

Muscle-plotter: an Interactive System based on Electrical

Muscle Stimulation that Produces Spatial Output
Pedro Lopes

1
, Doğa Yüksel

1
, François Guimbretière

1,2
, and Patrick Baudisch

1

1 Hasso Plattner Institute
Potsdam, Germany

{firstname.lastname}@hpi.de

2 Cornell University, Information Science
Ithaca, NY 14850, USA
francois@cs.cornell.edu

ABSTRACT

We explore how to create interactive systems based on

electrical muscle stimulation that offer expressive output.

We present muscle-plotter, a system that provides users

with input and output access to a computer system while on

the go. Using pen-on-paper interaction, muscle-plotter
allows users to engage in cognitively demanding activities,

such as writing math. Users write formulas using a pen and

the system responds by making the users’ hand draw charts

and widgets. While Anoto technology in the pen tracks

users’ input, muscle-plotter uses electrical muscle stimula-

tion (EMS) to steer the user’s wrist so as to plot charts, fit

lines through data points, find data points of interest, or fill

in forms. We demonstrate the system at the example of six

simple applications, including a wind tunnel simulator.

The key idea behind muscle-plotter is to make the user’s

hand sweep an area on which muscle-plotter renders

curves, i.e., series of values, and to persist this EMS output

by means of the pen. This allows the system to build up a

larger whole. Still, the use of EMS allows muscle-plotter to

achieve a compact and mobile form factor. In our user

study, muscle-plotter made participants draw random plots

with an accuracy of ±4.07 mm and preserved the frequency

of functions to be drawn up to 0.3 cycles per cm.

Keywords: electrical muscle stimulation; spatial; haptics;

ACM Classification: H.5.2 [Information interfaces and

presentation]: User Interfaces: Input Devices and Strate-

gies, Interaction Styles.

INTRODUCTION

Interactive systems based on electrical muscle stimulation

(EMS) actuate users by sending an electric signal to muscle

fibers and motor neurons through electrodes attached to the

skin. The possessed hand [29], for example, used this

technique to assist users while learning the finger poses

required to play an instrument.

The main strength of EMS is that the resulting systems
miniaturize well, thus lend themselves well to mobile use

(mobile gaming [16]) or wearable use (pedestrian cruise

control [23]). A second key strength is their ability to

implement input/output interactions that use the same

modality (i.e., symmetric interaction [25]) by using the

same gesture language for input and output [17].

Unfortunately, the price for these benefits is that the inter-

active EMS systems presented so far lack expressiveness.
Existing interactive EMS systems output a single 1D output

variable, such as screen tilt [16] or wrist tilt [17] or one of

n behaviors [18]. Since subsequent output overwrites earli-

er output, users never see more than a single value.

Figure 1: An interactive wind tunnel simulation with pen

input and output—based on EMS. The user jotted down the

word “wind tunnel”, set down the pen left of the car, and

started to drag it towards the car sketch. In response, muscle-

plotter computed this particular streamline in the context of

the car sketch and is now stimulating the user’s wrist so as to

plot this streamline.

In this paper, we explore how to create more expressive

EMS-based systems. Muscle-plotter achieves this by per-

sisting EMS output, allowing the system to build up a larg-

er whole. More specifically, (1) muscle-plotter spreads out

the 1D signal produced by EMS over a 2D surface by steer-

ing the user's wrist, while the user drags their hand across

the surface. Rather than repeatedly updating a single value,

this renders many values into curves. (2) By adding the pen,

we persist this signal, allowing the system to build up a

larger display, which in turn enables longer and more

meaningful interactions.

MUSCLE-PLOTTER

Muscle-plotter is a closed-loop EMS system. It allows

users to enter information into a computer system by writ-

user requests a wind-tunnel
simulation of car sketches

by writing with anoto pen

muscle-plotter draws the
wind streamlines by actuating

the user’s wrist with electrical
muscle stimulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
UIST '16, October 16 - 19, 2016, Tokyo, Japan
Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
ACM 978-1-4503-4189-9/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2984511.2984530

ing using an Anoto pen and it allows the computer system

to respond by making the user plot. Muscle-plotter accom-

plishes this by actuating the user’s hand that is holding the

pen by means of a medical-grade computer-controllable

electrical muscle stimulator.

Walkthrough

We think of muscle-plotter as a tool for mobile sense-

making in that it allows users to interact (input and output)
with an intelligent backend.

Figure 1 shows an example of such a use case. Here, a car

designer is iterating on the body of a new car, sketching it

and analyzing implications of its design on the car’s aero-

dynamics. The designer wrote “wind tunnel” onto the paper

and has drawn crop marks around the car. Since the user

does so using a pen that offers built-in tracking (Anoto [1]),
muscle-plotter “sees” this input. It recognizes the handwrit-

ing using a handwriting recognizer (Tesseract [30]) and

forwards its output to a wind tunnel simulator running in

our custom backend. The system computes the wind veloci-

ty field and makes it available to the pen frontend.

