual actuator placement, placement of assets
performing predefined motion, and creating motion by
demonstration. (2) TrussFormer validates the design in real
time against static forces, static forces across all poses, and
dynamic forces. (3) TrussFormer automatically generates the
necessary 3D printable hinges for fabricating the structure.
Its algorithm determines the placement and configuration of
the hinges and their exact dimensions.

To validate our system, we created a series of example
objects, including a 6-legged walking robot and a 4m-tall
animatronics dinosaur with five degrees of freedom,
comprising of 17 static and 25 hinging hubs.

TrussFormer is subject to some limitations.
(1) TrussFormer’s simulation relies on the Newton
Dynamics physics engine [52], which offers only limited
accuracy for engineering purposes. Higher precision could
be achieved by replacing Newton Dynamics with a better
physics engine (e.g., [7]). (2) When deployed, TrussFormer
should be provided with additional safety features, such as
the option to use stronger materials and additional safety
margins in the computation.

WORKING PRINCIPLE BEHIND TRUSSFORMER’S
KINETIC STRUCTURES
Before we discuss how TrussFormer allows users to define
motion of the structure, we explain where actuators can be
placed inside the truss structure and how their motion
propagates.

A structure created in TrussFormer consists of unit cells,
which can be tetrahedra or octahedra. Each cell can contain
one or more linear actuators. When actuated, the actuators
change the geometry of the cell and thus move the entire
structure.

First, as an example, Figure 9 illustrates how inserting an
actuator affects only its surrounding. (a) One way of thinking
of the actuated tetrahedron is as a rotary hinge, with a triangle
face at each side (shaded in gray). (b) Such structures can be
extended by attaching a rigid structure to each of the two
faces (here two octahedra). As a result the two structures are
hinging around each other. Since the motion is localized, this
type of actuator placement is intuitively graspable.

Figure 9: Attaching rigid primitives to (a) faces that do not

contain an actuator (b) results in simple structures with only
localized deformation. This structure acts as a hinge between

the two octahedra.

Second, as illustrated by Figure 10, (a) we can produce more
complex kinetic structures by attaching rigid primitives to
the faces that contain an actuator (e.g., the one shaded in
gray). (b) Now, the newly placed primitive will also contain
this actuator and therefore the result is a structure that moves
in whole, resulting in more complex behavior.

Figure 10: Attaching a rigid primitive (here an octahedron) to
a face that contains an actuator results in a larger deforming

structure.

The third way to propagate motion is to build structures
where the cells are interconnected through two or more
moving faces. Figure 11a shows an octahedron with one
actuator in it. (b) We attach two tetrahedra to the marked
faces and place a second octahedron in between them. Since
the two original connecting faces are moving with respect to
each other, the two tetrahedra are moving as well, causing
the second octahedra to deform. The second octahedra
requires removing one arbitrary edge (here on the top) to
allow for deformation. (c) Applying this principle users can
propagate the movement of one actuator through the truss.

Figure 11: The motion caused by one actuator propagates

throughout the entire truss beam, making it bend.

ADDING MOTION TO THE STRUCTURE
TrussFormer offers three ways for users to animate their
structures: (1) by demonstrating the desired movement, as
we discussed in our walkthrough, (2) using elements with
predefined motion, which we call assets, and (3) by placing
actuators manually.

The first two strategies are better suited for novice users,
since they do not require knowledge about the mechanism,
but rather focus on the shape of the structure and the
movement they want to achieve. The third option is best
suited for users with more experience, who have already
gained a deeper understanding into variable geometry
trusses.

1. Automatic actuator placement by demonstration
As we briefly discussed in the walkthrough section and in
Figure 5, TrussFormer enables users to create moving
structures by offering automatic actuator placement. Users
can focus on only designing the shape of their structure first.
Then, they invoke the demonstrate movement tool and drag
the static structure in the direction they want it to move.
TrussFormer then replaces the edge with an actuator at the
position which best satisfies the movement.

To identify which edge should be replaced with an actuator
TrussFormer runs an exhaustive search by virtually replacing
every member with an actuator one by one. At every
replacement it moves the actuator while measuring if the
structure moved closer or further to the desired target
position. Finally, it compares all the results and selects the
actuator that produced the closest motion. A limitation of this
simplistic method is that it works by naïve approximation,
i.e., that it does not guarantee that the desired position will
be exactly reached. To improve these results, further
optimization algorithms can be utilized, similarly as
demonstrated by Coros et al. [9] for planar mechanisms.

2. Creating kinetic structures based on assets
Because the resulting motion of variable geometry trusses
tends to be hard to predict, TrussFormer encapsulates them
into predefined sub-assemblies, which we call assets. Assets
connect to the existing geometry through a dedicated triangle
surface. This results in structures that contain the asset’s
movement which is localized and thus easy to understand.

