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Figure 1: AutoAssembler converts 2D cutting plans to 3D models by (a) importing 2D cutting plans and (b) beam-searching the space 
of ways to assemble the plates. AutoAssembler prefers candidates that (1) have no intersecting plates, (2) fit into a small bounding 
box, (3)  use plates whose joints fit together well, (4) do not add many unpaired joints, (5) make use of constraints posed by other 

plates, and (6) conform to symmetry axes of the plates. (c) This allows users to load the model into a 3D editor (kyub [4]), (d) where 
they can now apply parametric changes. 

1 ABSTRACT 

Recent research showed how to import laser cut 3D models encoded in the form of 2D cutting plans into a 3D editor (assembler3  [28]), 
which allows users to perform parametric manipulations on such models. In contrast to assembler3 , which requires users to perform 
this process manually, we present autoAssembler, which performs this process automatically. AutoAssembler uses a beam search algo-
rithm to search possible ways of assembling plates. It uses joints on these plates to combine them into assembly candidates. It thereby 
preferably pursues candidates (1) that have no intersecting plates, (2) that fit into a small bounding box, (3) that use plates whose joints 
fit together well, (4) that do not add many unpaired joints, (5) that make use of constraints posed by other plates, and (6) that conform 
to symmetry axes of the plates. This works for models that have at least one edge joint (finger or t-joint). In our technical evaluation, 
we imported 66 models using autoAssembler. AutoAssembler assembled 79% of those models fully automatically; another 18% of models 
required on average 2.7 clicks of post-processing, for an overall success rate of 97%. 
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2 INTRODUCTION 

Models for laser cutting are hard to produce, they typically go through iterations of refinement and testing. Unsurpris-
ingly, there is a strong community of enthusiasts who share such models [39]. Researchers studying such communities 
identified that remixing [2] and customizing [14] models has been a great driver for the field, in fact, even a key enabler 
to transition towards ubiquitous personal fabrication [3] as suggested by Stemasov et al., [35]. In the context of laser 
cutting, typical modifications would be changing the material thickness and stretching the dimensions of the models 
aka “parametric changes”. 

The most interesting laser cut models, consist of multiple plates that connect to one another using cutouts on the 
edges of the plates. These patterns form a joint together with the same (yet inverted) cutouts on another plate. Such 
joints allow users to make 3D models using 2D laser cutting plans. This approach of constructing 3D models from 2D 
plates is much faster than additive fabrication processes like 3D printing. 

If a model is in a 3D format (e.g., flatFab [9] or kyub [4]) applying parametric changes is easy. Most models shared 
online, however, are in the form of 2D cutting plans (95% of over 200,000 models [28]), which makes parametric changes 
demanding, slow, and error prone. A 9-plate VR headset model, for example, took study participants on average 24 min 
to modify, 11 out of the 13 models edited in 2D fit together in 3D [28]. The underlying problem is that the reasoning of 
which plates are affected and how, is governed by the underlying 3D model—which requires users to reconstruct the 
underlying 3D models in their minds—a complex and error-prone process. 

Recent research addressed this challenge by offering a set of manual tools called assembler3 [28], that allow users to 
convert 2D cutting plans into a 3D format, thus allowing users to make parametric changes more efficiently on that 3D 
format. 

Unfortunately, the manual reconstruction workflow implemented by assembler3 is laborious. It still requires users to 
perform a number of manual assembly steps that are linear in the size of the model, and it requires users to have at least 
a basic understanding of the underlying 3D model. Yet, the vast majority of users are non-experts, who just want to 
fabricate/customize the model, without having to learn exactly how the model is assembled.  

We present autoAssembler, a software tool that converts 2D cutting plans to a 3D format automatically, as illustrated 
by Figure 1. Since the search space is exponential in the number of joints, exhaustive search is impractical for any non-
trivial model. AutoAssembler thus pursues only the most “promising” subset of candidates (beam search). It considers 
candidates as promising if they (1)  contain no intersecting plates, (2)  fit into a small bounding box, (3)  use plates whose 
joints fit together well, (4) the plates do not add many unpaired joints, (5)  make use of constraints posed by other plates, 
and (6)  conform to symmetry axes of the plates. We validated autoAssembler by importing 66 laser cut models that 
contain at least one edge joint each (find the benchmark models in the auxiliary materials). In our technical evaluation, 
autoAssembler imported 79% models in fully automatic fashion, another 18% of models required 1-4 manual clicks using 
our disambiguation tool, achieving an overall success rate of 97%. 
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3 CONTRIBUTION, BENEFITS, AND LIMITATIONS 

In this paper we make three main contributions: 
First, we present the autoAssembler software tool and its underlying algorithm. AutoAssembler uses a beam search 

algorithm to search the exponential space of possible ways of assembling parts. Our main contribution lies in the heu-
ristics that assesses partially assembled models in order to pick the most promising candidates for subsequent explora-
tion; our method prefers candidates that (1) have no intersecting plates, (2) fit into a small bounding box, (3)  use plates 
whose joints fit together well, (4) do not add many unpaired joints, (5) make use of constraints posed by other plates, 
and (6) conform to symmetry axes of the plates. 