To plot the streamlines, this designer moves the hand to the

left of the car sketch and sets down the pen. As the pen

enters the wind tunnel simulator’s bounding box, mus-
cle-plotter starts sending electrical impulses to the user’s

wrist, which from now on continuously actuate the user’s

wrist. While the user moves the hand horizontally across

the paper, muscle-plotter controls the hand’s vertical posi-

tion using a closed-loop control, resulting in plotted stream-

lines. Repeating this process produces a field of stream-

lines, allowing the user to judge the aerodynamic behavior

of the current car design.

Continuing the example from Figure 1, the designer is now

contemplating whether the car should have a shorter rear

and a rear door, also known as a hatchback. In Figure 2, the

designer sketches one possible hatchback design and by

having muscle-plotter draw streamlines on this new design,

investigates what implications the change in body shape

may have on the car’s on aerodynamics.

Figure 2: (a) Selecting which sketches to simulate in the wind

tunnel by drawing two crop marks. (b) The simulation out-

puts by actuating the user’s muscles as to plot the streamlines.

Line chart: Surprisingly, the hatchback’s streamlines look

straighter that the sedan’s (Figure 3a), possibly suggesting

an aerodynamic advantage. The user decides to drill down

by plotting aerodynamic profiles of the tail winds of the

two car designs. As shown in Figure 3a, the user draws one

vertical line across each of the two cars’ tail sections, and

annotates them with “crosssection sedan” and “crosssec-

tion hatchback”, thereby creating a series of data points for

each car. As shown in Figure 3b, the designer now sketches

a blank coordinate system, writes “plot sedan”, sets down

the pen down left of the coordinate system, and drags the

pen into it. As shown in Figure 3c, muscle-plotter responds
by plotting wind speeds across the cross section into the

coordinate system. For comparison, the user now writes

“plot hatchback” and plots the wind speed function for the

hatchback into the same coordinate system.

Figure 3: (a) Being curious about the tail winds the user de-

fines a cross section of the streamlines. (b) In order to inspect

it in an X-Y plot, the user draws two axes, and (c) drags along

the X-axis while muscle-plotter actuates the wrist to plot.

Zooming: As shown in Figure 4a, the right halves of the two

plots look different. Values below the X-axis indicate nega-

tive wind speeds, which suggests undesirable turbulences.

Surprisingly, again the hatchback seems to be performing

better. The user drills down further by writing “zoom tail”,

drawing two crop marks that select the portion of the chart

to re-plot, draws a fresh coordinate system, writes “plot tail

sedan”, and plots the close-up of the chart. The close-up

clearly indicates that the rear profile of the hatchback is

indeed subject to less turbulence.

Figure 4: (a) The user inspects a region of the wind speed

charts by zooming in with crop marks, and then (b) re-

plotting zoomed view in a new chart.

a

b

a

b

c

a

b

Scale widget: Finally, the user wonders whether the im-

proved turbulences will really manifest themselves in lower

wind resistance; hence better gas mileage. In Figure 5a, the

user writes “plot drag” and (b) selects the car sketch by

drawing a pigtail on it. Then the user draws a vertical line,

labels the line’s ends “0” and “1”, and traces the line using
the pen. (c) Half way in the line, the system whips the us-

er’s hand sideways, creating a tick mark on the line, repre-

senting the drag coefficient of the sedan design. The user

now selects the hatchback design by drawing a pigtail into

it and plots the drag coefficient of the hatchback onto the

line. The hatchback’s drag coefficient is indeed smaller

than the sedan’s, which implies that this particular hatch-

back design can actually be expected to offer more gas

mileage that the sedan.

Figure 5: The user inspects the drag coefficient of the car by

(a) writing the command and sketching a vertical line, and (b)

selecting the desired car with a pigtail. Then, the (c) the sys-

tem outputs the value as a tick-mark to the right as the user

traces the line.

Other Application Scenarios

As discussed earlier, we think of muscle-plotter as a tool

for sensemaking activities. To emphasize this point, here

are 5 other scenarios we have enabled using muscle-plotter:

Application 2: Solving Mathematical Exercises. Figure 6 de-

picts how a user interacts with Octave (software running in

the backend) to solve mathematical problems through pen

and paper.

 Figure 6: (a) Plotting a fifth degree polynomial and (b) query-

ing where its integral totals 2 units.

In Figure 6a, the user first plots a fifth degree polynomial.

Using the notation “f(x)=…” the polynomial is saved for

future reuse as f(x). Then (b) the user queries for the point

in which the integral of f(x) totals 2 by writing “integral

f(x)=2” followed by a question mark. The answer is given

as a tick mark while the user traces the X-axis.

Application 3: RC Circuit Simulator. Figure 7 depicts our

simple filter design application built around first-order RC

filters.

 Figure 7: Iterating through the design of a high-pass RC filter

(a) by scribbling the old value a user can input a new capaci-

tor value and then (b) re-plot the filter response.

Figure 7 shows a user iteratively exploring different filter
designs by observing their frequency response. The user

first defines the R (resistance) and C (capacitance) values

and the filter type and plots the filter’s frequency response

using muscle-plotter’s line chart. (a) Unhappy with the

filter, the user scribbles the capacitor value and writes a

new one. (b) Muscle-plotter re-computes the frequency

response and outputs it to the user in the line chart. The

new filter now high-passes around 50 Hz.