Figure 12 shows a selection of assets. The triangles marked
in gray are their connectors, i.e., the side that connects to
existing geometry when the asset is added to a structure.
TrussFormer offers a basic selection of assets, however,
users can easily create their own asset library by saving a
custom asset into an asset folder.

Figure 12: A selection of assets: (a) tetrahedron with 1DoF,

(b) “robotic leg” asset, (c) hinging tetrahedra, (d) octahedron
with 1DoF, (e) Stewart platform (6DoF), and (f) double-

octahedron performing “bending” motion.

Figure 13 illustrates the workflow enabled by assets: a
simple walking robot with six robotic legs. (a) Users start by
creating the rigid body of the robot from tetrahedra and
octahedra blocks. They design it to offer six connector faces,
i.e., three on each side, (b) where they attach copies of the
robotic leg asset, shown in Figure 12b. (c) This results in an
autonomous walking structure.

Figure 13: (a) Users start the design by making the body of the
walking robot. The predesigned 2DoF “leg” asset is added to

the side triangles 6 times. (b) The fabricated robot.

The concept of assets is useful beyond the use of actuators.
Figure 14 for example, shows a bike we designed around the
hinge asset that forms the steering column.

Figure 14: This bike’s steering column is based on the hinge

asset, which is used without the actuator in this example.

3. Manual actuator placement
As users gain expertise in creating variable geometry trusses,
they may prefer to place actuators directly into their
structures. TrussFormer’s turn edge to actuator tool allows
users to transform rigid edges into actuators by simply
clicking on them, as illustrated by Figure 15.

Figure 15: The turn edge to actuator tool allows users to turn
any edge into an actuator. Here user replaces one edge in the

T-Rex’s head to make its jaws move.

We designed this tool deliberately as a “turn existing edge
into actuator” tool and not as a “place new actuator” tool.
Normally, placing a new actuator edge into an already rigid

structure would not allow for movement, however, by
turning an existing edge into an actuator, users are essentially
adding a degree of freedom to the structure. If user

VERIFYING AND ADAPTING FORCES
Our system helps users to create the shape and the motion of
large-scale kinetic structures. To accomplish this, it helps
users handle the dynamic forces that occur when large
structures move, such as the T-Rex in Figure 1.

TrussFormer enables users to (1) constantly monitor the
forces that occur within the structure at interactive rates.
Furthermore, it (2) validates the poses of the structure and
adapts the motion range of the actuators to not damage the
model and (3) automatically adapts the user-defined
animation sequence in case it breaks the structure.

To perform these tasks, TrussFormer takes into account the
breaking limits of the building materials. The model is
considered broken when the simulated peak stress value
exceeds the entered breaking limit of the building material.
We acquired these values from fracture testing the materials,
in our case the plastic bottles, as described in TrussFab [17],
resulting in max.85 kg compression and max.135 kg tension.
If users decide to use different building materials, we
recommend testing the forces these elements can withstand
again. However, we expect users to share this information on
platforms such as thingiverse.com.

1. Constantly visualizing forces during animations
While the user animates the structure, TrussFormer is
continuously simulating the forces using its built-in physical
simulation. The forces are visualized as colored edges: red
indicates compression, blue indicates tension, while the
saturation signalizes the intensity of the force.

This allows users not only to preview artifacts that arise from
their current animation, e.g., the structure wobbling too much
due to rapid changes from pose to pose; but, more
importantly, it allows them to preview how the stress is
distributed in the structure and even foresee breaking points
when rapidly actuated.

2. Validating possible poses
After users have placed an actuator in their structure,
TrussFormer automatically determines their motion range,
i.e., how far can it expand without damaging the structure.

Figure 16 shows that the structure can break due to various
causes, such as the structure falling over, hitting the ground
from too high of a movement allowance, or simply exerting
too much force on another structural element (e.g., an edge).

To determine the limits of an actuator, TrussFormer
iteratively increases the expansion until the simulated model
breaks. TrussFormer then stores the previous valid expansion
as the maximum length for that actuator. This value is
then set as the upper bound for the motion in the keyframe
editor. This way the user is never able to over-actuate them.

Figure 16: In the background, TrussFormer tests each

actuator to see if its extension leads to invalid position, such as
the structure tipping over, hitting the ground, or braking any

structural elements.

This check is performed for each actuator individually.
While a full factorial cross check would be necessary to
detect damaging interaction effects, unfortunately, such an
exhaustive search does not scale well with the increasing
number of actuators and would deteriorate the software’s
interactivity. Therefore, TrussFormer still checks if the
structure breaks in the later animation step and offers
automatic correction.

3. Automatically adapting forces
After users create an animation sequence using the keyframe
editor, shown in Figure 17a, TrussFormer continues to
validate if the structure can withstand user-defined
accelerations.

