
VirtualSpace - Overloading Physical Space
with Multiple Virtual Reality Users
Sebastian Marwecki1, Maximilian Brehm1, Lukas Wagner1,

Lung-Pan Cheng1, Florian ‘Floyd‘ Mueller2, Patrick Baudisch1

1Hasso Plattner Institute
Potsdam, Germany

2Exertion Games Lab, RMIT University
Melbourne, Australia

{surname,name}@hp .i.uni-potsdam.de {floyd}@exertiongameslab.org

Figure 1: (a) This user is playing a badminton app. His side of the court fills the entire 4x4m tracking volume. (b) This
other user is playing a Pac-Man game mapped to the same tracking volume. (c) VirtualSpace allows both users to share

the same tracking space, without being aware of the other user. To keep users from running into each other, Virtu-
alSpace limits each app to non-overlapping tiles at any given time. Client apps handle this in a way transparent to their
users. The badminton app, for example, always makes the user’s virtual opponent return the ball to locations inside the
tile currently assigned to the app. (d) By reassigning tiles frequently, VirtualSpace moves users across the entire space,

thereby seemingly allowing for unrestricted walking.

ABSTRACT
Although virtual reality hardware is now widely available,
the uptake of real walking is hindered by the fact that it
requires often impractically large amounts of physical
space. To address this, we present VirtualSpace, a novel
system that allows overloading multiple users immersed in
different VR experiences into the same physical space.
VirtualSpace accomplishes this by containing each user in a
subset of the physical space at all times, which we call tiles;
app-invoked maneuvers then shuffle tiles and users across
the entire physical space. This allows apps to move their
users to where their narrative requires them to be while
hiding from users that they are confined to a tile. We show
how this enables VirtualSpace to pack four users into 16m2.
In our study we found that VirtualSpace allowed partici-
pants to use more space and to feel less confined than in a
control condition with static, pre-allocated space.

Author Keywords
Virtual reality; real walking; locomotion.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

INTRODUCTION
Virtual reality (VR) offers a deep level of immersion if
users are allowed to navigate by walking around in the
physical world. This has been referred to as real walking.
Compared to simulated walking using treadmills [7] and
compared to locomotion techniques such as teleportation
[6] or walking in place [24], real walking leads to higher
levels of immersion [25].

With virtual reality headsets available to consumers [30]
that are capable of tracking real walking in a room-sized
tracking volume, one would expect real walking to become
the dominant approach to VR. However, looking at experi-
ences available for room-scale VR (e.g. Steam [23]), only a
negligible percentage appear to be using real walking. The
other experiences employ locomotion techniques, such as
instant teleportation [6], despite the reduced experience.
How can this be?

We argue that it is the physical space requirements of real
walking that make it impractical for consumers. For exam-
ple, in our city the rent of 4x4m space surpasses the cost of
a VR headset and tracking system in a mere three months.

To reduce the space requirements of real walking, re-
searchers have proposed several techniques. Redirected
walking [22] folds long walking paths into a finite tracking
volume, but requires very large installations (4x10m [22]).
For room-scale installations, different approaches such as
[21, 18] demonstrate how to reshape virtual experiences to
fit arbitrary room shapes, which makes it easier to fit a real
walking experience into an existing environment. This
approach is limited to applications, that can adapt to room
setups and do not have specific space requirements.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
CHI 2018, April 21–26, 2018, Montréal, QC, Canada.
© 2018 ACM ISBN 978-1-4503-5620-6/18/04...$15.00.
https://doi.org/10.1145/3173574.3173815

In this paper, we propose a different technique, which is to
overload multiple users into the same physical space.

VIRTUALSPACE
VirtualSpace is a novel system that allows multiple real
walking VR users to share the same physical space without
being aware of each other. VirtualSpace is designed to give
each user the illusion of being in possession of the entire
physical space.

Figure 1 shows an example. Two users share the same
4x4m physical space, while being tracked using a VR
tracking system (Vive [30]). Both users are in their own,
separate virtual environments. (a) The green user is im-
mersed in a badminton app, while (b) the blue user experi-
ences a Pac-Man game.

The key point is that both apps are mapped to the entire
physical space, i.e., VirtualSpace allows each app to be
designed under the assumption that the user has physical
access to the entire 4x4m space. And that is true, albeit not
necessarily at every particular moment, as VirtualSpace
limits each app to a different non-overlapping tile of space.
Client apps handle this in a way transparent to their user.
The badminton app, for example, makes the user’s virtual
opponent return the ball always to locations inside the tile
currently assigned to this app.

Managing space using “maneuvers”
To allow users to still complete their narrative and to pre-
vent users from noticing that the system is confining them,
VirtualSpace employs what we call maneuvers.

Figure 2: Users are confined into tiles. The rotation

maneuver allows apps to move their user to the adjacent
tile. This way users do not feel confined.

Figure 2 shows an example, here with four users in the
same 4x4m tracking space, which is the configuration we
used in our user study. When the user plays Pac-Man, the
app needs to progress towards the area with the remaining
pellets, but the segmentation into tiles prevents this pro-
gression. The player’s app thus requests access to the de-
sired tile, here the tile that is adjacent in clockwise order.
As shown in Figure 2, VirtualSpace can provide the Pac-
Man app with this access by rotating the entire field of all
four users in clockwise direction. We call this the (clock-
wise) rotation maneuver.