Second, we integrate autoAssembler with the code base of a 3D editor for laser cutting (kyub [4]), resulting in an 
integrated system that allows loading, editing, and writing 2D cutting files. 

Third, we release the benchmark models we tested against as auxiliary materials. 
Our approach is subject to the same limitations as assembler3, in that it does not handle living hinges, moving parts, 

or joints based on stacked plates, glued connections, or bolts. AutoAssembler also does not apply to models where the 
structure is derived from the shape instead of the joints, in particular models only consisting of planar sections held 
together by cross joints (Figure 16a). 

4 THE AUTOASSEMBLER ALGORITHM  

When assembling a model, automatically or by hand, one explores a space of possible solutions that is factorial in the 
number of joints. Even if we reduced the search space by (1) limiting our search to joints that fit, (2) eliminating orien-
tations that lead to intersections between the new plate and what has been assembled already, and (3) adding a method 
that looks up matching joints for the joint at hand in constant time, the search space remains too large for exhaustive 
search (see Figure 2). We achieve (3) using the joint hash from [28], which achieves this by storing geometric profiles of 
joints in a hash table—the joint and its counterpart share that profile, when looking up the profile of a joint in the hash 
table, it returns its counterpart as a collision in the table in constant time. 

 

Figure 2: The search space for the simple VR headset consisting of 9 parts and 33 joints after limiting our search to joints that fit and 
only exploring orientations of plates that do not lead to an immediate collision. (Labels denote the number of joints that fit at a 

given position x the number of orientations they fit in). 

AutoAssembler therefore limits the search to the more promising candidates at each stage (beam search [6]). To this 
end, autoAssembler starts with an empty model and recursively tries to add one plate each time. The time-complexity 
of beam search is O(dk) where depth d is the number of plates and k is the beam width (the number of candidates 
autoAssembler picks to generate children for, at each stage) multiplied by the maximum fanout at each stage. The fanout 
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in principle is proportional to the depth. Worst case complexity thus is quadratic, however the joint hash table mentioned 
before reduces the fanout to the joints with the same signature. If all joints have a unique counterpart (ideal case) the 
complexity is linear, in practice the complexity sits between these bounds. In our technical evaluation, a beam width of 
4 proved sufficient for achieving the aforementioned success rate (79% + 18% = 97%), allowing for overall very fast 
execution (median of 0.30s). 

 

Figure 3: The first stage of search for a VR headset. AutoAssembler picks the initial plate with the most joints, uses the joint-hash to 
find what plates fit into the open joints, scores the candidates (labeled above) and generates new children from the best candidates.  

As shown in Figure 3, performing beam search, autoAssembler selects the four highest scoring candidates to generate 
the candidates for the next round, detailed in pseudo code in Algorithm 1.  

Algorithm 1: Find best candidate 

Input: starting plate, detected plates and joints in 2D cutting plan (using the assembler3 algorithm [28]) 
Output: best assembled model 

Internal data structures: candidates are assemblies of one or more plates, their children are the same 
assembly with one additional plate. Empirically determined maximum beam width MAX_BEAM_WIDTH=4 

// These candidates have two plates, (see figure 3 for examples) 

currentCandidates = children of the candidate, which only contains the starting plate 

// Based on heuristics in chapter 4.1, score each candidate 

score(currentCandidates) 

while there is at least one currentCandidate and not all plates are used { 

 // AutoAssembler groups candidates that use the same plates, but not using the same joint or 

orientation, see heuristic “minimize candidates that are highly similar” 

groups = group currentCandidates together, which have the same “connection pattern” 

currentCandidates = Highest scoring candidate from each group 

// If there are more states than the maximum beam width, limit them based on score 

currentCandidates = currentCandidates limited to MAX_BEAM_WIDTH 

// Generate children by adding a plate to the current candidates in different orientations 

currentCandidates = children of currentCandidates 

// Based on heuristics in chapter 4.1, score each candidate 

score(currentCandidates) 

} 

return currentCanddiate with highest score 
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As part of the search process, as illustrated by Figure 4, autoAssembler eliminates duplicate candidates. It achieves 
this by storing previously visited candidates (memoization) in a hash. 