As we previously demonstrated in Figure 7, TrussFormer
predicts that the T-Rex breaks if its neck is actuated too
rapidly between a neck-down and a neck-up pose. This
happened due to the large inertial forces. Since the structure
is large, its mass is large as well. Forces that act on the
elements of the structure increase proportionally with the
acceleration of the movement (𝑭 = 𝑚𝒂). While the mass is
a constant in the structure, the acceleration is what
TrussFormer can alter to prevent it from breaking. When the
model breaks in the simulation, TrussFormer offers two
options to reduce the occurring inertial forces, as shown in
Figure 17.

Figure 17: If the user-defined animation breaks the model,

TrussFormer offers to automatically reduce the speed or the
motion range.

TrussFormer offers to fix the animation slopes in two ways:
(1) by reducing the speed of the motion, i.e., by stretching
the time of the animation, or (2) by reducing the range of the
movement. TrussFormer finds the valid actuation profiles by
simulating the structure in the background and gradually

reducing the speed or the extension of the actuation,
depending on the users’ choice.

The predicted force values during the simulation are also
used to inform users about properties of the actuators they
need to buy to fabricate their structures, i.e., the minimum
force that actuators must exert and the speed set in the
animation. This force is defined as the maximum force that
we measure during the simulation while the structure is
performing the programmed animation.

Matching simulated and real forces
In order to accurately predict the forces within a structure,
we measured the forces in our T-Rex example and tuned our
simulation based on these measurements.

Figure 18: (a) We measured the forces on the bottom front
edge of the T-Rex (b) using a digital force gauge. (c) The

measured forces agree with the simulated forces.

As Figure 18a-b shows, we inserted the external force sensor
(capacity: 5000 N, error: 0.5%) between two bottles at the
bottom of the T-Rex structure. We chose this element as it
bears the largest forces. We then actuated the T-Rex to move
its entire head up to its highest position and down again to its
lowest position. Figure 18c shows the measured and the
simulated forces. The simulation is in agreement with the
forces we measured.

Our simulated results hold for structures other than the T-
Rex example, under the condition that the physical
components remain the same.

TRUSSFORMER’S HINGE SYSTEM
A key element behind TrussFormer’s kinetic structures is the
3D printable hinge system, that enables multiple edges to
spherically pivot around a node point. While traditional ball
joints allow for spherical motion, they are limited to connect
only two edges. To address this shortcoming, TrussFormer
uses the generic design of a spherical joint mechanism [5],
shown in Figure 19a, that allows for multiple edges to pivot
around the same center point, as they were connected via ball

joint. Figure 19b shows TrussFormer’s rendering of the
spherical joint mechanism, adopted for 3D printing.

Figure 19: (a) Spherical joint mechanism [5] connecting 5

edges. (b) TrussFormer’s 3D printable hinge design.

To achieve the motion that users designed, TrussFormer
arranges the necessary spherical joints automatically in the
structure. Traditionally, determining the required mobility of
the joints is done by evaluating the Grübler–Kutzbach
mobility criterion. However, this analytical approach is hard
to fit for spatial (i.e., 3D) parallel mechanisms, and it’s still
subject to active research [19]. Therefore, instead of
attempting an analytical solution to this problem,
TrussFormer tests the motion of the user-defined structure by
using its built-in physical simulation and arranges the hinges
heuristically. In the following, we describe TrussFormer’s
four step hinge placement routine on the example of an
octahedra with one actuator, shown in Figure 20a.

Step 1: Placing all possible hinges. As a first step,
TrussFormer assigns the intermediate link connections of the
spherical joint mechanism from Figure 19a, between all the
edges forming a triangle in the structure, as illustrated with
blue lines in Figure 20b. This provides 2DoF to all the edges,
as they were connected via ball joints. This already gives a
mechanically satisfying solution, however it can be further
optimized. In variable geometry truss structures, most of the
edges are confined in triangles and larger rigid substructures,
therefore not all movements are possible. Placing
unnecessary hinges only adds complexity for assembly and
reduce mechanical stability.

Figure 20: (a) Octahedron with an actuator, still with rigid

hubs. (b) After the first step, intermediate links are assigned
inside all triangles, creating spherical joints.

Step 2: Identifying rigid substructures. To identify rigid
substructures in the structure, TrussFormer now runs the
physical simulation and moves all the actuators
simultaneously. It observes the angular movement between
the edges and if the angle between two or more connected
edges never changed, TrussFormer considers them as a rigid

substructure. Figure 21a shows the rigid substructures
identified in the octahedron, visualized in distinct colors. The
triangles containing the actuator are not considered as rigid,
since it’s internal angles are changing. Figure 21b shows the
result of this step on the example of the T-Rex. Here, the
rigid substructures consisting of single triangles are left
uncolored, for clarity.

a b

Figure 21: TrussFormer identified the rigid substructures (a)
in the octahedron from Figure 20, and (b) in the T-Rex.