Every maneuver comes with a certain start-up delay that
allows all apps to get their users ready and every maneuver

takes place at a certain movement speed. In this example,
the apps may agree on a three-second delay and a one sec-
ond transition speed.

As shown in Figure 3a, the Pac-Man app prepares for the
maneuver by offering a virtual reward (the red cherry), yet
it prevents the user from getting there by blocking the path
using a ghost. Meanwhile the badminton app plays a slow
ball to get the player synchronized with the timing of the
upcoming maneuver.

Now the maneuver starts and every app moves their user to
the new target position, here the next tile clockwise. The
badminton app serves the user a stop ball that brings the
player forward towards the net. As shown in Figure 3b, the
Pac-Man app sends a ghost that chases the player down the
corridor.

Figure 3: (a) The Pac-Man app guides users to follow
the clockwise rotation maneuver by offering a virtual

reward, here a cherry. (b) It prevents users’ movement
by placing ghosts in their way.

“Focus” and “Switch” maneuvers for quick actions
Clockwise and counterclockwise revolutions are sufficient
in that it never takes more than two revolutions to send a
user to any tile. Revolutions take time though, which is not
always compatible with game action sequences that require
fast, large, and erratic movements of a user. To enable such
movement sequences, VirtualSpace offers the focus ma-
neuver as shown in Figure 4. This maneuver allows a single
app to temporarily take over most of the tracking space.
Figure 4 shows an example when the badminton app uses a
Focus maneuver to allow its user to hit the birdie in the
center of the court in a quick succession of ball exchanges.

Figure 4: The focus maneuver temporarily provides the
badminton app with control over most of the physical

space. The other apps go into a defocus state.

While the one app has the focus all other apps “park” their
users in a small amount of space at the rim of the tracking
volume by providing them with a stationary task, e.g., by

trapping the user in a corner (Pac-Man), or moles appearing
in the bushes (Whac-A-Mole).

Focus maneuvers obviously take place at the expense of all
other apps. Such “selfish” maneuvers are possible when all
other apps agree to it, as will be detailed in the “Implemen-
tation” section. We also added a simple economic model in
which apps can attach an added value (credits, money) to
their maneuver request.

Figure 5: VirtualSpace allows for in-app purchases.

Here the Pac-Man user can collect a blue pill which lets
VirtualSpace value that app higher. That allows for a

focus maneuver, which can be used to chase the ghosts.

Finally, the system allows for two users switching their
rotational positions and thus for permutation of the rotation
order. This enables certain users to move freely around the
tracking space (e.g., Pac-Man) while others can stay at
specific preferred areas (e.g., badminton).

Figure 6: The switch maneuver allows two apps to

switch tiles.

Supporting users joining or leaving in real-time
VirtualSpace is designed to run continuously with users
joining or leaving at any time, any reasonable number of
users and any combination of apps. Additional users can
join as long as there is enough free space and leave at any
time, thereby freeing up space. VirtualSpace continues to
offer the same maneuvers irrespective of the number of
users and the assigned tile size remains the same. However,
if free space is available, apps can move on to empty areas,
thus they do not need to perform the same maneuver. As
shown in Figure 7, an app can request a maneuver, e.g. a
rotation, without having another user move.

Figure 7: (a) VirtualSpace handles configurations with
fewer users. (b) If free space is available, apps can per-
form different maneuvers at the same time, until (c) all

space is allocated, then maneuvers need syncing.

Fallback
The assumption is that the apps succeed at confining their
users to their tiles and at guiding their users to the agreed-
upon target tiles. As with any real walking system this may
fail, e.g., when users ignore the system and simply “wander
off”. VirtualSpace handles this situation like most real
walking systems (such as Vive [30], or [17]) by (1) render-
ing a cage around the currently acceptable tracking space,
i.e., the tile, before the user might exit and if the user does,
(2) draws the outline of the users, so they can see each
other and stop.

CONTRIBUTION
VirtualSpace’s main contribution is a technique that allows
multiple real walking virtual reality users to be overloaded
into the same physical space. VirtualSpace achieves this by
assigning each app to a smaller tile, where the overall
tracking space is divided into computationally determined
individual tiles. Frequent “maneuvers” allow apps to incen-
tivize users to walk across the entire physical space, there-
by allowing each app to progress its narrative and to pre-
vent users from noticing that they are confined to a tile.
This strategy enables VirtualSpace to achieve packings of
high density, such as 4 users in 16m2, as we demonstrate in
our demo application (see “User Study” section).

Apps achieve the ability to run in VirtualSpace by imple-
menting the VirtualSpace API (see “Implementation”),
which potentially any external app could use (see “Applica-
tion requirements”). We demonstrate how we do this by
showing four examples (see “Applications”).

VirtualSpace’s main limitation is that even though apps can
move users anywhere within the tracking space, getting
there may be subject to a delay. Along the same lines, apps
have to be able to generally comply when another app
requests a maneuver. We found this to be more acceptable
for apps with short interaction cycles, such as casual games
or sports games rather than story-driven games, such as
adventure games. We imagine, although not tested yet, that
VirtualSpace can run one story-driven apps with any num-
ber of casual games.

Our current system and apps are limited to a certain number
of users and a fixed tracking volume. Conceptually howev-
er the system can be extended to more users, multi-user
applications, and spaces of different shape or size.

RELATED WORK
VirtualSpace builds on related work on single user locomo-
tion in VR, real walking, shared tracking spaces, and over-
loading.