Application 4: Interacting with Forms. Now we demonstrate a

user interacting with a simple form in order to configure

muscle-plotter’s stimulation parameters.

 Figure 8: Simple form widgets for quick queries in muscle-

plotter: (a) a multiple checkbox and (b) a radio button.

In Figure 8a, the user queries which channels are active by
writing “channel” followed by “?”, then creates a list of

channel names (each in square brackets). While the user

traces the options, muscle-plotter outputs a tick mark on

those that are active. The user decides to activate the brake

channel, by crossing its checkbox. Now, in Figure 8b, the

user repeats the same procedure on a radio button to adjust

the intensity of the “brake” stimulation. Lastly, in Figure

8c, the user adjusts the power of the “brake” to medium.

Application 5: Fitting a Trend Line in Statistics. Figure 9 de-

picts our simple statistics application built around muscle-

plotter.

a

b

c

a

b

b

a

a

b

c

 Figure 9: Working on statistics: (a) representing data as bars

and (b) fitting a linear regression.

In Figure 9, a user is exploring a dataset with sales arranged

by months. The user does so by plotting the sales in a bar

chart. This widget behaves similar to the line chart, except

that muscle-plotter outputs the tick-marks for the horizontal

axis as the user scans the axis. In Figure 9a, the user scans

vertically from each tick-mark and muscle-plotter outputs a

dash to the left and a pen up at the end of each bar. Lastly,

in Figure 9b, the user makes a prediction of the next month

sales by fitting a linear regression through the plot, which

muscle-plotter outputs as a line chart.

Application 6: Optical Lenses Simulator. Figure 10 depicts

our simple optics application that allows exploring how

rays of light refract in convex and concave lenses.

 Figure 10: Using muscle-plotter to explore how rays of light

refract through convex and concave lenses.

In Figure 10, a user sketches a convex lens and explores

how the light rays refract through it. Muscle-plotter outputs

this by deviating the ray in a slope. Now the user wonders

about how to further defocus the resulting beam and draws

a concave lens to explore its refraction properties.

Summary of Widgets

We just saw six examples of interacting with muscle-
plotter, each of which was implemented in the form of a

widget. Our widgets leverage pen-input techniques such as

crossing to select 1D primitives (CrossY [2]), underline and

crop marks (Papiercraft [15]), and a pigtail gesture to se-

lect 2D primitives (Scriboli [7]). All widgets output when

the user crosses into their boundaries. The output ends

when muscle-plotter stimulates the muscles that cause the

user to lift the pen’s tip from the paper. We now summarize

the set of widgets:

Line chart: The walkthrough contained three specialized

instances of the line chart widget, i.e., wind tunnel, the tail

profile plots and the zoomed plots. The line chart widget

supports the following interactions: zoom in/out by relabel-

ing the axes, zoom in by selecting with crop marks, fitting a

line through existing data points, performing operations on

data traces and re-plotting the results as a trace (e.g., deriv-

ative of a function). Also, the chart widget supports charts
that do not start at the origin.

Scale Widget: The scale widget outputs a single value per

interaction, which is useful for comparing values. In case of

clustered values in the same scale, muscle-plotter will out-

put them by alternating the tick-marks to the left/right. In

the walkthrough and scenarios, we featured the scale widg-

et in: finding the drag-coefficient, finding an integral of a

function and plotting individual bars in a chart. Just as with
the axes of a plot, the scale widget allows to redefine its

axis for zoom in/out. The scale widget is also used to allow

users to find whether a plot starts at the origin or crosses

the Y-axis. For this we insert a scale widget in the line

chart’s Y-axis, which the user scans to find a tick-mark

representing the plot’s starting point (e.g., in Figure 3).

Radio button: The radio button allows selecting one option
out of a range or receiving output from the option that is

active. This can also be used for a yes/no dialog, which is

useful when asking simple questions to muscle-plotter

(e.g., to check if a number is prime). In the examples

above, we demonstrated this widget at the example of a

user configuring the intensity of an EMS channel.

Checkbox: The checkbox is an extension of the radio button

that allows for multiple choices to be active. This widget is
useful for finding elements in lists such as options in a

combo box. We demonstrated it at the example of a user

querying which EMS channels are currently active.

CONTRIBUTION, BENEFITS, AND LIMITATIONS

Our main contribution with muscle-plotter is that it takes

electrical muscle stimulation interfaces to the next level by

demonstrating interactions that render significantly more

complex data than previous EMS-based systems. The key

idea behind it is to make the user’s hand sweep an area on

which muscle-plotter renders curves, i.e., series of values,

resulting in more information than that conveyed by a

single actuated pose.

By allowing EMS to produce spatial output, muscle-plotter

enables a range of sensemaking activities, as we illustrated

at the example of several scenarios, including the

aerodynamics scenario at the beginning of our paper.

