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Figure 1: (a) This user is playing a badminton app. His side of the court fills the entire 4x4m tracking volume. (b) This 
other user is playing a Pac-Man game mapped to the same tracking volume. (c) VirtualSpace allows both users to share 

the same tracking space, without being aware of the other user. To keep users from running into each other, Virtu-
alSpace limits each app to non-overlapping tiles at any given time. Client apps handle this in a way transparent to their 
users. The badminton app, for example, always makes the user’s virtual opponent return the ball to locations inside the 
tile currently assigned to the app. (d) By reassigning tiles frequently, VirtualSpace moves users across the entire space, 

thereby seemingly allowing for unrestricted walking. 

ABSTRACT 
Although virtual reality hardware is now widely available, 
the uptake of real walking is hindered by the fact that it 
requires often impractically large amounts of physical 
space. To address this, we present VirtualSpace, a novel 
system that allows overloading multiple users immersed in 
different VR experiences into the same physical space. 
VirtualSpace accomplishes this by containing each user in a 
subset of the physical space at all times, which we call tiles; 
app-invoked maneuvers then shuffle tiles and users across 
the entire physical space. This allows apps to move their 
users to where their narrative requires them to be while 
hiding from users that they are confined to a tile. We show 
how this enables VirtualSpace to pack four users into 16m2. 
In our study we found that VirtualSpace allowed partici-
pants to use more space and to feel less confined than in a 
control condition with static, pre-allocated space.  
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INTRODUCTION 
Virtual reality (VR) offers a deep level of immersion if 
users are allowed to navigate by walking around in the 
physical world. This has been referred to as real walking. 
Compared to simulated walking using treadmills [7] and 
compared to locomotion techniques such as teleportation 
[6] or walking in place [24], real walking leads to higher 
levels of immersion [25]. 

With virtual reality headsets available to consumers [30] 
that are capable of tracking real walking in a room-sized 
tracking volume, one would expect real walking to become 
the dominant approach to VR. However, looking at experi-
ences available for room-scale VR (e.g. Steam [23]), only a 
negligible percentage appear to be using real walking. The 
other experiences employ locomotion techniques, such as 
instant teleportation [6], despite the reduced experience. 
How can this be? 

We argue that it is the physical space requirements of real 
walking that make it impractical for consumers. For exam-
ple, in our city the rent of 4x4m space surpasses the cost of 
a VR headset and tracking system in a mere three months. 

To reduce the space requirements of real walking, re-
searchers have proposed several techniques. Redirected 
walking [22] folds long walking paths into a finite tracking 
volume, but requires very large installations (4x10m [22]). 
For room-scale installations, different approaches such as 
[21, 18] demonstrate how to reshape virtual experiences to 
fit arbitrary room shapes, which makes it easier to fit a real 
walking experience into an existing environment. This 
approach is limited to applications, that can adapt to room 
setups and do not have specific space requirements.  
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In this paper, we propose a different technique, which is to 
overload multiple users into the same physical space. 

VIRTUALSPACE 
VirtualSpace is a novel system that allows multiple real 
walking VR users to share the same physical space without 
being aware of each other. VirtualSpace is designed to give 
each user the illusion of being in possession of the entire 
physical space. 

Figure 1 shows an example. Two users share the same 
4x4m physical space, while being tracked using a VR 
tracking system (Vive [30]). Both users are in their own, 
separate virtual environments. (a) The green user is im-
mersed in a badminton app, while (b) the blue user experi-
ences a Pac-Man game. 

The key point is that both apps are mapped to the entire 
physical space, i.e., VirtualSpace allows each app to be 
designed under the assumption that the user has physical 
access to the entire 4x4m space. And that is true, albeit not 
necessarily at every particular moment, as VirtualSpace 
limits each app to a different non-overlapping tile of space. 
Client apps handle this in a way transparent to their user. 
The badminton app, for example, makes the user’s virtual 
opponent return the ball always to locations inside the tile 
currently assigned to this app. 

Managing space using “maneuvers” 
To allow users to still complete their narrative and to pre-
vent users from noticing that the system is confining them, 
VirtualSpace employs what we call maneuvers. 

 
Figure 2: Users are confined into tiles. The rotation 

maneuver allows apps to move their user to the adjacent 
tile. This way users do not feel confined. 