Single user locomotion and real walking in VR
While walking in VR can be enabled by treadmills [7], it is
largely simulated with techniques as walking in place [24]
or teleportation [6]. However, researchers agree that real
walking, a continuous one-to-one mapping of physical to
virtual locomotion, leads to the highest user satisfaction
[25]. Real walking has high space requirements, which
researchers have tried to reduce with several techniques,
such as resetting [31], which rotates or repositions users
once they hit the tracking volume’s borders, or seven
league boots [11], which virtually scale the user’s move-
ments. However, as these techniques perceptibly interrupt
or alter the one-to-one mapping of physical to virtual
movement, the immersive quality of real walking is re-
duced. The following techniques reduce space requirement
for real walking, by altering the one-to-one mapping in a
way imperceptible to the user, thus maintaining immersion.
Razzaque et al. [22] found that redirected walking, which
folds long walking paths into a finite tracking space, can
lower the amount of space required for real walking, but as
discussed earlier, redirected walking was found inapplica-
ble for spaces smaller than 4x10m, without falling back to
complementary techniques such as resetting. Vasylevska et
al. [28] dynamically rearranged rooms in a virtual envi-
ronment (aka dynamic layout generation) so that they un-
noticeably overlap. Again, this requires a lot of space
(9x9m). Both techniques succeed in space reduction insofar
as they manage to virtually simulate endless space within a
large physical space. VirtualSpace applies to any size of
tracking space and reduces individual space requirements
by letting users share the same tracking space.

Sharing tracking space
Real walking extends naturally to multiple users. Sra et
al. [19, 20] developed VR applications that allow sharing
the same physical space between multiple users. Of course,
multi-user applications implicitly use the concept of over-
loading. However, we explore the wider concept of over-
loading space with users in different virtual environments,
who are unaware of one another. The same authors, Sra and
colleagues [21], adapted virtual environments to fit rooms
of arbitrary shape, thus conceptually widened the possibili-
ties for space setups also to mobile scenarios. This concept
has been reused [18]. However, creating adaptive virtual
environments might be difficult or sometimes not possible,
as virtual experiences might have specific space require-
ments. Also, within mobile scenarios, the physical envi-
ronment might need to be shared with others. Redirected
walking has been shown to also apply to multiple users [1,
10], but still has a relatively high risk of collisions.

Overloading in non-VR application areas
The concept of overloading has been thoroughly explored.
In computation alone, many parallels can be drawn, e.g. to

management of memory space. We borrowed directly from
those concepts: VirtualSpace (virtual RAM) has users in
different environments (independent processes) quickly
exchanging (dynamically loading) tessellated (fragmented)
non-sharable tiles (partitions), allowing maneuvers like
“switching” (swapping) or “de-focusing” (secondary
memory). After we explored different memory schedulers
(e.g., first-come-first-served, round-robin, shortest remain-
ing time, and manual scheduling), our allocation algorithm
basically uses fixed priority pre-emptive scheduling (de-
scribed in the next section). Memory management is of
course a faster process that takes place on a far smaller
scale than our space management. Scaling up time and
space to the other end of the spectrum allows comparisons
to different fields, such as UIs [3], planning relocations of
resources on construction sites [33] or reducing office
space requirements for mobile workers (open offices [26,
27]), which underlines VirtualSpace’s potential economic
importance. With VirtualSpace we merely re-use existing
overloading concepts and apply them to a multi-user VR
setup to enable real walking. The main difference is that
our system has users comply by using visual guidance.

Visual guidance based on incentives
VirtualSpace navigates users’ through virtual environments
by using virtual rewards and obstacles, here called incen-
tives. This concept has been explored in many variations,
e.g., by Peck et al. [15], who used “distractors” to navigate
users in VR, but maybe most comparably by Fajen and
Warren [8] who let users walk in virtual environments
populated with goals and obstacles. They found that the
attraction of the goal increased linearly with its angle from
the current heading and decreased exponentially with dis-
tance, whereas the repulsion of the obstacle decreased
exponentially with angle and with distance. We incorpo-
rated those findings in the placement of incentives in our
apps (e.g., having both negative and positive incentives
appear in the user’s field of view and within close dis-
tance).

Unlike previous works, VirtualSpace allows multiple users
in different virtual environments to share the same tracking
space. It achieves this by borrowing from existing over-
loading strategies used for memory management. This
leads to unprecedented reduction of space requirements. It
is compatible with any app implementing our simple API.

VIRTUALSPACE API
VirtualSpace runs with any app implementing the Virtu-
alSpace API, which acts in the following five steps.

VirtualSpace places and orients apps
When an app registers with VirtualSpace, the system ar-
ranges its place in the tracking volume, coordinating it with
the other apps that are already running. Figure 8 shows an
example. Here, the badminton app predicts an uneven spa-
tial probability distribution for its user, as users tend to go
back to the baseline whenever they can. Let us assume now
that we have for example a second badminton user (playing
against a separate AI). If two badminton apps were placed

in identical orientation, it would result in frequent colli-
sions. VirtualSpace avoids this by requesting a sample of
each app’s spatial probability distribution. Then, the system
tries out all possible positions and orientations of the apps
to minimize overlap. In this example, the system decided to
rotate the second badminton app by 180 degrees.

Figure 8: (a) Spatial probability distribution based on

3min of using the badminton app (axis lengths: 4m). (b)
VirtualSpace places the first badminton user without

rotational offset. (c) The second badminton user is
placed at a 180-degree angle, minimizing the overlap in

their probability distributions.