In the process of creating muscle-plotter, we developed a
number of EMS-related techniques. (1) To quickly actuate

the user’s wrist (instead of merely informing the user where

and when to turn), we simultaneously actuate pairs of

opposing wrist muscles, resulting in a more controlled

motion. (2) We compensate for latency introduced by the

Anoto tracking system (around 90 ms) by extrapolating pen

positions. (3) In order to turn around sharper angles, we

slow down the user’s wrist. We achieve this by actuating

the flexor carpi ulnaris muscle. This causes this muscle to

push the pen against the paper, increasing friction, and

slowing the hand down. (4) To mark the end of an output

b

a

trace, we actuate the user’s wrist upwards, hence lifting the

pen’s tip away from the paper.

On the flipside, like any solution based on electrical muscle

stimulation, muscle-plotter requires placing electrodes,

calibration and recalibration if the muscles fatigue over

time [10]. Furthermore, since we actuate the user’s wrist

only (rather than wrist and shoulder) our system is limited

in terms of the shapes it can output through the user’s hand.

IMPLEMENTATION

The muscle-plotter system is comprised of a wireless Ano-

to digitizer pen & paper [1] for input, as well as a

HASOMED medically compliant 8-channel portable EMS

stimulator [6] for output. Muscle-plotter utilizes 4 channels

of the EMS stimulator at 200 Hz. This EMS stimulator is

powered using a battery and interfaces with muscle-plotter
via USB. This allows our prototype to run based on a lap-

top computer with a USB Bluetooth 4.0 dongle and a USB

connection. While our current version is merely portable, a

wearable signal generator such as the one proposed in Pro-

prioceptive Interaction [17] could make muscle-plotter

mobile.

To help readers replicate our prototype, we now provide a

detailed description of its implementation. Also, we pro-
vide muscle-plotter’s source code1 for replicating the ex-

periments under an open-source license.

Electrode Placement

Muscle-plotter controls four muscle groups, each responsi-

ble for a different axis of motion as depicted in Figure 11:

(a) The extensor carpi radialis brevis and partially the

flexor digitorum move the pen to the right (assuming a

right-handed user), while the extensor carpi radialis longus

lifts the pen tip away from the paper. (b) The flexor carpi

radialis moves the pen to the left, while the flexor carpi

ulnaris pushes the pen down into the paper, acting as a

“brake” to prevent oscillations or improve straight lines.

Figure 11: Electrode placement to perform (a) pen right, pen

up, (b) pen left, and pen down (i.e., “brake”) movements.

Calibration Procedure

Muscle-plotter uses a three-step calibration procedure:

1. Comfortable use: By slowly increasing the intensity, we

first determine the minimum value required to actuate the

user’s muscles. Then, we find the maximum intensity (in

mA) and pulse width (in µs) that feel comfortable and pain-

free.

1 http://hpi.de/baudisch/projects/muscleplotter.html

2. Drawing slanted lines: Users start by trying to draw a

straight line onto the paper. At a random position along the

way, muscle-plotter actuates their wrist, turning the re-

mainder of the user’s line into a slanted line. By performing

this step repeatedly with varying pulse widths, the calibra-

tion routine determines the pulse widths that produce 20,
40 and 60-degree slants to the left and to the right.

3. Drawing straight lines: Users draw slanted lines, as in the

previous step. When they reached a second random point

along the way, the system actuates them to draw a straight

line. By performing this step repeatedly with varying pulse

widths, the calibration routine determines two pulse widths

that return the user’s hand to drawing a straight line.

Figure 12 depicts the average pulse widths determined by

means of this calibration routine for all users in our exper-

iment. Similarly, the calibration routine determined that the

extensor muscle should be actuated using an average inten-

sity of 10.3 mA (SD = 1.3 mA) and the flexor muscle using

an average of 8 mA (SD = 0.5 mA).

Figure 12: Average pulse width per slant, for both extensor

and flexor muscles, for all participants of our experiment.

Control Loop & Model of the Wrist

The purpose of muscle-plotter’s control loop is to actuate

the wrist to reach a target as quickly as possible, yet with-

out overshooting. The main algorithm receives the tracking

data asynchronously (i.e., the X/Y location of the Anoto

pen in coordinate system of the paper). It then re-evaluates

the situation and picks one of three possible strategies: aim

for a target, compensate if the user is constantly lagging
behind the target trace, or brake. The loop executes this

strategy by sending electrical impulses to the user’s wrist

muscles. In the following, we look into the each of these

steps in detail.

1. Receiving pen location data: The communication between

the Anoto Windows API (from we’inspire
2) and muscle-

plotter is done via Open Sound Control (OSC). Each OSC
packet is sent to muscle-plotter’s Python server. It encapsu-

lates an X/Y position, an event type (pen up, pen down or

2 http://we-inspire.com

pen down: flexor
carpi ulnaris

pen left: flexor
carpi radialis

pen up: extensor
carpi radialis

pen right:
extensor carpi radialis

and flexor digitorum

a b

pen drag), and a timestamp. We found the latency of this

operation to be below 1 ms for both loopback and Ethernet.