Step 3: Reducing the excess of hinges. Now that TrussFormer
knows which parts of the structure are rigid, it can remove
the unnecessary hinges between the edges which belong to
the same rigid substructure and don’t move in regards to each
other. In Figure 22 we show this step on our octahedron
example. Between the edges forming rigid substructures, the
intermediate link connections (before blue lines) are reduced
to rigid connections (black lines). Rigid substructures will
still rotate with respect to each other. At this stage, the final
hinge chain is already found for the octahedron example and
the resulting 3D print is shown in Figure 22b.

Figure 22: (a) The intermediate hinge connections are reduced

to rigid connections where rigid substructures are identified
(black lines). (b) The fabricated hinging hub of the marked

node of the octahedron.

Step 4: Resolving impossible connections. At this point,
TrussFormer has already assigned an optimized valid hinge
configuration, however, not all the connections might be
physically possible to assemble. TrussFormer’s hinge design
have the limitation that it only supports one-on-one hinge
connections, as shown in Figure 19b. Three way connections
are not possible, i.e., three parts cannot physically hinge
around the same axis.

However, after Step 3, there might be hubs violating this
condition, e.g., where three hinges are meeting at the same
axis. We demonstrate this case in Figure 23 on the example
of the double-octahedra structure with one actuator, similar

to the one found in the body of the T-rex. In Figure 23b we
highlight the hub where three-way hinge connections are
present after performing Step 3. Fortunately, these
connections are redundant in TrussFormer’s kinetic
structures, and they can be resolved by eliminating some of
the hinges, while still maintaining the hub’s structural
integrity, i.e., all the edges remain interconnected via
continuous hinge chain.

Figure 23: (a) Double-octahedral structure, where (b) violating
three-way hinge connections appear. (c-d) TrussFormer finds

the valid configurations by heuristic elimination and (d)
chooses the structurally more stable closed chain.

TrussFormer resolves violating connections using a
backtracking algorithm that removes connections
heuristically. After each removed connection, it checks the
validity of the resulting hinge configuration for two
constraints: (1) all edges around the node are still
interconnected directly or indirectly with each other, and (2)
no more than two hinges are connected at each axis. If these
constraints are satisfied, a valid hinge configuration was
found. The algorithm continues until it finds all valid
configurations. If available, TrussFormer will select the
configuration with closed hinge chain (Figure 23d) over open
chain (Figure 23c), for stability reasons. The fabricated hinge
for this example was shown earlier in Figure 8b-c.

Generating the hinge geometries for 3D printing
After determining where the hinges should be placed in the
structure, TrussFormer has all the necessary information to
export the 3D printable geometries in the form of
OpenSCAD [51] files. These files contain the information
about the angle and connector lengths of the hinging pieces,
as well as their imprinted IDs (as visible in Figure 23a).
Users assemble the hinging hubs by matching the
corresponding IDs. These IDs also contain the information
about the placement of the actual hub within the structure,
the IDs of the neighboring hubs, and the bottle type to be
inserted.

RELATED WORK
TrussFormer builds on previous efforts in animatronics,
robotics, software tools for creating mechanisms in HCI and
graphics, and creating variable geometry truss mechanisms.

Software tools for Animatronics
Many HCI researchers have built software tools to empower
users to animate robots [20, 25]. This is especially
challenging when the users are novices and the intended
results are expressive movements, such as imitating animal
(organic) movements, i.e., animatronics [10, 28].

Animatronics interfaces follow several designs, from manual
control [20] to puppeteering using skeletal tracking [27].
Marti et al. designed an early example of an animatronics
software tool for a small (puppet sized) phone call handling
agent, demonstrating two methods: manual control (user
directly controls each single actuator using one GUI fader)
and programming motion patterns using a sequencer [20].
Later work integrated robotics into keyframe editors, as for
3D animation [43] or video editing [44].

Previous tools suffice for animating small robots because
actuating these robots (typically via small servo motors) does
not involve moving large loads. With smaller robots,
software tools do not have to simulate the adversarial effects
of dynamics, e.g., inertia and resonance. However, when
animating large animatronics, such as our T-Rex (Figure 1),
these forces affect not only the stability of the structure but
also the desired animation.

Software tools for designing mechanisms and dealing
with forces
TrussFormer draws from work on systems that assist users
with creating mechanisms that involve motion or forces.

Algorithmic tools can help users create moving mechanisms.
For example, kinematic synthesis of mechanisms [34], or
generation of personalized walking toys from a library of
predefined template mechanisms [2]. These can be
embedded in design support systems, for example,
generating moving toys from motion input [42], or
synthetized planar kinematic mechanisms from sketch-based
motion input [9].

Several software tools directly help the manual design of
linkage-based mechanisms, such as LinkageDesigner [48]
and Mechanism Perfboard [15]. These tools sometimes
include physical simulation of simple mechanisms (e.g.,
hinges); examples include Crayon Physics [50] and freeCAD
[49].