Apps inform VirtualSpace which maneuvers they favor
To help VirtualSpace perform maneuvers fitting all apps,
each app informs VirtualSpace about the usefulness for
each potential maneuver. The system deduces the potential
maneuvers using a simple state machine (e.g., after the
focus maneuver the system is in the “focus” state, no rota-
tion maneuver is possible, but a defocus or switch maneu-
ver). Apps then valuate potential maneuvers. The badmin-
ton app, for example, generally values those maneuvers
highly that allow bringing the user back to baseline or to
previously unused areas. Similarly, Pac-Man’s erratic
movements or badminton’s reach typically require more
space, leading to higher focus valuations. Additionally,
apps provide the system with information on how fast they
can comply with the suggested maneuver. They provide the
preparation time (delay until the maneuver starts, in which
incentive is placed) and the execution time (time for mov-
ing tiles, in which users follow incentives). This infor-
mation can also be provided in linear dependencies (e.g.,
preparation and execution time add to a specific value).

VirtualSpace decides which maneuver to perform
The system now decides which maneuver to invoke. It adds
up the utility for each maneuver reported by each app and
picks the maneuver that maximizes utility across apps. A
focus maneuver for the first app, for example, implies three
corresponding defocus maneuvers for the other users,
which might not have the same utility as a rotation. The
system also tries to ensure that apps receive similar utility
over time and tries to avoid maneuvers subject to timing
mismatches between apps.

VirtualSpace synchronizes apps to start maneuver
When the system decides on the maneuver to perform, it
also needs to determine the time until the maneuver starts.
In badminton for example, this should be within the narrow
time frame when the enemy AI can hit the birdie and the
app can show the trajectory to the impact point. To ensure
this, the system synchronizes the apps by using what we
call ticks, events in which apps have the possibility to in-

fluence their user’s movement. In the example of badmin-
ton, a tick is the moment the enemy AI hits. The moment
that the system starts a maneuver should be when applica-
tion ticks are in sync. The applications constantly provide
information on their ticks using linear conditions, in bad-
minton for example ticks occur once every full exchange.
Each tick is given an allowed variance (which for our apps
increases over time) together with a preference (e.g., bad-
minton prefers quick exchanges but can let the AI play
differently to synchronize). Ticks are synchronized by the
system sending back master ticks, which the apps adapt to.
The system can then compute the delay time, whose re-
quirements were sent with the maneuver evaluations (see
above). When a synced tick is then the same as the delay
time, VirtualSpace can start the maneuver as we now en-
sured that every app can direct its users at that time.

VirtualSpace informs the apps, apps follow maneuver
The system now informs apps about the upcoming maneu-
ver. It does so by sending a sequence of what we call
frames, information about assigned areas at given times,
from which apps can derive the need to place incentives.
The system computes assigned areas, the tiles, as Voronoi
tessellations to keep them convex, this enables apps to
easily compute which paths their user can walk on. Apps
respond to maneuvers by placing rewards and obstacles
inside their virtual environment, thus guiding the user to
the next tile (more detail in the “Applications” section).

The whole process described in this section is executed
multiple times in parallel, to ensure quick interaction rates.
While apps synchronize for the next maneuver, they al-
ready evaluate the next couple of maneuvers. This queue
length is determined by the apps themselves.

Resulting API
Figure 9 summarizes our algorithm in the form of a result-
ing API. For an app to participate in VirtualSpace, it must
implement this API.

abstract functions:

List<Vector2> ProvideProbabilityDistribution ()

List<TickInfo> ProvideTickInfo ()

void AdaptToMasterTicks(List<float> ticks)

List<Valuation> ValuatePotentialManeuver (
List<Tile> maneuverEndTiles)

void ExecuteManeuver(Maneuver maneuver)

classes:

Tile{List<Vector2> area}

Frame{Tile tile, float time}

Maneuver{List<Frame> frames}

TickInfo{float tick, float variance}

Valuation{float weight,
float preparation, float execution}

Figure 9: The VirtualSpace API

Contrasting to other approaches
Users behavior is not entirely predictable, as complex envi-
ronments, such as games, offer various stimuli and users
will make short-term decisions which cannot be perfectly
predicted. Therefore, we did not follow high precision
analytical planning approaches that assumes virtual humans
(such as ORCA [4]), but instead used the described tile-
based approach, which allows for variance and avoids
deadlocks, where multiple users are crunched in one corner.
Here the comparison to memory management comes in.
Looking at different scheduling algorithms, one can see the
resemblance to fixed-priority pre-emptive scheduling. Oth-
er algorithms, such as round-robin, would have resulted in
lower utility for the apps (they cannot lead their users
where they need them to be), or, such as shortest-
remaining-time, cannot be used, as unpredictable variations
in apps task times need to be taken into account.