2. Evaluating the current strategy: Our system aims for the

most likely target, which may not necessarily be the closest

one. It determines the most likely target by extrapolating

the current location based on the current speed, as depicted

in Figure 13. This approach allows the system to cope with

differences in hand movement velocities and with the Ano-

to tracking latency (around 90 ms, determined using a high-

speed camera).

 Figure 13: Key principles in muscle-plotter’s control loop.

Then, for every decision cycle the system evaluates if the

user is: (a) close to a plausible target or (b) consistently

lagging behind the target trace or (c) approaching the target

at a high speed with a chance of overshooting. According-

ly, it performs one of the following three responses.

Strategy (a): aim for a target. In order to reach a target, mus-

cle-plotter computes the slant between the target and the

current estimated location (Figure 13). Then, according to

this slant, muscle-plotter finds a pair of pulse widths that is

the closest to the pre-calibrated slants from the user’s cali-

bration dataset. Muscle-plotter actuates the wrist by apply-

ing a simultaneous signal to both sides of the wrist. We
found this to allow for smoother control than when actuat-

ing just one side at a time. This is particularly important if

the user’s dragging speed is fast.

Strategy (b): compensate for wrist lagging behind. If the ac-

cumulated error (i.e., sum of all distances to previous tar-

gets) exceeds 20 mm we consider that the user is lagging

behind. To compensate, we dynamically increase the inten-

sity of the muscle that moves the pen closer to the target in
1 mA steps (up to 2 mA). Finally, we reset the accumulated

error and disable the intensity boost when the user’s trace

crosses again with the target trace.

Strategy (c): brake. If the user approaches a target too fast,

there’s a risk of overshooting. If the system observes the

user’s hand approaching the target at increasing speed and

if is less than 3.3 mm away, the system “brakes” the user’s

wrist. By actuating the muscles that push the wrist into the
paper, the system increases the friction between pen and

paper, hence slowing the pen’s tip down. The brake strate-

gy is also particularly useful for improving the performance

of straight lines and to prevent undesired oscillations.

3. Executing the current strategy: Muscle-plotter executes

one of the strategies by sending the electrical impulses to

the user’s wrist. This is done in a separate thread, which
allows it to keep a constant stimulation frequency of

200 Hz. To achieve precise control, muscle-plotter controls

the pulse width (from 20 µs to 500 µs) of the waveform

rather than the amplitude. Changing the amplitude is only

used while the user is lagging behind, i.e., strategy (b).

Lastly, to terminate the current output trace, muscle-plotter

moves the tip of the pen away from the paper by actuating

the user’s wrist upwards.

Heuristics used in the Control Loop

To avoid muscle-plotter from overshooting the target we

hand-tuned the main loop’s parameters as follows.

The 20 mm threshold is sufficient to detect when the user is
lagging behind without producing oscillation effects. If this

value is heavily decreased (e.g., 2 mm) the automatic com-

pensation in intensity will create unwanted oscillations.

The 3.3 mm braking distance provides sufficient braking

distance to avoid overshooting. We found that the braking

technique is most efficient if initiated at least 2 mm away

from the target, otherwise the system tends to overshoot.

Our brake implementation uses 11 to 44 impulses depend-

ing on the user's speed. We found that when the user ap-

proaches slowly (e.g., around 3.3 mm/s) 11 impulses are

sufficient to halt the trajectory without undershooting.

Intuitively, when the user’s speed increases we increase the

brake impulses; we found that 44 pulses allows us to brake

before the target (no overshoot) at speeds up to 10 cm/s.

Computing Geometry for Widget Interaction

The geometry computed in muscle-plotter uses OpenCV

via Python bindings. For instance, line chart widgets start
when the user draws two axes that intersect one another.

This is calculated as the cross product of two fitted lines

between the two drawn axes. Likewise, the two crop marks

that define the wind tunnel widget are detected using the

same method for each; the perpendicular lines determine

the wind tunnel dimensions. Lastly, for the cross-section

and scale widget, the user drawn lines are fitted with a line.

Handwriting Recognition using Tesseract

To recognize hand-written input, we integrated Tesser-

act [30], a trained recognizer with several languages and

one of the most robust open-source optical character recog-

nizers (OCR) [4]. Our system loads only the English lan-

guage and common symbols such as “?”, “(“, etc. Before
applying Tesseract to the user’s strokes we: (1) concatenate

all strokes that are less than 3 mm apart from their center

(enables multi-stroke writing). (2) Interpolate the points

from the Anoto tracking to complete a line. (3) Convert to a

black and white image for OCR. (4) If the next stroke is

more than 1 cm apart, the previous strokes are grouped into

a command keyword and evaluated with the OCR. (5) After

a command keyword is detected, we evaluate the incoming

strokes character by character; this allows to directly write

commands such as “PLOT F(X)=SIN(X)”.

Once Tesseract returns the recognized text to muscle-

plotter, our system replaces it with the word from its cus-

tom keyword dictionary that is closest in terms of Le-

venshtein distance (edit distance). This corrects for com-

mon misrecognitions such as “L” for “(“ or “X” for “K”.