 

Figure 4: autoAssembler encounters a candidate model more than once (the colored candidates), autoAssembler drops the redundant 
states (Memoization), by hashing visited candidates. (Here shown with three candidates each for visual clarity). 

4.1 How autoAssembler picks promising candidates: The heuristic function  

The main contribution of autoAssembler is the specific way it selects the candidates it pursues, i.e. how it assesses the 
potential of each candidate (its heuristics function [6]). It computes a weighed sum to prefer candidates (1) that have no 
intersecting plates, (2) that fit into a small bounding box, (3) that use joints that can be unambiguously matched, (4) that 
do not add a large number of unmatched joints, (5) that make use of constraints posed by other plates, and (6) that 
conform to symmetry axes of the plates. We developed these heuristics based on our observation of common patterns 
in laser-cut models and by manually evaluating candidates in our engineering team. As autoAssembler calculates a score 
for all candidates at every stage, the implicit objective for these heuristics is that they are efficient to compute. 

AutoAssembler aggregates six heuristics as a weighted sum. Two additional heuristics (deduplicating symmetric/sim-
ilar plates and minimizing highly similar candidates) are procedural in nature as they operate on the stage (all “current 
candidates”) rather than scoring individual candidates. We determined the optimal weights of the individual heuristics 
using hyperparameter optimization (see “technical evaluation” for details): 

Table 1: parameter optimization for the heuristic function 

parameter weight 
compactness of candidates 0.07 
intersections between plates 0.63 
ambiguity of the joints that are completed 0.88 
minimizing the number of unmatched joints 0.95 
make use of constraints posed by other plates 0.58 
conform to symmetry axes of the plates 0.83 
minimize candidates that are highly similar n/a 
deduplicating symmetric plates and similar plates n/a 

 
1. Give preference to compact candidates: parts that “stick out” of a model break off easily. Since designers generally 
prefer sturdy designs, laser-cut models tend to be “compact”, i.e., fit into a comparably small encompassing volume. 
AutoAssembler therefore is designed to prefer candidates that fit into smaller bounding boxes. The red plate in Figure 5 
for example, could be assembled as shown in (a), but that increases the spanned volume (calculated using the axis-aligned 
bounding box as this is the cheapest metric to compute). AutoAssembler calculates this “compactness” using the metric: 
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, as proposed by Parker et al. [27]. The compactness score of Figure 5b is much higher (the surface area 

remains the same, but the denominator is much smaller), so autoAssembler gives this candidate a higher score. Note 
that the weight of this heuristic is very small (0.07) and thus mostly serves as a tie-breaker for the other heuristics. 

 

Figure 5: (a) Adding the red plate gives it a much larger bounding box, autoAssembler thus gives (b) this candidate the higher score. 
(c) The resulting magazine holder.  

2. Avoid intersections between plates: laser-cut plates in a model must not intersect. Computing intersections be-
tween plates is an expensive operation as it requires comparing every outline feature of the plate to the already existing 
candidate. To achieve this efficiently, autoAssembler compares the bounding box of the newly added plate to plates 
already present in the current candidate. In the train wagon of Figure 6, autoAssembler initially prefers to put the wheel 
mount up because of the compactness metric, however that causes an intersection, which forces autoAssembler to as-
semble this part in another orientation. Avoiding intersections is not a hard constraint, because the relatively cheap 
method of computing intersections comes at a cost of accuracy. 

 

Figure 6: (a) The compactness heuristic suggested mounting this bearing (red) on top of this train wagon, but here it intersects with 
plates mounted on top of the wagon, causing autoAssembler (b) to flip the bearing plate to its correct position. (c) the same heuristic 

fixes the other bearings too. 

3. Give preference to unambiguous joints: AutoAssembler delays inserting plates that can be mounted in many 
different ways as long as possible, so as to await additional plates to introduce additional constraints that can help make 
the decision. AutoAssembler achieves this by giving preference to joints that have few, or ideally only a single matching 
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partner joint. More specifically, autoAssembler assigns a probability to pairs of joints in the joint hash as proposed by 
assembler3 [28] and it tries to maximize the ratio between the assigned probability and the sum of the probabilities of 
all other ways of matching up this joint. When assembling the dice tower shown in Figure 7, for example, starting with 
the ambiguous single finger joint of the red plate creates many different opportunities for mounting the top plate. (b) Au-
toAssembler instead first assembles the unambiguous and long finger joints, which then pose constraints on the red 
plate of Figure 7a, reducing overall ambiguity. 