DEMO APPLICATIONS
We have implemented four apps to run with VirtualSpace.
Here we show how the API is implemented.
Badminton
A user plays badminton against an AI. The user sees the
birdie’s trajectory as soon as the AI hits, and an estimated
trajectory before that. We display the trajectory at all times
to avoid the natural tendency of users to walk towards the
court’s center. We made the virtual field slightly larger than
the tracking area as users would optimize their movement
and not walk onto the side of their field. When valuating
maneuvers, badminton valuates larger areas stronger for
quick ball exchanges that do not need to sync, also areas
where the user has not yet hit that often, and areas with
higher overlap to the court’s service line. The minimum
preparation time is the maximum time of a ball-exchange
(dynamically computed), the minimum duration of the
maneuver is based on the velocity of the birdie.
Pac-Man
As in the traditional Pac-Man, the user’s goal is to collect
all yellow pellets in a labyrinth. Ghosts position themselves
so that the user does not pass into another user’s area. Cher-
ries provide additional points and thus draw users towards
the next tile. They focus the user’s attention using a distinct
sound and a halo effect. When valuating maneuvers, Pac-
Man valuates higher areas with more yellow pellets. The
blue pill from Pac-Man serves as an in-app purchase
(Figure 5); when collecting it, for a short duration the app
valuations are generally higher than the ones of other appli-
cations. The sum of preparation time and maneuver dura-
tion is computed by the average player speed and is given
to VirtualSpace as a dependency to be computed in a linear
solver [9].
Space Invaders
As in the original arcade game, the user controls a space-
ship to shoot enemy ships. Enemy ships are placed on all
four sides of the environment. An area with protective
blocks incentivizes the player to be in a certain area. Space
Invaders valuates maneuvers that require the user to walk

more. Preparation time uses a fixed delay and the duration
is capped by the player’s maximum walking speed.
Whac-A-Mole
The user is placed within a fenced area and is given a
hammer to hit moles that spawn from the ground. Negative
incentives, like flowers, are used to counteract the urge of
users to walk towards the center. Audio cues given by the
moles taunt the user to look towards them, in case the user
faces the wrong way. Whac-A-Mole valuates areas higher
where less moles have been hit. Preparation time and dura-
tion are similar to Space Invaders.

Application requirements
Planning and reacting
The design of apps is driven by two constraints: planning
and reacting. VirtualSpace benefits from apps planning
ahead of time and being able to react quickly. For a set of
apps to run within the system, it must be assured that the
apps react to the maneuvers that result from their own
planning. Thus, the reaction time of the slowest application
must be smaller to the planning time of the app least capa-
ble of planning. As an example, in our badminton app the
worst possible time to perform a maneuver is right after the
AI hits, as the app needs another full exchange (roughly
two seconds), to influence the user again, so the reaction
time is two seconds. It provides its valuations two ex-
changes ahead, taking roughly four seconds. If the badmin-
ton app was not able to do that, the birdie would not arrive
where the app would want it to be. In Pac-Man, ghosts
would need to travel too fast, etc.
Incentive considerations
Applications should always be able to place incentives
inside the users’ field of view, additionally to using audio
cues. Also, both negative and positive incentives should be
used – we found positive incentives (e.g., the birdie or
moles) to work better for maneuvers, while negative incen-
tives (e.g., the Pac-Man ghost) work better for keeping
users within their area if no maneuver is active. If applica-
tions do not provide negative incentives, fallback routines
from VirtualSpace happen more often, which lowers im-
mersion.
Cognitive processing delay
Every app affords a different cognitive load to the user, so
users’ reaction time heavily depends on cognitive pro-
cessing of the given incentives. For example, space in-
vaders’ protective obstacles start to move 400ms before the
maneuver starts, giving the user a time to process and react.
The other apps, which we also intentionally based on exist-
ing games to lower reaction times, are quite similar. In Pac-
Man, the cherry, as a strong positive incentive, pops up
seconds before the maneuver starts, but only when it does
do the ghosts give way for the user to collect it. Pac-Man
needs to allow for additional cognitive processing, as it
includes more numerous game elements. We found itera-
tive testing crucial for deducing the correct lead for placing
incentives in the virtual environment, as various factors
contribute to human reaction time [12].

Development and hardware
The applications were developed in Unity3D. The backend
uses C# with the libraries Clipper [4], Protobuf [16] and
Gurobi [9]. To allow researchers to replicate our work, we
provided the full source code of VirtualSpace and the apps
in C#/Unity3D [29]. The space is tracked using the Vive
Lighthouse system with eight trackers [30]. The tracking
information is forwarded via UDP to head-mounted dis-
plays (four GearVRs with Samsung S6 running Android) as
shown in Figure 10.

Figure 10: VirtualSpace’s setup

USER STUDY
To better understand the resulting experience of allowing
VirtualSpace to manage actual VR apps, we conducted a
user study in which we compared VirtualSpace against the
most commonly used approach, i.e., static pre-allocation of
space ([1] uses a similar baseline). Our main hypothesis
was that VirtualSpace provides more space coverage per
user. Additionally, we assumed that VirtualSpace improves
the experience, measured in ratings of confinement, enjoy-
ment and presence.

Interface conditions
There were two space allocation conditions. In the Virtu-
alSpace condition, we tested our system with the described
maneuvers. In the pre-allocated condition each participant
was confined to a static tile (no maneuvers).

We did not use whole space allocation as an additional
baseline condition, in which participants take turns in using
the whole space, as this assumes unlimited space for each
app, which outperforms any technique.

In both conditions, participants walked in a 4x4m space,
with a safety boundary of 60 cm between allocated areas.
We deemed this boundary length sufficient after initial pilot
studies.