Application-specific Implementations

We now detail the implementations that are specific to each

of our applications.

Mathematical formulae manipulation & solvers. To solve
mathematical formulas, we invoke Octave by means of its

Python bindings. We use it for mathematics (derivatives,

integrals, and so forth) and for plotting functions from

formulae. We interface muscle-plotter and Octave by:

(1) converting user-notation to Octave notation. When the

user writes “sin(x)”, for example, we convert it to “fe-

val((sin(x), <range-of-plot>)”; then, (2) send the formulae

to Octave, sample it into points and return it to muscle-

plotter; and, lastly, (3) transform these points to the Anoto

paper’s coordinates and into the user-defined axis.

RC-Filter Response. We implemented a simple solver for

high and low pass RC circuit filters. It works by solving the

filter equations directly in the frequency domain. The val-

ues for R and C are read from the users’ input when they

write “cap 10UF” (i.e., 10 µF) and “resistor 330” (in

Ohms).

Statistics Example. To perform statistical operations we use

Python’s Scipy Statistics package. This allows us to com-

pute standard deviations and regressions, which we use in a

simple demo application that draws a linear regression

through bar charts.

Optical lenses ray casting. The optics demonstration is a

simple 2D ray casting based on [31] that deals exclusively
with concave and convex lenses. We disambiguate the lens

type by measuring the width of the lens’ middle section

against a fixed threshold (i.e., convex is wider).

Wind tunnel simulation. The wind tunnel simulation is based

on the Lattice-Boltzmann equations and adapted from

Schroeder’s implementation [13]. To run a wind tunnel

simulation (i.e., to compute the wind speed streamlines)
we: (1) rotate the model according to the rotation of the

wind tunnel boundaries; (2) extract the shapes drawn in-

side; (3) down-sample these shapes (e.g., the car) into a

binary matrix of 200 px height; this matrix contains the

obstacles to the wind flow; (4) for 30 steps we execute

Lattice Boltzmann by advancing the streamlines one step at

a time and re-evaluating the collisions to compute the ve-

locity flow; (5) once the user draws a line, we use Python’s

Matplotlib streamlines function to obtain the streamline

that starts at the user’s pen-down position.

USER STUDY: VALIDATING OUR IMPLEMENTATION

To validate the mechanism behind muscle-plotter, i.e., the

production of spatial output using EMS, we conducted a
user study. Our focus was on which types of signals can

muscle-plotter reproduce as is and which signals require

pre-processing. In the study, muscle-plotter actuated partic-

ipants to repeatedly draw curves and we measured how

closely these curves matched the intended target signal.

Task

For each trial, participants plotted one function onto paper

using muscle-plotter as depicted on Figure 14.

Figure 14: One trial: one plot (image from the study, with

consent of the participant).

In each trial, participants plotted one of eight mathematical

functions. Participants placed their hand on the left side of

the paper so as to point the pen at the marked starting posi-

tion. Participants then moved their hands towards the oppo-

site side of the page, at any speed they chose. During this

period muscle-plotter actuated their wrist, hence plotting

the curve. When participants reached 16 cm from the left to

right margin, the trial ended. The system recorded the in-
tended function, the user drawn function, as well as the

time between start and end of plot.

Every participant performed each function twice, resulting

in 128 trials: 8 functions × 2 repetitions × 8 participants.

The Dataset

The eight mathematical functions are shown in Figure 16.

The first six functions were composed by adding off-

phased sine waves of increasing difficulty; hence we denote

them as Sin1-Sin6 (ascending in frequency and amplitude).
We added a triangular wave (denoted as Tri) and a sine

wave that ended in a flat section (denoted as Flat) to ex-

plore how the system behaves with regards to abrupt

changes in slope and curvature (as well as to prevent partic-

ipants from getting used to sine wave patterns).

Apparatus

Figure 15 shows our apparatus. Participants wore mus-

cle-plotter’s electrodes on the wrist flexor and extensor

muscles (as described in Implementation). They were seat-

ed with the dominant forearm rested on the table to reduce

fatigue. We used the controller described in Implementa-

tion, which actuated flexors and extensors simultaneously

but without the brake channel, which was introduced as an
outcome of this study. The muscle-plotter software admin-

istered the respective functions to the user; all other func-

tionality was disabled. Muscle-plotter was calibrated with

the procedure described in the Implementation section.

Figure 15: Setup for our experiment (image taken from the

study, with consent of the participant).

Participants

We recruited 8 right-handed participants (1 female), be-

tween 22 and 26 years old (M = 23.9 years) from our local

university. With consent of the participants, we videotaped

the study sessions.

Results

Raw data Figure 16 shows the curves drawn by participants.

The average error from target across all 128 trials was

4.07 mm (SD = 3.03 mm).

Figure 16: Raw data from 8 participants and 128 trials. The

white trace represents the desired trajectory and colored

traces depict user drawn plots (scale in mm). Average per

function represents error (distance to target).