Figure 2 shows an example, here with four users in the 
same 4x4m tracking space, which is the configuration we 
used in our user study. When the user plays Pac-Man, the 
app needs to progress towards the area with the remaining 
pellets, but the segmentation into tiles prevents this pro-
gression. The player’s app thus requests access to the de-
sired tile, here the tile that is adjacent in clockwise order. 
As shown in Figure 2, VirtualSpace can provide the Pac-
Man app with this access by rotating the entire field of all 
four users in clockwise direction. We call this the (clock-
wise) rotation maneuver. 

Every maneuver comes with a certain start-up delay that 
allows all apps to get their users ready and every maneuver 

takes place at a certain movement speed. In this example, 
the apps may agree on a three-second delay and a one sec-
ond transition speed.  

As shown in Figure 3a, the Pac-Man app prepares for the 
maneuver by offering a virtual reward (the red cherry), yet 
it prevents the user from getting there by blocking the path 
using a ghost. Meanwhile the badminton app plays a slow 
ball to get the player synchronized with the timing of the 
upcoming maneuver.  

Now the maneuver starts and every app moves their user to 
the new target position, here the next tile clockwise. The 
badminton app serves the user a stop ball that brings the 
player forward towards the net. As shown in Figure 3b, the 
Pac-Man app sends a ghost that chases the player down the 
corridor. 

 
Figure 3: (a) The Pac-Man app guides users to follow 
the clockwise rotation maneuver by offering a virtual 

reward, here a cherry. (b) It prevents users’ movement 
by placing ghosts in their way. 

“Focus” and “Switch” maneuvers for quick actions 
Clockwise and counterclockwise revolutions are sufficient 
in that it never takes more than two revolutions to send a 
user to any tile. Revolutions take time though, which is not 
always compatible with game action sequences that require 
fast, large, and erratic movements of a user. To enable such 
movement sequences, VirtualSpace offers the focus ma-
neuver as shown in Figure 4. This maneuver allows a single 
app to temporarily take over most of the tracking space. 
Figure 4 shows an example when the badminton app uses a 
Focus maneuver to allow its user to hit the birdie in the 
center of the court in a quick succession of ball exchanges.  

 
Figure 4: The focus maneuver temporarily provides the 
badminton app with control over most of the physical 

space. The other apps go into a defocus state. 

While the one app has the focus all other apps “park” their 
users in a small amount of space at the rim of the tracking 
volume by providing them with a stationary task, e.g., by 



 

trapping the user in a corner (Pac-Man), or moles appearing 
in the bushes (Whac-A-Mole).  

Focus maneuvers obviously take place at the expense of all 
other apps. Such “selfish” maneuvers are possible when all 
other apps agree to it, as will be detailed in the “Implemen-
tation” section. We also added a simple economic model in 
which apps can attach an added value (credits, money) to 
their maneuver request. 

 
Figure 5: VirtualSpace allows for in-app purchases. 

Here the Pac-Man user can collect a blue pill which lets 
VirtualSpace value that app higher. That allows for a 

focus maneuver, which can be used to chase the ghosts. 

Finally, the system allows for two users switching their 
rotational positions and thus for permutation of the rotation 
order. This enables certain users to move freely around the 
tracking space (e.g., Pac-Man) while others can stay at 
specific preferred areas (e.g., badminton). 

 
Figure 6: The switch maneuver allows two apps to 

switch tiles. 

Supporting users joining or leaving in real-time 
VirtualSpace is designed to run continuously with users 
joining or leaving at any time, any reasonable number of 
users and any combination of apps. Additional users can 
join as long as there is enough free space and leave at any 
time, thereby freeing up space. VirtualSpace continues to 
offer the same maneuvers irrespective of the number of 
users and the assigned tile size remains the same. However, 
if free space is available, apps can move on to empty areas, 
thus they do not need to perform the same maneuver. As 
shown in Figure 7, an app can request a maneuver, e.g. a 
rotation, without having another user move.  

 
Figure 7: (a) VirtualSpace handles configurations with 
fewer users. (b) If free space is available, apps can per-
form different maneuvers at the same time, until (c) all 

space is allocated, then maneuvers need syncing. 

Fallback 
The assumption is that the apps succeed at confining their 
users to their tiles and at guiding their users to the agreed-
upon target tiles. As with any real walking system this may 
fail, e.g., when users ignore the system and simply “wander 
off”. VirtualSpace handles this situation like most real 
walking systems (such as Vive [30], or [17]) by (1) render-
ing a cage around the currently acceptable tracking space, 
i.e., the tile, before the user might exit and if the user does, 
(2) draws the outline of the users, so they can see each 
other and stop. 