 

Figure 7: (a) Assembling this ambiguous joint early on forms little or no constraints on other plates, as a result the top plate here can 
be assembled in many different ways (b) autoAssembler prefers to greedily connect plates with high probabilities. This adds con-

straints for other plates, (c) to eventually make this dice tower.  

4. Minimize the number of unmatched joints: the size of the search space at every candidate correlates with the 
amount of unmatched (unused) joints. AutoAssembler prioritizes plates that add the fewest incomplete joints. This 
works because it started out with the plate having the most joints, otherwise autoAssembler would paint itself into the 
corner (e.g., start with a plate with one joint, then close that joint without opening new ones–done). In the example 
shown in Figure 8, for example, autoAssembler therefore does not add (a) the side plate that brings in multiple new 
joints but runs with (b) the middle divider, which only adds one new joint.  
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Figure 8: AutoAssembler prioritizes completing joints first as this reduces the search space: (a) inserting the side plate (red) would 
add four incomplete joints to the model. (b) AutoAssembler therefore rather adds this “divider” plate, which only adds one un-

matched joint. (c) leading to this desktop organizer. 

5. Make use of constraints posed by other plates: AutoAssembler prioritizes inserting plates whose placement is 
supported by multiple plates/joints already in the model. It tries to maximize the number of completed joints by adding 
a plate. This avoids situations as shown in Figure 9, where (a) the nose-piece of this VR headset is under-constrained: it 
can be assembled in different orientations that all seem equally good according to the other metrics. (b) AutoAssembler 
thus prioritizes assembling the front plate first, which completes three joints at once and then later (c) adds the nose-
piece as the front plate imposes additional constraints on that plate. 

 

Figure 9: (a) This candidate offers too few constraints to orient the red plate correctly. (b) AutoAssembler therefore prioritizes this 
plate, which completes three joints. (c) This adds constraints that come in handy when eventually inserting the middle piece. 

6. Minimize candidates that are highly similar: as illustrated by Figure 10, if autoAssembler encounters multiple candi-
dates that differ only by one or more plates being flipped, it drops all but the highest scoring one, so as to make room 
for candidates consisting of a different subset of plates. As shown in Algorithm 1, candidates are filtered by “connection 
pattern”. This is a high-level data structure that describes what plates are connected, using which joints. This prevents 
AutoAssembler from only looking at similar structures with a flipped plate.  
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Figure 10: AutoAssembler picks the best four candidates of this stage. To avoid picking the first four candidates which are almost the 
same, it skips candidates that share the same connection pattern with a candidate that is already picked. Resulting in the four candi-

dates highlighted in yellow.  

The algorithm, as described above is functional, but performs poorly on models containing symmetries, such as the 
models shown in Figure 11. On such models the search space is cluttered with results that are the same, but contain 
different plate connectivity, resulting in problems similar to the ones in Figure 10. This unnecessarily blows up the 
search space and deprioritizes asymmetrical plates in the assembly that end up defining the structure. This is problematic, 
as 3D models designed for laser cutting are commonly symmetrical in nature. Out of the benchmark of assembler3, for 
example, 81/100 have reflective symmetries, and 11/100 have rotational symmetries.  

 

Figure 11: Examples of symmetric laser-cut models from assembler3 [28] (a) double reflectional symmetry, (b) 6-point rotational sym-
metry, (c) double reflectional symmetry (and multiple uses of same plate). 

We propose two extensions of the algorithm based on symmetries: prioritizing symmetric assembly of plates, and 
deduplicating plates and orientations when possible. 
7. Favor symmetric candidates: AutoAssembler prefers symmetric assemblies over asymmetric ones. As shown in 
Figure 12b, when autoAssembler adds a plate to a symmetrical plate, it verifies whether there is a similar plate elsewhere 
in the assembly and if so, it increases the score of a placement that implements symmetry.  
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Figure 12: (a) AutoAssembler detects symmetries by having pairs of joints vote for symmetry axes (b) autoAssembler uses the infor-
mation to prefer similar plates connected to joints on opposite sides of the symmetry axis. (c) resulting in this birdhouse. 

As shown in Figure 12a, autoAssembler detects symmetries in three steps: (1) it starts by looking for joints with a 
similar profile using the joint hash table, at the same distance to the center of the plate, (2) it constructs the symmetry 
axis this pair of joints conforms to, and (3) then verifies that proposed symmetry axis with the other joints on the plate, 
similar to Mitra et al. [24].  
8. Deduplicating symmetric plates and similar plates: Symmetric plates blow up the search space unnecessarily: 
When encountering a symmetric plate, such as the one shown in Figure 13, the basic version of autoAssembler considers 
inserting it in all possible orientations, leading to a much bigger search space with a lot of candidates that turn out to be 
geometrically identical. 