Task and procedure
Participants were split into groups of four with each given
one of the four games described above. Prior to the tasks,
participants had 1 minute of training, in which they were
playing their game alone in the tracking volume. Each
group had two sessions, one for each space allocation con-
dition. The order of conditions was counterbalanced. Dur-
ing the first session, participants played their app for five
minutes, while the first space allocation strategy was ap-
plied. Participants then filled in a questionnaire about their
experience containing two questions: “How much did you

enjoy the experience?” and “How confined did you
feel?” (Likert scale, 1-7) and the realism subscale of the
presence questionnaire [32]. During the second session,
they played the same app again for five minutes, while the
other space allocation strategy was applied (within-subject
design) and then again filled in another questionnaire. Each
participant thus played their app twice, five minutes in each
session, only using one app.

Participants
We recruited 16 participants from our organization (9 fe-
male, 7 male, age 28.8 ± 3.1 years), forming four groups.
Seven participants had prior experience with VR (one had
experienced real walking). The remaining nine participants
had never tried VR before.

Results
As shown in Figure 11, users felt more confined in the pre-
allocation condition, while VirtualSpace provided a greater
sense of freedom (p < .05, t(15) = -1.79, one-sided). How-
ever, no statistically significant difference in enjoyment
was observed (p = .12, t(15) = 1.20, one-sided).

Figure 11: Participants felt more confined in the static
pre-allocation condition, while VirtualSpace provides a

greater sense of freedom.

 Experimental Control

Figure 12: The four apps’ space coverage for all partic-
ipants (apps by initials). Participants covered more

space using VirtualSpace than when using a static pre-
allocation (axis lengths: 4m and 2m).

Space coverage was measured as all area being at least
30cm away from the tracked head mount throughout one
session. Accounting all users, in the VirtualSpace condition
52 rotation maneuvers were conducted, 10 focus maneu-

5.19 3.884.75 4.88

1
2
3
4
5
6
7

enjoyment perceived confinement

*
qu

es
tio

n-
na

ire
 ra

tin
g

VirtualSpace pre-allocation

vers, and 3 switch maneuvers. This led to significantly
larger space coverage of 15.51 m2 ± 2.01 per user in the
VirtualSpace condition when compared to the space cover-
age of 3.46 m2 ± 1.02 per user in the control condition (p <
.001, t(15) = 21.12, one-sided). Figure 12 depicts these
results.

For our analysis, we define a collision as a mutually unin-
tended contact of two participants. We observed 7 colli-
sions in total. Two collisions occurred in the first group,
none in the second, two in the third and three in the fourth.
We recorded differences between apps; the badminton app
was involved in six collisions while the remaining apps
were only involved in three collisions or less. All collisions
occurred after a participant remained standing still when
their tile moved; participants were absorbed in their experi-
ence, but did not follow the given incentive or the fallback
visualization. Collisions occurred mostly during the first
minutes of gameplay and further inspection revealed train-
ing effects; participants were less likely to breach (meas-
ured as the time ratio of being outside one’s assigned tile,
see Figure 13) if they had already experienced the app in
the control condition (p < .05, t(14) = 2.28, one-sided).

Figure 13: Participants compliance varied. Those who

experienced the control condition first (group 2+4) were
less likely to breach through their assigned areas, sug-

gesting a training effect. Also, certain apps seem to keep
their users within their tiles more effectively (apps by

initials).

Despite participants occasionally experiencing the fallback
mechanisms to keep them within their designated area,
results did not show a significant difference in the realism
subscale of the presence questionnaire [32] between condi-
tions (p = .38, t(15) = 0.90, two-sided).

Qualitative feedback
Participants felt they had more space and made comments
such as: “I just enjoyed having more space”, “In the begin-
ning [pre-allocation] it was not only more boring, but I felt
way more cramped”.

Participants remarked that they trusted the system, when
apps kept participants within their assigned areas. Howev-
er, when users did not recognize the incentive and reacted
too late or apps needed to rely on the fallback to keep par-
ticipants in place, participants’ trust decreased: “The trust
into the system was relatively high, that you do not walk
into one another”, “It then comes at quite a shock when
they [fallbacks] pop up“, “I actually felt safe – until that
[collision] happened”, “I felt I reacted too slowly”.

Participants commented on the other users’ participation.
“Actually, I liked knowing that there were other people”, “I
would not play this alone, so it was actually even fun to
maybe hit somebody”.

DISCUSSION
Our main finding is that VirtualSpace outperforms static
pre-allocation of space, as users feel less confined and can
cover more space. This is true even for high user densities
such as for our four users within 16m2. This is an im-
provement over related work on space reduction techniques
for real walking in VR, such as redirected walking [22] or
dynamic layout generation [28], in which individual space
requirements are of a far greater magnitude.

We believe our overloading technique can be used not only
as an alternative, but also as a complement to these tech-
niques. Researchers [1, 10] have already shown that redi-
rected walking can apply to multiple users, while again
using relatively large areas, which VirtualSpace can help to
utilize more effectively. VirtualSpace on the other hand
could use redirection techniques to orient users, instead of
relying on in-game mechanics.

For our study we used some pre-existing metrics (collisions
[1], presence [32]) and some that we specifically developed
(perceived confinement, breach ratio, space coverage). To
make their results comparable, we propose that future work
also use these metrics.

The shown apps were VR typical isolating experiences.
VirtualSpace can naturally be extended to multi-user appli-
cations, mobile scenarios, and spaces of different shape or
size. Since primarily rotation maneuvers have been carried
out, a more even coverage of space still seems possible.
Increasing the size of the tracking space while maintaining
user density could also improve ratings, as the effect of real
walking might prove higher in larger areas on enjoyment
and perceived confinement.