CONTRIBUTION 
VirtualSpace’s main contribution is a technique that allows 
multiple real walking virtual reality users to be overloaded 
into the same physical space. VirtualSpace achieves this by 
assigning each app to a smaller tile, where the overall 
tracking space is divided into computationally determined 
individual tiles. Frequent “maneuvers” allow apps to incen-
tivize users to walk across the entire physical space, there-
by allowing each app to progress its narrative and to pre-
vent users from noticing that they are confined to a tile. 
This strategy enables VirtualSpace to achieve packings of 
high density, such as 4 users in 16m2, as we demonstrate in 
our demo application (see “User Study” section). 

Apps achieve the ability to run in VirtualSpace by imple-
menting the VirtualSpace API (see “Implementation”), 
which potentially any external app could use (see “Applica-
tion requirements”). We demonstrate how we do this by 
showing four examples (see “Applications”). 

VirtualSpace’s main limitation is that even though apps can 
move users anywhere within the tracking space, getting 
there may be subject to a delay. Along the same lines, apps 
have to be able to generally comply when another app 
requests a maneuver. We found this to be more acceptable 
for apps with short interaction cycles, such as casual games 
or sports games rather than story-driven games, such as 
adventure games. We imagine, although not tested yet, that 
VirtualSpace can run one story-driven apps with any num-
ber of casual games. 

Our current system and apps are limited to a certain number 
of users and a fixed tracking volume. Conceptually howev-
er the system can be extended to more users, multi-user 
applications, and spaces of different shape or size. 



 

RELATED WORK 
VirtualSpace builds on related work on single user locomo-
tion in VR, real walking, shared tracking spaces, and over-
loading. 

Single user locomotion and real walking in VR 
While walking in VR can be enabled by treadmills [7], it is 
largely simulated with techniques as walking in place [24] 
or teleportation [6]. However, researchers agree that real 
walking, a continuous one-to-one mapping of physical to 
virtual locomotion, leads to the highest user satisfaction 
[25]. Real walking has high space requirements, which 
researchers have tried to reduce with several techniques, 
such as resetting [31], which rotates or repositions users 
once they hit the tracking volume’s borders, or seven 
league boots [11], which virtually scale the user’s move-
ments. However, as these techniques perceptibly interrupt 
or alter the one-to-one mapping of physical to virtual 
movement, the immersive quality of real walking is re-
duced. The following techniques reduce space requirement 
for real walking, by altering the one-to-one mapping in a 
way imperceptible to the user, thus maintaining immersion. 
Razzaque et al. [22] found that redirected walking, which 
folds long walking paths into a finite tracking space, can 
lower the amount of space required for real walking, but as 
discussed earlier, redirected walking was found inapplica-
ble for spaces smaller than 4x10m, without falling back to 
complementary techniques such as resetting. Vasylevska et 
al. [28] dynamically rearranged rooms in a virtual envi-
ronment (aka dynamic layout generation) so that they un-
noticeably overlap. Again, this requires a lot of space 
(9x9m). Both techniques succeed in space reduction insofar 
as they manage to virtually simulate endless space within a 
large physical space. VirtualSpace applies to any size of 
tracking space and reduces individual space requirements 
by letting users share the same tracking space. 

Sharing tracking space 
Real walking extends naturally to multiple users. Sra et 
al. [19, 20] developed VR applications that allow sharing 
the same physical space between multiple users. Of course, 
multi-user applications implicitly use the concept of over-
loading. However, we explore the wider concept of over-
loading space with users in different virtual environments, 
who are unaware of one another. The same authors, Sra and 
colleagues [21], adapted virtual environments to fit rooms 
of arbitrary shape, thus conceptually widened the possibili-
ties for space setups also to mobile scenarios. This concept 
has been reused [18]. However, creating adaptive virtual 
environments might be difficult or sometimes not possible, 
as virtual experiences might have specific space require-
ments. Also, within mobile scenarios, the physical envi-
ronment might need to be shared with others. Redirected 
walking has been shown to also apply to multiple users [1, 
10], but still has a relatively high risk of collisions. 