 

Figure 13: Because of the horizontal symmetry axis, only these two orientations of the side plate produce a unique state. The same 
for this in-plate symmetry in the vertical orientation.  

A similar issue is caused by multiple identical plates, such as the ones shown in Figure 14. Again, the basic version 
of autoAssembler considers inserting each copy of that plate separately, thereby blowing up the search space and in-
creasing the risk of beam search dropping relevant models, as the algorithm is instead pursuing multiple essentially 
identical models.  
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Figure 14: Clustering by similarity (a) autoAssembler characterizes each input plate by three easy-to-compute metrics (b) For this 
barrel model, autoAssembler considers 3 types of plates with 19 joints as opposed to 12 types of plates with 58 joints.  

AutoAssembler determines that two plates are identical by comparing their outlines using efficient-to-compute char-
acteristics: the number and the types of joints, the length of the outline, and the number of left/right turns along each 
outline. 

For hand-drawn models or models subject to rounding errors these metrics may differ by some epsilon. To overcome 
these imprecisions, autoAssembler uses a density-based clustering algorithm (DBSCAN [13]), which allows autoAssem-
bler to cluster similar plates, without knowing in advance how many clusters to look for. 

For the model shown in Figure 14, for example, autoAssembler reduces this model from 12 types of plates featuring 
58 joints down to 3 types of plates featuring 19 joints, which heavily reduces the search space.  

Favoring symmetry and similarity detection allows autoAssembler to correctly reconstruct the six models shown in 
Figure 15, thereby increasing autoAssembler’s success rate. It also improves the algorithm’s performance by a factor of 
1.5.  
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Figure 15: Six models from the test set that assemble correctly in autoAssembler because of the symmetry heuristics. 

4.2 Manual disambiguation 

Some models do not contain sufficient information to automatically complete the model. The triceratops shown in Figure 
16, for example, would require domain knowledge of the anatomy of dinosaurs (as a paleontologist would have) to tell 
how to sort the ribs, or at best a visual reference for what to assemble (as a child may have puzzling the dinosaur 
together). AutoAssembler does not have this domain knowledge and consequently it precisely fails to assemble models 
of this type—this is a limitation of the system and the reason we exclude from our analysis this particular type of deco-
rative models, which are based on cross joints alone. 

Models that do not solely rely on cross joints, however, tend to have only a small number of such ambiguities and 
these generally do not derail autoAssembler. The remaining 14 models that autoAssembler did not automatically assem-
ble, had a few plates that were not captured by the general heuristics of the algorithm. We address these by comple-
menting autoAssembler with two manual tools that allow disambiguating these cases: 

1. Clicking a plate using the “reorient plate” tool reorients the clicked plate by forcing autoAssembler to re-evaluate 
the plate’s orientation. Users keep clicking until satisfied with the plate’s orientation.  

2. Clicking a plate using the “swap plate” tool swaps a plate with another selected plate if their joints match up. Users 
click on one of the plates, which gets highlighted and then click on the other plate to swap them out. 
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Figure 16: (a) Models such as this dinosaur require domain knowledge, placing them outside the scope of automatic assembly. 
(b) this train wagon has misassembled plates after automatic assembly, with the reorient tool this is quick to fix (c) users click a 
wrongly assembled plate, which gets re-evaluated by autoAssembler.(d) Two plates are swapped in this organizer. (e) The “swap-

plate” tool lets users select one of the plates, and (f) by clicking the other one they swap if they share common joints.  

In our technical evaluation, fully automated use of autoAssembler assembled 79% of all models correctly. The “re-
orient” and “swap” tools allowed fixing an additional 12 of 14 models using 1-4 such clicks, resulting in a 97% success 
rate. 
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Figure 17: Click sequences of the disambiguate tool. Users click a poorly assembled plate, which autoAssembler then reconsiders. 
Here are five models that all were fixed by 1-4 manual disambiguation overrides (2.7 on average).  

4.3 Integration of autoAssembler with kyub 

Figure 18 shows the integration of autoAssembler into kyub [4]. When users import an SVG file, the dialog window 
shows a live preview of autoAssembler assembling the model. AutoAssembler completes the import after a median of 
0.30s, (see “Technical Evaluation”).  

 

Figure 18: Importing an SVG model automatically into kyub. 