Researchers in the domain of personal fabrication have
started to investigate the effects of dynamic forces in the
resulting models, such as balancing rotating objects [22],
interactively designing model airplanes [39], and
approximating the elastic behavior of 3D printed
materials [7].

TrussFormer extends these approaches by using physical
simulation interactively in its editor. This combination is

necessary to provide an editor that embodies the domain
knowledge needed to produce large scale animated truss
structures.

Programming robotic manipulators
Programming robotic manipulators is a similar task to
creating animation patterns for TrussFormer’s mechanisms.
The manufacturers of industrial robots usually provide their
proprietary software packages for expert users, like
ABB RobotStudio [45] or KUKA.Sim [46]. Recently, also
visual block-based interfaces become popular for non-expert
users, like KUKA|prc [47] and CoBlox [40]. These software
tools provide advanced programming capabilities, however
they still lack real time physical simulation to simulate forces
during the motion.

Variable geometry truss mechanisms
TrussFormer’s mechanisms are based on variable geometry
trusses (VGT) [1, 24, 31]. An example of a VGT is the
Stewart Platform [33], a common mechanism found in
haptics/HCI. A Stewart platform uses actuators in every
member to enable 6 DoF motion while maintaining the
stability of a truss, crucial for scenarios that involve large
inertial forces.

VGTs have been used extensively in robotics. Tetrobot
[11, 12] is built by chaining the tetrahedron edges with linear
actuators, which unite at a vertex in a spherical joint. The
design and mechanics behind this type of spherical joints
have been extensively analyzed [30, 32]. Tetrobot was
designed to enable robots to reconfigure into different usages
by reusing the same basic primitives. Researchers and
engineers have explored variations of this VGT design in
different contexts, for example: space applications [1],
reconfigurable robotic manipulators [1, 11, 36], and shape
morphing trusses [30].

Other researchers introduced design variations in this basic
cell, allowing the resulting structure to afford new qualities.
For instance, the Spiral Zipper [8] is an extendable edge,
based on extending a cylinder that allows for extreme
expansion ratios (e.g., 14:1). Similarly, Pneumatic Reel
Actuator [13] is based on a mechanism that extrudes and
retracts a plastic (tape-like) tubing, to act as an actuator. The
mechanism is designed to be lightweight and low-cost ($4
USD) while being limited in its robustness.

TrussFormer takes inspiration from VGTs and builds on the
conceptual design of Tetrobot. To this work, TrussFormer
contributes a spherical joint design that is automatically
generated based on the designed truss geometry.

IMPLEMENTATION
To help readers replicate our results, we now describe the
implementation of the main components of the TrussFormer
software system and the hardware we used to actuate our
prototypes.

Software system
We extend the TrussFab editor [5], which provides the core
functionality to create, save, load, and export static

structures. TrussFormer further allows users to add
movement and animate these structures. Like TrussFab,
TrussFormer is also implemented as a plugin for the 3D
modelling software SketchUp [53]. The native programming
language for SketchUp plugins is Ruby, which most of the
features that we described throughout the paper, such as the
hinge placement algorithm, are written in.

To simulate the movement and the force distribution in the
3D model, we use the physical simulation engine MSPhysics
[35], a Ruby wrapper for the C++ physics library Newton
Dynamics [52]. To achieve interactive performance, the only
simulated components are the hubs, the edges are just
animated on the scene. The hubs contain all the necessary
information, such as weight, breaking force, and the stiffness
determining how much hubs can move in relation to their
neighbors.

User interface elements (e.g., the control or the animation
pane) are displayed in a SketchUp-integrated Web Browser
View. We implemented the UI in HTML and JavaScript to
take advantage of UI frameworks such as React [53].

To generate the 3D printable hinge, we use the parametric
3D modeling tool OpenSCAD [51]. When users export their
kinetic structure, TrussFormer determines the hinges and
static hubs and calls the pre-defined OpenSCAD scripts with
the relevant parameters (e.g., angle, connection type, or
length of the connection). These scripts describe the resulting
parametrized 3D model, which are rendered in OpenSCAD
as .stl files.

Control system and actuators
Figure 24 shows the hardware we use to actuate our T-Rex
example. We use pneumatic actuators with interfaced with
proportional valves (Festo VPPE and MPYE series) that are
controlled by an Arduino Nano. The pneumatic cylinders
have diameters from 25 to 35 mm and produce forces
between 390 N and 770 N. We use an Airpress HL 360
compressor that can provide up to 8 bar of pressure.

Figure 24: Hardware setup for controlling the T-Rex, with
Arduino, electric pressure control valves, and compressor.

Our spider example in Figure 13 uses electric linear actuators
similar to those found in garage doors. These actuators have
a motion range of 45 cm and move rather slowly: 0.03 m/s
compared to the pneumatic actuator speed of 20 m/s.