Preservation of sine-based functions: Figure 16 also shows

the average error per by function (Sin1: M = 2.45 mm,

SD = 1.42 mm; Sin2: M = 2.65 mm, SD = 1.29 mm; Sin3:

M = 2.66 mm, SD = 0.90 mm; Sin4: M = 3.15 mm,

SD = 1.00 mm; Sin5: M = 4.55 mm, SD = 1.31 mm; Sin6:

M = 10.06, SD = 2.67 mm). As expected, there was an

increase in error with the increase in the function’s highest

partial confirmed by a linear regression with R2 = 0.64

through Sin1 – Sin6. To provide an estimate of how much

each trial differed between each other, the reported stand-

ard deviations (SD) are between the mean errors of each
trial.

Preservation of non-sine functions: When plotting the two

functions that contained sharper changes in slope and cur-

vature participants performed similarly to the sine waves

(Tri: M = 4.77 mm, SD = 1.53 mm; Flat: M = 2.29 mm,

SD = 0.82 mm).

Preservation of features: The plots in Figure 17 illustrate in

how far plots made through muscle-plotter preserved the

original function. The plots show frequency histograms

produced by means of Fourier transformation. We see the

original signal in green, as well as user-specific jitter—i.e.,

noise, in red. As the plots illustrate, jitter tends to revolve

around wavelengths smaller than 0.5 cycles/cm.

Figure 17: Exemplary Fourier transforms for Sin2, Sin3, Sin5

and Sin6: original signal (red) and users output (green).

Jitter in Sin2 and Sin3 has very little impact on the signal

(the same as observed in Sin1 and Sin4). This gets more
challenging with Sin5, which has its highest partial at a

wavelength of around 0.23 cycles/cm. Still, signal and jitter

are clearly distinct, which means that the original function

still stands out clearly, so that awareness of one’s jitter

allows users to visually filter out the noise. The distance

between signal and jitter gets smaller with increasing signal

frequency until they start to overlap in Sin6, suggesting that

part of this signal has drowned in the noise and thus has

become unrecognizable.

We conclude that muscle-plotter is suitable for reproducing

signals of up to 0.3 cycles/cm wavelengths, but should not

be used for frequencies higher than this.

Speed/Accuracy tradeoff: The fact that participants picked

their own pace resulted in a wide range of speeds. Figure

18 illustrates the resulting speed/accuracy tradeoff. Partici-

pants plotted the 16 cm-wide functions in between 7.98 s
and 29.5 s (M=16.17 s, SD=4.90 s).

Figure 18: Average error (in mm) for each trial in relation to

its duration (in seconds). Each color is a different participant.

Discussion

The main finding of the study is that muscle-plotter is able

to reproduce signals up to 0.3 cycles/cm wavelengths (e.g.,

Sin5 signal), while higher frequencies (e.g., Sin6 signal)

cannot be reproduced as is. This insight is useful in that it

allows application designers to decide how to pre-process

their data before outputting it through muscle-plotter, e.g.,

by stretching the signal horizontally before plotting.

Interestingly, two out of the eight participants stated that

they had not looked at the paper while plotting. This hap-

pened naturally, since we had not instructed them either

way.

We opted to study the performance of rhythmic curves (i.e.,

based on the arithmetic combination of multiple sine-

waves) as these allowed us to separate out signal and jitter

using the frequency analysis we presented in Figure 17.

However, in our experiments we found that non-rhythmic

curves behaved similarly. The reason is that muscle-plotter

plots at a slow enough pace that every movement is in-

duced separately. In fact, muscle-plotter moves the wrist

from target to target, rather than in a rhythmic manner.

Hence, the way in which our system plots is different from

the way humans tend to sketch waves quickly by perform-

ing a single oscillating movement.

Based on these results we improved the system by adding
the aforementioned brake functionality, i.e., muscle-plotter

slows down the user by actuating the wrist muscles down-

wards as to push into the paper; this increases the friction

between pen and paper. Also, this helps returning the wrist

to a neutral position, improving the quality of straight lines.

RELATED WORK

Our work relates directly to research conducted in interac-

tive systems based on exoskeletons, pen-based interfaces,

and interactive electrical muscle stimulation systems.

Pen-based Devices and Sensemaking Systems

For many spatial activities such as sketching, researchers

argue that pen and paper (or digital paper and its emula-

tions) are the most adequate tools [3, 33]. This is due to

their superior ergonomics and support for bimanual use [5,
8], but also because they leverage existing know-how (e.g.,

signing your name using a pen is easier than with a track-

pad) [3]. Also, sketching itself is an important and enjoya-

ble cognitive tool [33]. In fact, Ullman et al. identified that

sketching using pen and paper is a crucial tool for (mechan-

ical) designers that allows “communicating ideas between

designers and between the designer”, “as an analysis tool”,

“to simulate the design” and “as an extension of the design-

er's short term memory” [33].

For these and other reasons, since the 60’s researchers have

utilized pen-input for their interfaces, canonically

SketchPad [28]. Notable examples include Teddy, a system

for 3D modeling based on 2D sketching [9]. CrossY is a

fluid language of pen strokes that allows controlling GUI

elements based on crossing elements with a pen stroke [2].