Overloading in non-VR application areas 
The concept of overloading has been thoroughly explored. 
In computation alone, many parallels can be drawn, e.g. to 

management of memory space. We borrowed directly from 
those concepts: VirtualSpace (virtual RAM) has users in 
different environments (independent processes) quickly 
exchanging (dynamically loading) tessellated (fragmented) 
non-sharable tiles (partitions), allowing maneuvers like 
“switching” (swapping) or “de-focusing” (secondary 
memory). After we explored different memory schedulers 
(e.g., first-come-first-served, round-robin, shortest remain-
ing time, and manual scheduling), our allocation algorithm 
basically uses fixed priority pre-emptive scheduling (de-
scribed in the next section). Memory management is of 
course a faster process that takes place on a far smaller 
scale than our space management. Scaling up time and 
space to the other end of the spectrum allows comparisons 
to different fields, such as UIs [3], planning relocations of 
resources on construction sites [33] or reducing office 
space requirements for mobile workers (open offices [26, 
27]), which underlines VirtualSpace’s potential economic 
importance. With VirtualSpace we merely re-use existing 
overloading concepts and apply them to a multi-user VR 
setup to enable real walking. The main difference is that 
our system has users comply by using visual guidance. 

Visual guidance based on incentives 
VirtualSpace navigates users’ through virtual environments 
by using virtual rewards and obstacles, here called incen-
tives. This concept has been explored in many variations, 
e.g., by Peck et al. [15], who used “distractors” to navigate 
users in VR, but maybe most comparably by Fajen and 
Warren [8] who let users walk in virtual environments 
populated with goals and obstacles. They found that the 
attraction of the goal increased linearly with its angle from 
the current heading and decreased exponentially with dis-
tance, whereas the repulsion of the obstacle decreased 
exponentially with angle and with distance. We incorpo-
rated those findings in the placement of incentives in our 
apps (e.g., having both negative and positive incentives 
appear in the user’s field of view and within close dis-
tance).  

Unlike previous works, VirtualSpace allows multiple users 
in different virtual environments to share the same tracking 
space. It achieves this by borrowing from existing over-
loading strategies used for memory management. This 
leads to unprecedented reduction of space requirements. It 
is compatible with any app implementing our simple API.  

VIRTUALSPACE API 
VirtualSpace runs with any app implementing the Virtu-
alSpace API, which acts in the following five steps. 

VirtualSpace places and orients apps 
When an app registers with VirtualSpace, the system ar-
ranges its place in the tracking volume, coordinating it with 
the other apps that are already running. Figure 8 shows an 
example. Here, the badminton app predicts an uneven spa-
tial probability distribution for its user, as users tend to go 
back to the baseline whenever they can. Let us assume now 
that we have for example a second badminton user (playing 
against a separate AI). If two badminton apps were placed 



 

in identical orientation, it would result in frequent colli-
sions. VirtualSpace avoids this by requesting a sample of 
each app’s spatial probability distribution. Then, the system 
tries out all possible positions and orientations of the apps 
to minimize overlap. In this example, the system decided to 
rotate the second badminton app by 180 degrees. 

 
Figure 8: (a) Spatial probability distribution based on 

3min of using the badminton app (axis lengths: 4m).  (b) 
VirtualSpace places the first badminton user without 

rotational offset. (c) The second badminton user is 
placed at a 180-degree angle, minimizing the overlap in 

their probability distributions. 

Apps inform VirtualSpace which maneuvers they favor 
To help VirtualSpace perform maneuvers fitting all apps, 
each app informs VirtualSpace about the usefulness for 
each potential maneuver. The system deduces the potential 
maneuvers using a simple state machine (e.g., after the 
focus maneuver the system is in the “focus” state, no rota-
tion maneuver is possible, but a defocus or switch maneu-
ver). Apps then valuate potential maneuvers. The badmin-
ton app, for example, generally values those maneuvers 
highly that allow bringing the user back to baseline or to 
previously unused areas. Similarly, Pac-Man’s erratic 
movements or badminton’s reach typically require more 
space, leading to higher focus valuations. Additionally, 
apps provide the system with information on how fast they 
can comply with the suggested maneuver. They provide the 
preparation time (delay until the maneuver starts, in which 
incentive is placed) and the execution time (time for mov-
ing tiles, in which users follow incentives). This infor-
mation can also be provided in linear dependencies (e.g., 
preparation and execution time add to a specific value).  

VirtualSpace decides which maneuver to perform 
The system now decides which maneuver to invoke. It adds 
up the utility for each maneuver reported by each app and 
picks the maneuver that maximizes utility across apps. A 
focus maneuver for the first app, for example, implies three 
corresponding defocus maneuvers for the other users, 
which might not have the same utility as a rotation. The 
system also tries to ensure that apps receive similar utility 
over time and tries to avoid maneuvers subject to timing 
mismatches between apps.  