We acknowledge that VirtualSpace poses a certain physical
risk, so further research into safety and trust is required. A
total of seven collisions occurred. Related work [1]
achieved a reduction of collisions of over 58% in a simulat-
ed framework with much lower user density – although we
have not conducted a collision baseline due to safety risks,
we assume this compares well, but agree that no collisions
are more desirable. Based on our qualitative analysis and
findings in literature, we can argue that risk contributed to
positive experiences for some participants as “too close a
distance” between users can be an intriguing game element
[14]. However, enjoyment also relies on trust and partici-
pants’ remarks suggest an individually perceived lack of
trust, which depends on apps being able to prepare their
user for a maneuver and keep them within their assigned
areas to avoid breaches. This would explain our findings in
the enjoyment question and realism subscale. We expected
the experimental condition to perform measurably higher,
which might be attributed to an individually perceived lack
of trust. Having users with different mindsets or player

0
0.1
0.2
0.3

1 2 3 4group

br
ea

ch B
P
W
S

types [2] might pose an additional challenge here, as ex-
plorative and/or social types might deliberately walk into
unintended areas and frequently interrupt others, which
happened with some users during our study. The boundary
size of 60cm, as determined during initial pilot studies, did
not seem to be a main factor for breaches, the biggest chal-
lenge instead is to ensure that users notice the given incen-
tive. Research on user visualizations [13, 17] in shared
space already addresses this issue in part. As we discovered
training effects, future investigation into safety and trust
should encompass factors such as adaptive maneuver rates
to reduce breaches and also maneuver interrupts when users
fail to notice their incentive or do not comply to it.

VirtualSpace helps minimize individual space require-
ments. This will help real walking applications expand to
different scenarios such as mobile VR, where space needs
to be shared with other people, or application domains
requiring space with high interaction rates, such as e-sports,
as demonstrated with our demo apps.

CONCLUSION
We presented VirtualSpace, a technique for overloading
multiple real walking VR users into the same physical
space. VirtualSpace achieves this by containing each app in
a smaller tile. Frequent “maneuvers” allow apps to incen-
tivize their users to walk across the entire physical space,
thereby allowing each app to progress its narrative and to
prevent users from noticing that they are confined to a tile.
This strategy enables VirtualSpace to achieve packings of
the unprecedented density of four users in 16m2 as we
demonstrated in our user study.

REFERENCES
1. Mahdi Azmandian, Timofey Grechkin, and Evan Suma

Rosenberg. An evaluation of strategies for two-user
redirected walking in shared physical spaces. In Virtu-
al Reality (VR), Los Angeles, CA, pp. 91-98.
https://doi.org/10.1109/VR.2017.7892235

2. Richard Bartle. 1996. Hearts, Clubs, Diamonds,
Spades: Players who suit MUDs. Journal of MUD re-
search. 1(1), 19-58.

3. Blaine A. Bell and Steven K. Feiner. 2000. Dynamic
space management for user interfaces. In Proceedings
of the 13th annual ACM symposium on User interface
software and technology (UIST ’00), 239–248.
https://doi.org/10.1145/354401.354790

4. Jur van den Berg, Stephen J. Guy, Ming Lin, and
Dinesh Manocha. 2011. Reciprocal n-body collision
avoidance. In Robotics Research - The 14th Interna-
tional Symposium ISRR, Springer Tracts in Advanced
Robotics, vol. 70, Springer-Verlag, May 2011, pp. 3-
19. https://doi.org/10.1007/978-3-642-19457-3_1

5. Clipper, Open source freeware library. Retrieved
September 17, 2017 from
http://angusj.com/delphi/clipper.php

6. Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and
Rajiv Dubey. 2016. Point & Teleport Locomotion
Technique for Virtual Reality. In Proceedings of the
2016 Annual Symposium on Computer-Human Interac-
tion in Play (CHI PLAY '16), 205-216.
https://doi.org/10.1145/2967934.2968105

7. Rudolph P. Darken, William R. Cockayne, and David
Carmein. 1997. The omni-directional treadmill: a lo-
comotion device for virtual worlds. In Proceedings of
the 10th annual ACM symposium on User interface
software and technology (UIST '97), 213-221.
http://doi.org/10.1145/263407.263550

8. Brett R. Fajen and William H. Warren. 2003.
Behavioral dynamics of steering, obstacle avoidance,
and route selection. Journal of Experimental
Psychology. Human Perception and Performance
29(2), 343–362. https://doi.org/10.1167/1.3.184

9. Gurobi, Linear Solver, Academic License. Retrieved
September 17, 2017 from http://www.gurobi.com

10. Jeannette E. Holm. 2012. Collision prediction and
prevention in a simultaneous multi-user immersive vir-
tual environment. PhD diss., Miami University. Re-
trieved January 6, 2018 from https://etd.ohiolink.edu/

11. Victoria Interrante, Brian Ries and Lee Anderson.
2007. Seven League Boots: A New Metaphor for
Augmented Locomotion through Moderately Large
Scale Immersive Virtual Environments. In Symposium
on 3D User Interfaces, Charlotte, NC, 2007, pp.
https://doi.org/10.1109/3DUI.2007.340791

12. Robert J. Kosinksi. 2013. A Literature Review on Re-
action Time. Clemson University.

13. Jérémy Lacoche, Nico Pallamin, Thomas Boggini, and
Jérôme Royan. 2017. Collaborators awareness for user
cohabitation in co-located collaborative virtual envi-
ronments. In Proceedings of the 23rd ACM Symposium
on Virtual Reality Software and Technology (VRST
'17). ACM, New York, NY, USA, Article 15, 9 pages.
https://doi.org/10.1145/3139131.3139142