5 RELATED WORK 

Our work builds on research into reconstruction of 3D models and related search algorithms, combinatoric puzzle solv-
ers, sharing and remixing of models for 3D printing, and portable formats for laser cutting. 
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5.1 Reconstruction of 3D assemblies 

Traditionally, 3D reconstruction in computer vision has focused on recovering the surface of 3D models, however this 
does not reveal the underlying structures of functional 3D assemblies. One approach to reconstructing 3D models is to 
reconstruct based on one or more 2D images: 3-Sweep [8] reconstructs a 3D model from a single photograph. Agrawal 
et al. [1] take the opposite route by reconstructing 3D models of historical monuments by aggregating massive amounts 
of pictures found online. More recently, the focus of this field has shifted to machine learning-based approaches that 
approximate the 3D shape from images, in the form of voxel-based representations [10], and for generating 3D surfaces 
[15].  

Besides visual reconstruction of 3D models, there has been a large interest to reconstruct 3D models for fabrication 
as well. An interesting take from Liu et al [23] allows users to bend structures from wires, which they then scan and 
reconstruct into a 3D model. Lin et al [22] use raw scans of moving mechanisms and generate functional 3D printable 
mechanisms from that. Xu et al. [43] reconstruct 3D mechanisms from multi-view images and even reconstruct the 
movement of the mechanisms from a corresponding video. StructureNet [25] opens up the space to extend such ap-
proaches towards structural modeling, considering how primitives within models are connected rather than just their 
outside shape. Editors for folding [32] allow users to take 2D plans and turn them into 3D models as long as edges 
connect, similarly Berthouzoz et al., [5] do this with sewing patterns to create 3D models of garments.  

Once a 3D model has been created, InverseCSG [12] lets users turn a non-parametric 3D model (e.g., STL) into para-
metric models, allowing users to modify the models using advanced 3D operations. It reconstructs what geometric prim-
itives and CSG operations were required to get to an input 3D model. IkeaBot [20] uses analysis of geometric parts of 
IKEA furniture to reconstruct a 3D model and then create assembly instructions for robots to put it together. 

The closest approach to our algorithm comes from Willis et al [42] who reconstruct 3D models of broken pots in an 
archeology context. They geometrically attempt to line up the shreds from pots using a Bayesian Maximum Likelihood 
Estimation algorithm. This approach works great because there is only one way the pieces fit together and in the context 
of archaeology, three hours of computation time to solve the problem is totally acceptable. 

5.2 Solving combinatoric puzzles 

When arranging 2D laser-cut plates in 3D autoAssembler solves a combinatoric problem. Combinatoric problem solving 
has a long history in the algorithmic solving of 2D puzzles. Demaine & Demaine [11] show that jigsaw puzzles are in 
principle NP-hard. Nevertheless, Sholomon et al. [33] show that large jigsaws can be solved using a genetic algorithm, 
given good “compatibility” metrics describing how well the pieces fit together.  

Chen et al. [7] solve puzzles based on a complete joint map between any kind of “objects”. This is very similar to the 
joint hash autoAssembler uses to find matching candidates. Combined with knowledge of the constraints of orientations 
of laser-cut joints and the heuristic function that assesses the success of each candidate, autoAssembler makes that 
problem tractable. 

On the flipside, researchers have developed various algorithms to create puzzles from 3D models, in some ways 
approaching the problem from the opposite side. Xin et al., [40] turn 3D models into bur puzzles, Tang et al., [36] convert 
to 3D dissection puzzles and Song et al., [34] create interlocking puzzles from original 3D models.  

5.3 Sharing and remixing of 3D models: the road to success for ubiquitous personal fabrication 

Flath et al. [14] studied sharing and remixing behavior on thingiverse and highlight the impact of the thingiverse cus-
tomizer (a tool in the browser to modify other people’s parametric models). They show how an increase in remixing and 
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building on the work of others lead to a massive increase in the number of models being shared on the platform. Alcock 
et al. [2] agree that the customizer is powerful but add that it lacks expressivity and ease-of-use. Grafter [29] is a software 
tool targeted to facilitate such forms of online remixing in the context of 3D printed mechanisms, and the PARTS frame-
work [17] enables users to specify mechanical parametric models, which again fosters remixing and modifying other 
people’s models.  

ShapeAssembler [19] drives this one step further by developing a domain specific language that describes how ge-
ometry is connected and what is structurally sound assembly. They use this language to train a neural network on 
available shape repositories to then allow users to edit models by synthesizing assemblies as users modify parameters 
of the “program of the 3D model”.  

In observing the maker community, Hudson et al. [18] identified the need for better tools for remixing and custom-
izing. And related to that, Stemasov et al., [35] argue for remixing and customization as a sweet spot between modeling 
and simply downloading models made by others and that this a key enabler for making personal fabrication truly ubiq-
uitous. We have seen this play out in other fields as well such as the open-source software community [21]. We add that 
this applies just as much to the context of 3D models for laser cutting. 