VirtualSpace synchronizes apps to start maneuver 
When the system decides on the maneuver to perform, it 
also needs to determine the time until the maneuver starts. 
In badminton for example, this should be within the narrow 
time frame when the enemy AI can hit the birdie and the 
app can show the trajectory to the impact point. To ensure 
this, the system synchronizes the apps by using what we 
call ticks, events in which apps have the possibility to in-

fluence their user’s movement. In the example of badmin-
ton, a tick is the moment the enemy AI hits. The moment 
that the system starts a maneuver should be when applica-
tion ticks are in sync. The applications constantly provide 
information on their ticks using linear conditions, in bad-
minton for example ticks occur once every full exchange. 
Each tick is given an allowed variance (which for our apps 
increases over time) together with a preference (e.g., bad-
minton prefers quick exchanges but can let the AI play 
differently to synchronize). Ticks are synchronized by the 
system sending back master ticks, which the apps adapt to. 
The system can then compute the delay time, whose re-
quirements were sent with the maneuver evaluations (see 
above). When a synced tick is then the same as the delay 
time, VirtualSpace can start the maneuver as we now en-
sured that every app can direct its users at that time. 

VirtualSpace informs the apps, apps follow maneuver 
The system now informs apps about the upcoming maneu-
ver. It does so by sending a sequence of what we call 
frames, information about assigned areas at given times, 
from which apps can derive the need to place incentives. 
The system computes assigned areas, the tiles, as Voronoi 
tessellations to keep them convex, this enables apps to 
easily compute which paths their user can walk on. Apps 
respond to maneuvers by placing rewards and obstacles 
inside their virtual environment, thus guiding the user to 
the next tile (more detail in the “Applications” section).  

The whole process described in this section is executed 
multiple times in parallel, to ensure quick interaction rates. 
While apps synchronize for the next maneuver, they al-
ready evaluate the next couple of maneuvers. This queue 
length is determined by the apps themselves.  

Resulting API 
Figure 9 summarizes our algorithm in the form of a result-
ing API. For an app to participate in VirtualSpace, it must 
implement this API.  

abstract functions: 

List<Vector2> ProvideProbabilityDistribution () 

List<TickInfo> ProvideTickInfo () 

void AdaptToMasterTicks(List<float> ticks) 

List<Valuation> ValuatePotentialManeuver ( 
List<Tile> maneuverEndTiles) 

void ExecuteManeuver(Maneuver maneuver)  
 
classes:  

Tile{List<Vector2> area} 

Frame{Tile tile, float time} 

Maneuver{List<Frame> frames} 

TickInfo{float tick, float variance} 

Valuation{float weight,  
float preparation, float execution} 

Figure 9: The VirtualSpace API 



 

Contrasting to other approaches 
Users behavior is not entirely predictable, as complex envi-
ronments, such as games, offer various stimuli and users 
will make short-term decisions which cannot be perfectly 
predicted. Therefore, we did not follow high precision 
analytical planning approaches that assumes virtual humans 
(such as ORCA [4]), but instead used the described tile-
based approach, which allows for variance and avoids 
deadlocks, where multiple users are crunched in one corner. 
Here the comparison to memory management comes in. 
Looking at different scheduling algorithms, one can see the 
resemblance to fixed-priority pre-emptive scheduling. Oth-
er algorithms, such as round-robin, would have resulted in 
lower utility for the apps (they cannot lead their users 
where they need them to be), or, such as shortest-
remaining-time, cannot be used, as unpredictable variations 
in apps task times need to be taken into account. 