Building materials
For creating our models we used refillable soda bottles and
3D printed the hubs on an Ultimaker 3 3D printer using PLA
material. To increase stability we set 3mm wall thickens for
our hubs. While the 3D printing process is rather time
consuming (5-8 hours/hub) the assembly of the hubs is quite
fast (10-15min/hub). The overall structure is assembled in
reasonable short time; our T-Rex took approximately 1-2
hours for 3 person.

We use plastic bottles as building material as they are
ecologically friendly and commonly available all around the
world. However, TrussFormer also supports any other type
of building materials. Users only need to create and copy the
3D models of their material primitives into TrussFormer’s
material library folder.

To create more realistic looking animatronic creatures, users
can also cover the structure with stretchable textile or other
materials and attach smaller features (e.g. ears, fingers, etc)
using 3D printing or other fabrication techniques.

CONCLUSIONS
We presented TrussFormer, an end-to-end system that
enables novice users to design and build large animated
structures. Such structures are usually a privilege of industry
such as theme parks. TrussFormer encapsulates domain
knowledge about the occurring dynamic forces so that even
novice users can build such animated structures.

We showed how TrussFormer enables users to add motion to
static structures in three ways, including simply pulling on
the virtual model and letting the system find the placement
of an actuator to enable this motion. Furthermore, we showed
how TrussFormer finds valid motion and force ranges for
actuators to realize user-defined animations. TrussFormer
detects and automatically suggests corrections for
animations that would break the simulated structure, thereby
ensuring that the physical structure will function as desired.
As a last step, TrussFormer generates all connectors and
hinges that users print on their desktop 3D printer and
exports the actuator specifications.

In the future, we plan to investigate how to conserve energy
by incorporating springs and dampers into our system and
taking advantage of resonant frequencies.

REFERENCES
1. V. Arun, Charles F. Reinholtz, and Layne Terry

Watson. 1990. Enumeration and analysis of variable
geometry truss manipulators. Department of Computer
Science, Virginia Polytechnic Institute and State
University.

2. Gaurav Bharaj, Stelian Coros, Bernhard
Thomaszewski, James Tompkin, Bernd Bickel, and
Hanspeter Pfister. 2015. Computational design of
walking automata. In Proceedings of the 14th ACM
SIGGRAPH / Eurographics Symposium on Computer
Animation (SCA '15). ACM, New York, NY, USA, 93-
100. DOI: https://doi.org/10.1145/2786784.2786803

3. Patrick Baudisch and Stefanie Mueller. Personal
Fabrication. Foundations and Trends® in Human–
Computer Interaction Vol. 10: No. 3–4, 165-293. 2017.

4. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy,
Hyunho Richard Lee, Hanspeter Pfister, Markus Gross,
and Wojciech Matusik. 2010. Design and fabrication of
materials with desired deformation behavior. ACM
Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages.
DOI: https://doi.org/10.1145/1778765.1778800

5. Paul Bosscher, Imme Ebert-Uphoff. 2003. A novel
mechanism for implementing multiple collocated
spherical joints. In Robotics and Automation,
Proceedings. ICRA'03. IEEE International Conference
on (Vol. 1, pp. 336-341). IEEE.

6. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D³ data-driven documents. In IEEE transactions
on visualization and computer graphics 17, no. 12:
2301-2309. DOI: 10.1109/TVCG.2011.185

7. Desai Chen, David I. W. Levin, Wojciech Matusik, and
Danny M. Kaufman. 2017. Dynamics-aware numerical
coarsening for fabrication design. ACM Trans.
Graph. 36, 4, Article 84 (July 2017), 15 pages. DOI:
https://doi.org/10.1145/3072959.3073669

8. Foster Collins, and Mark Yim. 2016. Design of a
spherical robot arm with the spiral zipper prismatic
joint. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA),
2137-2143.

9. Stelian Coros, Bernhard Thomaszewski, Gioacchino
Noris, Shinjiro Sueda, Moira Forberg, Robert W.
Sumner, Wojciech Matusik, and Bernd Bickel. 2013.
Computational Design of Mechanical Characters. ACM
Transactions on Graphics 32, 4: 1.
http://doi.org/10.1145/2461912.2461953

10. Paul H. Dietz and Catherine Dietz. 2007. The
animatronics workshop. In ACM SIGGRAPH 2007
educators program (SIGGRAPH '07). ACM, New
York, NY, USA, Article 36 . DOI:
https://doi.org/10.1145/1282040.1282078

11. Gregory J. Hamlin and Arthur C. Sanderson. 2013.
Tetrobot: A Modular Approach to Reconfigurable
Parallel Robotics. In Volume 423 of The Springer
International Series in Engineering and Computer
Science, Springer Science & Business Media. ISBN:
1461554713, 9781461554714

12. Gregory J. Hamlin and Arthur C. Sanderson. 1997.
Tetrobot: A modular approach to parallel robotics.
IEEE Robotics & Automation Magazine 4, no. 1:42-50.
DOI: 10.1109/100.580984

13. Zachary M. Hammond, Nathan S. Usevitch, Elliot W.
Hawkes, and Sean Follmer. 2017. Pneumatic Reel
Actuator: Design, modeling, and implementation.