5.4 Portable formats for laser cutting 

Portability in the context of laser cutting would imply that laser-cut models are encoded in a way that everyone can 
reproduce them and edit them in meaningful ways. It turns out that the commonly shared 2D cutting plans fail to deliver 
on both counts. SpringFit [30] made the case that models are not reproducible as they implicitly encode the kerf (removed 
material) of the laser cutter, resulting in models that fail to fabricate on a slightly different machine. SpringFit and 
KerfCanceler [31] combined take 2D cutting plans and rewrite joints, mounts and mechanisms (that cause problems 
with kerf variations) to versions of these elements that are invariant to kerf.  

Editing 2D cutting plans is an even bigger struggle. A major milestone in this was the shift towards 3D modeling 
environments for laser cutting, specifically FlatFab [9]. CutCAD [16] follows a similar approach but uses a combination 
of 2D input and 3D visualization. CODA [37] is a Fusion360 plugin that provide assistance for alignment and modifica-
tions of 3D models for, among others, laser-cut models. In the context of furniture design, there is extensive work on 
modeling interlocking structures [38]. Kyub [4] further increases the level of abstraction by representing laser cut mod-
els as volumetric models. However, the majority of models still exist in the form of 2D cutting plans.  

Assembler3 [28] proposes an alternative workflow to take existing 2D cutting plans, reconstruct them in 3D, make 
the required 3D edits and then export it back to 2D cutting plans for laser cutting. The vast majority of models that are 
out there (on shared repositories or in industry databases) still exist in that 2D format. AutoAssembler takes that pow-
erful contribution of assembler3 and goes a step further by solving a second order effect it creates: the manual recon-
struction in assembler3 is like solving a combinatorial puzzle, to solve it users need to know how the plates in the model 
should be connected. This is trivial for the original modeler or the thousands of people with laser cutting experience, but 
a challenge for the millions of users that may be interested in using the model. The manual workflow also takes time, 
which places a large burden on the laser cutting experts to deal with this legacy problem. Automating this workflow 
makes the conversion and thus the access to the 3D models inclusive for anyone who wants to use and edit the models. 

6 TUNING THE ALGORITHM 

We ran a series of tests to optimize key parameters of the algorithm. (1) Weights for the heuristics (2) determine mini-
mum beam widths, and (3) what plate to start out with. 
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6.1 Test set 

We created the test set starting with the test set of the assembler3 project [28], from which we extracted the 34 “planar 
section” models, as discussed above in “manual disambiguation” section. When models consisted of multiple assemblies, 
we split these into separate files as autoAssembler expects one assembly per model. They can be loaded into the same 
kyub scene though but through 2 import sessions. 

We measured the success rate by taking the ground truth models that were manually assembled in assembler3 as a 
reference. We automatically verify our test runs by comparing the distance and angle between plates to these ground 
truth models. We considered a model to be a success only when all the dimensions matched perfectly (e.g., there is no 
50% successful assembly). 

6.2 Procedure 

We measured success rate (percentage of models that assembled correctly) and the run time and repeated every meas-
urement 10 times to compensate for performance glitches and any potential delays confounding our measure due to 
background activities on the machine (MacBook Air 2020 1.2GHz Quad Core Intel Core i7). 

6.3 Composition of the heuristic function  

To determine the right weights for the parameters of the heuristic function, we ran a hyperparameter optimization 
algorithm using the tree pazen estimator called ATPE, proposed by Wen et al [41]. We trained the algorithm by feeding 
it the parameters of random runs on the benchmark, and the corresponding candidates. The candidates are labeled 
automatically by comparing it to our ground truth distance matrix. After assessing 1000 candidates the algorithm con-
verges, we found the optimal parameters presented in Table 1. 

6.4 The beam width: from 4 on, autoAssembler achieves maximum success rate 

The beam width is the number of candidates autoAssembler selects at every stage after sorting the states. To achieve 
the optimal success rate and performance trade-off, we ran the benchmark with increasing beam widths until the success 
rate not increased further. We also did a run with a beam width of 1, which is equivalent to best first search to see if the 
heuristic function alone (without beam search) would yield sufficiently good results. Results are shown in Figure 19 
below. 

 

Figure 19: (a) Success rate of autoAssembler on our benchmark while varying the beam width. (b) This model still makes an improve-
ment at a beam width of 8, but the associated performance loss is not worth it. 