DEMO APPLICATIONS 
We have implemented four apps to run with VirtualSpace. 
Here we show how the API is implemented. 
Badminton  
A user plays badminton against an AI. The user sees the 
birdie’s trajectory as soon as the AI hits, and an estimated 
trajectory before that. We display the trajectory at all times 
to avoid the natural tendency of users to walk towards the 
court’s center. We made the virtual field slightly larger than 
the tracking area as users would optimize their movement 
and not walk onto the side of their field. When valuating 
maneuvers, badminton valuates larger areas stronger for 
quick ball exchanges that do not need to sync, also areas 
where the user has not yet hit that often, and areas with 
higher overlap to the court’s service line. The minimum 
preparation time is the maximum time of a ball-exchange 
(dynamically computed), the minimum duration of the 
maneuver is based on the velocity of the birdie. 
Pac-Man  
As in the traditional Pac-Man, the user’s goal is to collect 
all yellow pellets in a labyrinth. Ghosts position themselves 
so that the user does not pass into another user’s area. Cher-
ries provide additional points and thus draw users towards 
the next tile. They focus the user’s attention using a distinct 
sound and a halo effect. When valuating maneuvers, Pac-
Man valuates higher areas with more yellow pellets. The 
blue pill from Pac-Man serves as an in-app purchase 
(Figure 5); when collecting it, for a short duration the app 
valuations are generally higher than the ones of other appli-
cations. The sum of preparation time and maneuver dura-
tion is computed by the average player speed and is given 
to VirtualSpace as a dependency to be computed in a linear 
solver [9]. 
Space Invaders  
As in the original arcade game, the user controls a space-
ship to shoot enemy ships. Enemy ships are placed on all 
four sides of the environment. An area with protective 
blocks incentivizes the player to be in a certain area. Space 
Invaders valuates maneuvers that require the user to walk 

more. Preparation time uses a fixed delay and the duration 
is capped by the player’s maximum walking speed.  
Whac-A-Mole  
The user is placed within a fenced area and is given a 
hammer to hit moles that spawn from the ground. Negative 
incentives, like flowers, are used to counteract the urge of 
users to walk towards the center. Audio cues given by the 
moles taunt the user to look towards them, in case the user 
faces the wrong way. Whac-A-Mole valuates areas higher 
where less moles have been hit. Preparation time and dura-
tion are similar to Space Invaders. 

Application requirements 
Planning and reacting 
The design of apps is driven by two constraints: planning 
and reacting. VirtualSpace benefits from apps planning 
ahead of time and being able to react quickly. For a set of 
apps to run within the system, it must be assured that the 
apps react to the maneuvers that result from their own 
planning. Thus, the reaction time of the slowest application 
must be smaller to the planning time of the app least capa-
ble of planning. As an example, in our badminton app the 
worst possible time to perform a maneuver is right after the 
AI hits, as the app needs another full exchange (roughly 
two seconds), to influence the user again, so the reaction 
time is two seconds. It provides its valuations two ex-
changes ahead, taking roughly four seconds. If the badmin-
ton app was not able to do that, the birdie would not arrive 
where the app would want it to be. In Pac-Man, ghosts 
would need to travel too fast, etc.  
Incentive considerations 
Applications should always be able to place incentives 
inside the users’ field of view, additionally to using audio 
cues. Also, both negative and positive incentives should be 
used – we found positive incentives (e.g., the birdie or 
moles) to work better for maneuvers, while negative incen-
tives (e.g., the Pac-Man ghost) work better for keeping 
users within their area if no maneuver is active. If applica-
tions do not provide negative incentives, fallback routines 
from VirtualSpace happen more often, which lowers im-
mersion.  
Cognitive processing delay 
Every app affords a different cognitive load to the user, so 
users’ reaction time heavily depends on cognitive pro-
cessing of the given incentives. For example, space in-
vaders’ protective obstacles start to move 400ms before the 
maneuver starts, giving the user a time to process and react. 
The other apps, which we also intentionally based on exist-
ing games to lower reaction times, are quite similar. In Pac-
Man, the cherry, as a strong positive incentive, pops up 
seconds before the maneuver starts, but only when it does 
do the ghosts give way for the user to collect it. Pac-Man 
needs to allow for additional cognitive processing, as it 
includes more numerous game elements. We found itera-
tive testing crucial for deducing the correct lead for placing 
incentives in the virtual environment, as various factors 
contribute to human reaction time [12].  



 

Development and hardware 
The applications were developed in Unity3D. The backend 
uses C# with the libraries Clipper [4], Protobuf [16] and 
Gurobi [9]. To allow researchers to replicate our work, we 
provided the full source code of VirtualSpace and the apps 
in C#/Unity3D [29]. The space is tracked using the Vive 
Lighthouse system with eight trackers [30]. The tracking 
information is forwarded via UDP to head-mounted dis-
plays (four GearVRs with Samsung S6 running Android) as 
shown in Figure 10. 

 

Figure 10: VirtualSpace’s setup 

USER STUDY 
To better understand the resulting experience of allowing 
VirtualSpace to manage actual VR apps, we conducted a 
user study in which we compared VirtualSpace against the 
most commonly used approach, i.e., static pre-allocation of 
space ([1] uses a similar baseline). Our main hypothesis 
was that VirtualSpace provides more space coverage per 
user. Additionally, we assumed that VirtualSpace improves 
the experience, measured in ratings of confinement, enjoy-
ment and presence.  