In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 626-633.

14. Scott E. Hudson. 2014. Printing Teddy Bears. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14), ACM, New
York, NY, USA, 459–468. DOI:
http://doi.org/10.1145/2556288.2557338

15. Yunwoo Jeong, Han-Jong Kim, and Tek-Jin Nam.
2018. Mechanism Perfboard: An Augmented Reality
Environment for Linkage Mechanism Design and
Fabrication. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI '18). ACM, New York, NY, USA, DOI:
https://doi.org/10.1145/3173574.3173985

16. Behrokh Khoshnevis. 2004. Automated Construction
by Contour Crafting—Related Robotics and
Information Technologies. Automation in Construction
13: 5–19. http://doi.org/10.1016/j.autcon.2003.08.012

17. Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang-
Ting Chen, Florian Meinel, Willi Müller, Sijing You,
Maximilian Brehm, Jonathan Striebel, Yannis
Kommana, Alexander Popiak, Thomas Bläsius, and
Patrick Baudisch. 2017. TrussFab: Fabricating Sturdy
Large-Scale Structures on Desktop 3D Printers.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI '17). ACM, New
York, NY, USA, 2606-2616. DOI:
https://doi.org/10.1145/3025453.3026016

18. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo
Igarashi. 2011. Converting 3D furniture models to
fabricatable parts and connectors. ACM Trans. Graph.
30, 4, Article 85 (July 2011), 6 pages. DOI:
https://doi.org/10.1145/2010324.1964980

19. Wenjuan Lu, Lijie Zhang, Yitong Zhang, Yalei Ma,
Xiaoxu Cui. 2014. Modified Formula of Mobility for
Mechanisms. In Proceedings of the International
Conference on Intelligent Robotics and Applications
(ICIRA'14). Springer, Cham, Germany, 2014, 535-545.
DOI : https://doi.org/10.1007/978-3-319-13963-0_54

20. Stefan Marti and Chris Schmandt. 2005. Physical
embodiments for mobile communication agents. In
Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology (UIST'05).
ACM, New York, NY, USA, 231-240. DOI:
http://dx.doi.org/10.1145/1095034.1095073

21. Stefanie Mueller, Sangha Im, Serafima Gurevich,
Alexander Teibrich, Lisa Pfisterer, François
Guimbretière, and Patrick Baudisch. 2014. WirePrint:
3D Printed Previews for Fast Prototyping. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software & Technology (UIST '14),
ACM, New York, NY, USA, 273–280.
http://doi.org/10.1145/2642918.2647359

22. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and
Olga Sorkine-Hornung. 2013. Make it stand: balancing
shapes for 3D fabrication. ACM Trans. Graph. 32, 4,
Article 81 (July 2013), 10 pages. DOI:
https://doi.org/10.1145/2461912.2461957

23. Jie Qi and Leah Buechley. 2012. Animating paper
using shape memory alloys. In Proceedings of the 2012
ACM annual conference on Human Factors in
Computing Systems (CHI ’12).
http://doi.org/10.1145/2207676.2207783

24. Marvin D. Rhodes, and Martin M. Mikulas.
Deployable controllable geometry truss beam. 1985
National Aeronautics and Space Administration,
Scientific and Technical Information Branch
(Technical report).

25. Tiago Ribeiro and Ana Paiva. 2012. The illusion of
robotic life: principles and practices of animation for
robots. In Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot
Interaction (HRI '12). ACM, New York, NY, USA,
383-390. DOI:
https://doi.org/10.1145/2157689.2157814

26. Thijs Roumen, Willi Mueller and Patrick Baudisch.
2018. Grafter: Remixing 3D Printed Machines. In
Proceedings of the 36th Annual ACM Conference on
Human Factors in Computing Systems (CHI '18).
ACM, New York, USA
DOI: https://doi.org/10.1145/3173574.3173637

27. Mose Sakashita, Tatsuya Minagawa, Amy Koike, Ippei
Suzuki, Keisuke Kawahara, and Yoichi Ochiai. 2017.
You as a Puppet: Evaluation of Telepresence User
Interface for Puppetry. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST '17). ACM, New York, NY,
USA, 217-228. DOI:
https://doi.org/10.1145/3126594.3126608

28. Shooter, P.E., Steven B. Animatronics. 2015, in
International Journal of Advanced Research in
Computer Science and Software Engineering, pg. 1260,
Volume 5, Issue 3, March 2015, ISSN: 2277.