As shown in Figure 19, after a beam width of 4, the success rate stabilizes. To verify whether if the success rate had 
reached an upper bound, we ran the remaining 18% of models with a beam width of 10 as well. Apart from the raspberry-
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pi rack shown in Figure 19b, which after some more testing improved at a beam width of 8, there was no more progress. 
We also see that with a greedy best first search, we could still achieve a success rate of 48%, which indicates that the 
heuristic function alone is rather good at picking the right option, but in many cases, we do benefit from searching more 
alternatives. 

The median performance per model in each run was 0.11 (beam width =1), 0.22 (2), 0.22 (3), 0.30 (4), 0.44 (5), increasing 
the beam width scales the performance roughly linearly. Therefore, doubling the beam width (and thus the run time) 
from 4 to 8 is not worth it, only to save a single model in our test set.  

6.5 Start with the plate with most joints 

To know what role the starting plate plays in the success rate of the algorithm, we ran the benchmark with different 
starting plates: (1) the plate with the most joints, as this puts the most constraints on the assembly (2) the biggest plate 
as this would define most of the shape, and (3) a random plate (the plate that contains the first path in the SVG), as a 
baseline. Figure 20 shows these strategies at the example of a test tube rack. 

 

Figure 20: Different starting plate metrics for the test-tube model. 

The results show that the best solution is to start with the plate with most joints. To see if there are better options 
for the models that do not succeed, we ran detailed tests with those models where we started out every plate. Some of 
the broken models get closer to success by picking a different starting plate, but none were “fixed” by doing so. We thus 
stick to the plate with most joints as this is cheap to compute. 
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Figure 21: (a) Results of varying the starting plate. (b) some models with their ideal starting plate highlighted. 

7 TECHNICAL EVALUATION: AUTOASSEMBLER ACHIEVES A 97% SUCCESS RATE  

To evaluate the autoAssembler algorithm, we ran it on the benchmark of 66 models encoded as 2D cutting plans. To 
determine how much the extension of the algorithm contributes to the overall success rate of the algorithm, we ran the 
tests in four distinct conditions: (1) the basic algorithm, (2) the base with detection of similar plates, (3) the fully extended 
automatic algorithm with symmetry detection and similarity detection, and (4) with the manual disambiguation tools. 

We used the same test set and procedure as presented in the previous section.  

7.1 Results 

As illustrated by Figure 22, the complete algorithm of the eight heuristics and the symmetry/similarity extensions, com-
bined with the manual disambiguation tools resulted in a 97% success rate. 

 

Figure 22: The overall success rate of autoAssembler is 97% based on three extensions of the algorithm: detecting similarities, sym-
metries and manual disambiguation. 

As shown in the diagram, adding the similarity detection alone does not impact the success rate, which is unsurpris-
ing as it only reduces the search space (and thus contributes to performance). The model that did get fixed in the process 
failed before because the search space was overly populated with candidates that were the same. 



 

20 

Symmetry and similarity handling account for 13%: To assess the contribution of the symmetry and similarity 
detection, we ran the benchmark with each of these steps enabled and disabled. The results shown in Figure 22 show 
that the symmetries and similarity detection combined increase the success rate from 66 to 79%. 

Symmetry and similarity detection reduced the runtime from a median of 0.44s per model to 0.30s per model (a 1.5x 
performance improvement). 

Manual disambiguation accounts for 18%: As shown in Figure 23, 12 models required tweaking using the manual 
disambiguation tools, although the required user effort was minimal with 1-4 clicks required per model (avg 2.7). 

Figure 23b finally shows the two failed models: a minibar model and a birdhouse the entrance of which was flipped 
inwards. Both of these can be fixed, but require the use of an additional tool that extracts 6 plates from the models and 
assembles them manually. 

 

Figure 23: (a) 1-4 clicks using autoAssembler’s “re-orient plate” tool fix the mis-oriented red plates in these 12 models from the test 
set. One pair of clicks each using the “swap tool” fixes the swapped blue plates. (b) this birdhouse and minibar would require users 

to extract 6 plates and re-assemble them back into the model. 

8 CONCLUSION 

In this paper, we presented autoAssembler, a software tool that converts 2D cutting plans to 3D models. In our technical 
evaluation, autoAssembler assembled 79% of models fully automatically, while 18% of models required an average of 2.7 
clicks of post-processing. AutoAssembler offers a faster and easier workflow for reconstructing 3D models from 2D 
cutting plans than earlier manual methods [28]. Hence, autoAssembler brings the field closer to transitioning from 2D 
cutting plans to 3D models, thereby providing an improved format for storing and sharing laser cut models. As future 
work, we plan to reconstruct laser cut cross section models by using SVG files and photographs of the assembled model 
as input. 
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