Interface conditions 
There were two space allocation conditions. In the Virtu-
alSpace condition, we tested our system with the described 
maneuvers. In the pre-allocated condition each participant 
was confined to a static tile (no maneuvers). 

We did not use whole space allocation as an additional 
baseline condition, in which participants take turns in using 
the whole space, as this assumes unlimited space for each 
app, which outperforms any technique. 

In both conditions, participants walked in a 4x4m space, 
with a safety boundary of 60 cm between allocated areas. 
We deemed this boundary length sufficient after initial pilot 
studies. 

Task and procedure 
Participants were split into groups of four with each given 
one of the four games described above. Prior to the tasks, 
participants had 1 minute of training, in which they were 
playing their game alone in the tracking volume. Each 
group had two sessions, one for each space allocation con-
dition. The order of conditions was counterbalanced. Dur-
ing the first session, participants played their app for five 
minutes, while the first space allocation strategy was ap-
plied. Participants then filled in a questionnaire about their 
experience containing two questions: “How much did you 

enjoy the experience?” and “How confined did you 
feel?” (Likert scale, 1-7) and the realism subscale of the 
presence questionnaire [32]. During the second session, 
they played the same app again for five minutes, while the 
other space allocation strategy was applied (within-subject 
design) and then again filled in another questionnaire. Each 
participant thus played their app twice, five minutes in each 
session, only using one app.  

Participants 
We recruited 16 participants from our organization (9 fe-
male, 7 male, age 28.8 ± 3.1 years), forming four groups. 
Seven participants had prior experience with VR (one had 
experienced real walking). The remaining nine participants 
had never tried VR before. 

Results 
As shown in Figure 11, users felt more confined in the pre-
allocation condition, while VirtualSpace provided a greater 
sense of freedom (p < .05, t(15) = -1.79, one-sided). How-
ever, no statistically significant difference in enjoyment 
was observed (p = .12, t(15) = 1.20, one-sided). 

 
Figure 11: Participants felt more confined in the static 
pre-allocation condition, while VirtualSpace provides a 

greater sense of freedom.  

 
   Experimental     Control 

Figure 12: The four apps’ space coverage for all partic-
ipants (apps by initials).  Participants covered more 

space using VirtualSpace than when using a static pre-
allocation (axis lengths: 4m and 2m). 

Space coverage was measured as all area being at least 
30cm away from the tracked head mount throughout one 
session. Accounting all users, in the VirtualSpace condition 
52 rotation maneuvers were conducted, 10 focus maneu-
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vers, and 3 switch maneuvers. This led to significantly 
larger space coverage of 15.51 m2 ± 2.01 per user in the 
VirtualSpace condition when compared to the space cover-
age of 3.46 m2 ± 1.02 per user in the control condition (p < 
.001, t(15) = 21.12, one-sided). Figure 12 depicts these 
results. 

For our analysis, we define a collision as a mutually unin-
tended contact of two participants. We observed 7 colli-
sions in total. Two collisions occurred in the first group, 
none in the second, two in the third and three in the fourth. 
We recorded differences between apps; the badminton app 
was involved in six collisions while the remaining apps 
were only involved in three collisions or less. All collisions 
occurred after a participant remained standing still when 
their tile moved; participants were absorbed in their experi-
ence, but did not follow the given incentive or the fallback 
visualization. Collisions occurred mostly during the first 
minutes of gameplay and further inspection revealed train-
ing effects; participants were less likely to breach (meas-
ured as the time ratio of being outside one’s assigned tile, 
see Figure 13) if they had already experienced the app in 
the control condition (p < .05, t(14) = 2.28, one-sided).  

 
Figure 13: Participants compliance varied. Those who 

experienced the control condition first (group 2+4) were 
less likely to breach through their assigned areas, sug-

gesting a training effect. Also, certain apps seem to keep 
their users within their tiles more effectively (apps by 

initials). 

Despite participants occasionally experiencing the fallback 
mechanisms to keep them within their designated area, 
results did not show a significant difference in the realism 
subscale of the presence questionnaire [32] between condi-
tions (p = .38, t(15) = 0.90, two-sided). 

Qualitative feedback 
Participants felt they had more space and made comments 
such as: “I just enjoyed having more space”, “In the begin-
ning [pre-allocation] it was not only more boring, but I felt 
way more cramped”.  