29. Mélina Skouras, Bernhard Thomaszewski, Stelian
Coros, Bernd Bickel, and Markus Gross. 2013.
Computational design of actuated deformable
characters. ACM Trans. Graph. 32, 4, Article 82 (July
2013), 10 pages. DOI:
https://doi.org/10.1145/2461912.2461979

30. A Y N Sofla, D M Elzey, and H N G Wadley. 2009.
Shape morphing hinged truss structures. Smart
Materials and Structures 18: 65012.
http://doi.org/10.1088/0964-1726/18/6/065012

31. Alexander Spinos, Devin Carroll, Terry Kientz, and
Mark Yim. 2017 Variable topology truss: Design and
analysis. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),

Vancouver, BC, 2017, 2717-2722. DOI:
10.1109/IROS.2017.8206098

32. Alexander Spinos and Mark Yim. 2017. Towards a
variable topology truss for shoring. 2017. In
Proceedings of the 14th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI),
244–249. http://doi.org/10.1109/URAI.2017.7992723

33. Doug Stewart. 1965. A platform with six degrees of
freedom. In Proceedings of the institution of
mechanical engineers 180.1, 371-386.

34. Devika Subramanian. 1995. Kinematic synthesis with
configuration spaces. In Research in Engineering
Design 7, no. 3, 193-213.

35. Anton Synytsia. MSPhysics physics simulation.
Retrieved on April 3, 2018 from
https://extensions.sketchup.com/en/content/msphysics

36. Emil Teutan, S.D. Stan., D. Verdes, R. Balan. 2009.
Virtual Reality Simulation of Tetrobot Parallel Robot
for Medical Applications. In Proceedings of
International Conference on Advancements of
Medicine and Health Care through Technology, Vol
26. pp. 177-180.

37. Bernhard Thomaszewski, Stelian Coros, Damien
Gauge, Vittorio Megaro, Eitan Grinspun, and Markus
Gross. 2014. Computational design of linkage-based
characters. ACM Trans. Graph. 33, 4, Article 64 (July
2014), 9 pages. DOI:
https://doi.org/10.1145/2601097.2601143

38. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra.
2012. Guided exploration of physically valid shapes for
furniture design. ACM Trans. Graph. 31, 4, Article 86
(July 2012), 11 pages. DOI:
https://doi.org/10.1145/2185520.2185582

39. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and
Takeo Igarashi. 2014. Pteromys: interactive design and
optimization of free-formed free-flight model
airplanes. ACM Trans. Graph. 33, 4, Article 65 (July
2014), 10 pages. DOI:
https://doi.org/10.1145/2601097.2601129

40. David Weintrop, Afsoon Afzal, Jean Salac, Patrick
Francis, Boyang Li, David C. Shepherd, and Diana
Franklin. 2018. Evaluating CoBlox: A Comparative
Study of Robotics Programming Environments for
Adult Novices. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI '18). ACM, New York, NY, USA. DOI:
https://doi.org/10.1145/3173574.3173940

41. Nora S. Willett, Wilmot Li, Jovan Popović, and Adam
Finkelstein. 2017. Triggering Artwork Swaps for Live
Animation. In Proceedings of the ACM Symposium on
User Interface Software and Technology
(UIST’17). ACM, New York, NY, USA, 85-95. DOI:
https://doi.org/10.1145/3126594.3126596

42. Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu,
Guoping Wang, and Baining Guo. 2012. Motion-
guided mechanical toy modeling. ACM Trans. Graph.
31, 6, Article 127 (November 2012), 10 pages. DOI:
http://dx.doi.org/10.1145/2366145.2366146

43. Blender’s Keyframe editor,
https://docs.blender.org/manual/en/dev/animation/keyfr
ames/editing.html , last accessed at 31/03/2018.

44. Adobe Premier’s keyframe editor,
https://helpx.adobe.com/premiere-pro/using/adding-
navigating-setting-keyframes.html, last accessed at
31/03/2018.

45. ABB RobotStudio. Retrieved on July 13, 2018 from
https://new.abb.com/products/robotics/robotstudio

46. KUKA.sim. Retrieved on July 13, 2018 from
https://www.kuka.com/en-de/products/robot-
systems/software/planning-project-engineering-
service-safety/kuka_sim

47. KUKA|prc. Retrieved on July 13, 2018 from
http://www.robotsinarchitecture.org/kuka-prc

48. Linkage designer. Retrieved on April 3, 2018 from
http://www.linkagedesigner.com/

49. freeCAD. Retrieved on April 3, 2018 from
http://www.ar-cad.com/freecad/

50. Crayon Physics. Retrieved on April 3, 2018 from
http://crayonphysics.com/

51. OpenSCAD. Retrieved on April 3, 2018 from
http://openscad.org

52. Newton Dynamics. Retrieved on April 3, 2018 from
http://newtondynamics.com/forum/newton.php

53. React. Retrieved on April 3, 2018 from
https://reactjs.org/SketchUp. Retrieved on April 3,
2018 from https://www.sketchup.com/