14. Florian Mueller, Sophie Stellmach, Saul Greenberg,
Andreas Dippon, Susanne Boll, Jayden Garner, Rohit
Khot, Amani Naseem, and David Altimira. 2014.
Proxemics play: understanding proxemics for design-
ing digital play experiences. In Proceedings of the
2014 conference on Designing interactive systems
(DIS '14), 533-542.
https://doi.org/10.1145/2598510.2598532

15. Tabitha C. Peck, Henry Fuchs, and Mary C. Whitton.
2010. Improved Redirection with Distractors: A large-
scale-real-walking locomotion interface and its effect
on navigation in virtual environments. In Proceedings
of IEEE Virtual Reality Conference (VR’10), 35-38.
https://doi.org/10.1109/VR.2010.5444816

16. Protocol Buffer, Contract Based Serializer. Retrieved
September 17, 2017 from
https://github.com/mgravell/protobuf-net

17. Anthony Scavarelli and Robert J. Teather. 2017. VR
Collide! Comparing Collision-Avoidance Methods Be-
tween Co-located Virtual Reality Users. In Proceed-
ings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems (CHI EA
'17), 2915-2921.
https://doi.org/10.1145/3027063.3053180

18. Keng Hua Sing and Wei Xie. 2016. Garden: A Mixed
Reality Experience Combining Virtual Reality and 3D
Reconstruction. In Proceedings of the 2016 CHI Con-
ference Extended Abstracts on Human Factors in
Computing Systems (CHI EA '16), 180-183.
https://doi.org/10.1145/2851581.2890370

19. Misha Sra and Chris Schmandt. 2015. MetaSpace:
Full-body Tracking for Immersive Multiperson Virtual
Reality. In Adjunct Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Tech-
nology (UIST '15 Adjunct), 47-48.
https://doi.org/10.1145/2815585.2817802

20. Misha Sra. 2016. Asymmetric Design Approach and
Collision Avoidance Techniques For Room-scale
Multiplayer Virtual Reality. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST ’16 Adjunct), 29–32.
https://doi.org/10.1145/2984751.2984788

21. Misha Sra, Sergio Garrido-Jurado, Chris Schmandt,
and Pattie Maes. 2016. Procedurally generated virtual
reality from 3D reconstructed physical space. In Pro-
ceedings of the 22nd ACM Conference on Virtual Re-
ality Software and Technology (VRST '16), 191-200.
https://doi.org/10.1145/2993369.2993372

22. Sharif Razzaque, Zachariah Kohn, and Mary C. Whit-
ton. 2001. Redirected walking. In Proceedings of
EUROGRAPHICS 9, 105-106.

23. Steam VR Survey. Retrieved September 17, 2017 from
https://steamcommunity.com/app/358720/discussions/
0/350532536103514259/?ctp=2#c1332580922532225
57

24. James N. Templeman, Patricia S. Denbrook and Linda
E. Sibert. 1999. Virtual Locomotion: Walking in Place
through Virtual Environments. In Presence 8(6), 598-
617. https://doi.org/10.1162/105474699566512

25. Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui
Bastos, Anthony Steed, Mel Slater, and Frederick P.
Brooks, Jr. 1999. Walking > walking-in-place > flying,
in virtual environments. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive
techniques (SIGGRAPH '99), 359-364.
https://doi.org/10.1145/311535.311589

26. Measuring Actual Use of Space. Retrieved March 3,
2017 from http://agilquest.com/Whitepapers-
Reference-Guides-and-Checklists/measuring-actual-
use-of-space.html

27. OfficeSpace. Software for space management in an
office. Retrieved March 3, 2017 from
https://www.officespacesoftware.com/

28. Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas
and Evan A. Suma. 2013. Flexible spaces: Dynamic
layout generation for infinite walking in virtual
environments. In 2013 IEEE Symposium on 3D User
Interfaces (3DUI’13), 39–42.
https://doi.org/10.1109/3DUI.2013.6550194

29. VirtualSpace, Online Repository. Retrieved January 8,
2018 from https://github.com/HPI-VirtualSpace

30. Vive and Vive Trackers. VR controller. Retrieved
September 17, 2017 from
https://www.vive.com/us/vive-tracker/

31. Betsy Williams, Gayathri Narasimham, Bjoern Rump,
Timothy P. McNamara, Thomas H. Carr, John Rieser,
and Bobby Bodenheimer. 2007. Exploring large virtual
environments with an HMD when physical space is
limited. In Proceedings of the 4th symposium on Ap-
plied perception in graphics and visualization (APGV
'07), 41-48. https://doi.org/10.1145/1272582.1272590

32. Bob G. Witmer and Michael J. Singer. 1998. Measur-
ing Presence in Virtual Environments: A Presence
Questionnaire. Presence: Teleoperators and Virtual
Environments 7(3), 225-240.
http://doi.org/10.1162/105474698565686

33. P. P. Zouein and I. D. Tommelein. 1999. Dynamic
Layout Planning Using a Hybrid Incremental Solution
Method. Journal of Construction Engineering and
Management. 125(6), 400-408.
https://doi.org/10.1061/(ASCE)0733-
9364(1999)125:6(400)