Participants remarked that they trusted the system, when 
apps kept participants within their assigned areas. Howev-
er, when users did not recognize the incentive and reacted 
too late or apps needed to rely on the fallback to keep par-
ticipants in place, participants’ trust decreased: “The trust 
into the system was relatively high, that you do not walk 
into one another”, “It then comes at quite a shock when 
they [fallbacks] pop up“, “I actually felt safe – until that 
[collision] happened”, “I felt I reacted too slowly”.  

Participants commented on the other users’ participation. 
“Actually, I liked knowing that there were other people”, “I 
would not play this alone, so it was actually even fun to 
maybe hit somebody”. 

DISCUSSION 
Our main finding is that VirtualSpace outperforms static 
pre-allocation of space, as users feel less confined and can 
cover more space. This is true even for high user densities 
such as for our four users within 16m2. This is an im-
provement over related work on space reduction techniques 
for real walking in VR, such as redirected walking [22] or 
dynamic layout generation [28], in which individual space 
requirements are of a far greater magnitude.  

We believe our overloading technique can be used not only 
as an alternative, but also as a complement to these tech-
niques. Researchers [1, 10] have already shown that redi-
rected walking can apply to multiple users, while again 
using relatively large areas, which VirtualSpace can help to 
utilize more effectively. VirtualSpace on the other hand 
could use redirection techniques to orient users, instead of 
relying on in-game mechanics. 

For our study we used some pre-existing metrics (collisions 
[1], presence [32]) and some that we specifically developed 
(perceived confinement, breach ratio, space coverage). To 
make their results comparable, we propose that future work 
also use these metrics.  

The shown apps were VR typical isolating experiences. 
VirtualSpace can naturally be extended to multi-user appli-
cations, mobile scenarios, and spaces of different shape or 
size. Since primarily rotation maneuvers have been carried 
out, a more even coverage of space still seems possible. 
Increasing the size of the tracking space while maintaining 
user density could also improve ratings, as the effect of real 
walking might prove higher in larger areas on enjoyment 
and perceived confinement. 

We acknowledge that VirtualSpace poses a certain physical 
risk, so further research into safety and trust is required. A 
total of seven collisions occurred. Related work [1] 
achieved a reduction of collisions of over 58% in a simulat-
ed framework with much lower user density – although we 
have not conducted a collision baseline due to safety risks, 
we assume this compares well, but agree that no collisions 
are more desirable. Based on our qualitative analysis and 
findings in literature, we can argue that risk contributed to 
positive experiences for some participants as “too close a 
distance” between users can be an intriguing game element 
[14]. However, enjoyment also relies on trust and partici-
pants’ remarks suggest an individually perceived lack of 
trust, which depends on apps being able to prepare their 
user for a maneuver and keep them within their assigned 
areas to avoid breaches. This would explain our findings in 
the enjoyment question and realism subscale. We expected 
the experimental condition to perform measurably higher, 
which might be attributed to an individually perceived lack 
of trust. Having users with different mindsets or player 
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types [2] might pose an additional challenge here, as ex-
plorative and/or social types might deliberately walk into 
unintended areas and frequently interrupt others, which 
happened with some users during our study. The boundary 
size of 60cm, as determined during initial pilot studies, did 
not seem to be a main factor for breaches, the biggest chal-
lenge instead is to ensure that users notice the given incen-
tive. Research on user visualizations [13, 17] in shared 
space already addresses this issue in part. As we discovered 
training effects, future investigation into safety and trust 
should encompass factors such as adaptive maneuver rates 
to reduce breaches and also maneuver interrupts when users 
fail to notice their incentive or do not comply to it. 

VirtualSpace helps minimize individual space require-
ments. This will help real walking applications expand to 
different scenarios such as mobile VR, where space needs 
to be shared with other people, or application domains 
requiring space with high interaction rates, such as e-sports, 
as demonstrated with our demo apps. 

CONCLUSION  
We presented VirtualSpace, a technique for overloading 
multiple real walking VR users into the same physical 
space. VirtualSpace achieves this by containing each app in 
a smaller tile. Frequent “maneuvers” allow apps to incen-
tivize their users to walk across the entire physical space, 
thereby allowing each app to progress its narrative and to 
prevent users from noticing that they are confined to a tile. 
This strategy enables VirtualSpace to achieve packings of 
the unprecedented density of four users in 16m2 as we 
demonstrated in our user study. 
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