PapierCraft is an annotation system for paper in which

users directly interact with their printouts, using pen ges-

tures such as pigtails, crop marks or underlines to execute

commands such as copy & paste, linking, and so forth [15].

Several researchers have created pen-based systems intend-

ed to help users with sensemaking tasks, in particular with

mathematical problems. Flatland [20], for example, is a

pen-based interface for whiteboards that supports basic

math and map drawing. Also, both MathPad [14] and

Hands-on Math [37] are systems that provide deeper sup-

port for sensemaking in mathematics.

Other researchers explored projection in order to augment

physical paper. For instance, PenLight [26] pairs up an

Anoto pen with an overhead projector and an external 3D

tracking system, allowing to visually overlay information

and menus on top of the physical paper.

Closing the Loop in Haptic and Tangible Systems

Some researchers have taken tangible input further by using

it not only for input but also for output. Notably the Actuat-

ed Workbench closed the loop for a tangible tabletop sys-

tem by actuating the pucks using magnetic forces [22]. Our

inspiration for closing the loop comes from Gesture Out-

put [25] in which the loop of touch gestures on a mobile

phone is closed by actuating the user’s finger.

Haptics Systems: Actuated Pens

Most haptic systems with sufficient force to actuate users

transmit forces from a motor to the user’s body via pul-

leys [19] or exoskeletons [32]. An exemplary device is the

Phantom, a desktop sized robotic arm featuring a pen as its

ending. Phantom or comparable systems have been used

for pen-based menu interaction [21], for rendering bar

charts for visually impaired users [34], and so forth.

Other systems, such as Digital Rubbing, allow users to
transfer digital graphics onto paper [11]. Users accomplish

this by rubbing a pen featuring an actuated tip onto a paper

on a digitizer tablet. The tip writes only when the user

passes at the target location. The system is targeted at

drawing textured images, rather than plots/lines, and re-

quires the user to always scan the complete surface.

Also using Actuated Workbench’s principle of magnetic

forces as guides, dePENd is a sketching system that uses a
custom ferromagnetic surface to actuate a ballpoint

pen [36]. The system is unfortunately stationary but in turn

provides 2D actuation across the surface. A re-iteration of

this interface, Depend 2.0 [35], mitigates the mobility issue

by using asymmetric vibration patterns to generate a virtual

traction force which the user must respond to and turn in

that direction voluntarily; this is based on the same under-

lying principle as Traxion [24].

Interactive Systems based on EMS

EMS is a technique originated in the field of medical reha-

bilitation that applies electrical impulses to involuntarily

contract muscle fibers; these impulses are delivered to the
user’s muscles via electrodes that are attached to the

skin [12, 27].

Recently, researchers in HCI started to build interactive

systems based on EMS. Possessed Hand [29], for example,

is a guidance device that helps users learn, for example,

how to play a new instrument. Pedestrian Cruise Control

informs the user’s leg muscles when to turn [23]. In con-

trast, muscle-plotter actuates muscles directly, thereby
eliminates the cognitive load involved by systems that

merely inform users when to turn.

One motivation for the use of EMS in interactive systems is

that it allows replacing motors, thereby resulting in much

smaller, even mobile form factors. Muscle-propelled force

feedback, for example, uses EMS to provide directional

force feedback (left & right) in mobile gaming [16]. Pose-

IO is an interactive wearable system that allows for eyes-

free input output with a computer system [17]. Af-

fordance++ extends on this concept by allowing objects to
actuate the user’s hand in order to make it manipulate the

object properly [18].

CONCLUSIONS AND FUTURE WORK

We presented muscle-plotter, an interactive system based

on electrical muscle stimulation that provides pen-on-paper

interactions for both input and output. In our system, users

input by writing, e.g., writing mathematical formulae or

drawing shapes. The system outputs by actuating the users’

wrist so as to draw graphs, strokes, etc.

We designed muscle-plotter to render significantly more

complex data than previous EMS-based systems. The key

idea behind muscle-plotter is to make the user’s hand

sweep an area on which muscle-plotter renders curves, i.e.,

series of values, and to persist this EMS output by means

of a pen. This allows the system to build up a larger whole,

enabling it to assist users in cognitively demanding

activities, such as designing an aerodynamically sound

vehicle, by providing users with access to a computer

system while they are sketching on pen and paper. Still, the

use of EMS allows muscle-plotter to achieve a compact and

mobile form factor.

We have demonstrated six simple applications, including a
wind tunnel simulator, an RC circuit simulator, function

plotting, as well as a set of generic widgets. As future

work, we plan to use muscle-plotter to make textbooks

interactive.

ACKNOLEDGEMENTS

We thank our colleagues at the HPI, in particular Ludwig

Wall and Alexandra Ion, for their assistance in piloting our

prototypes.

REFERENCES

1. Anoto Technology. http://www.anoto.com.

2. Apitz, G., and Guimbretière, F. CrossY: a crossing-

based drawing application. In Proc. UIST '04, 3-12.

3. Buxton, B., Sketching User Experiences: Getting the

Design Right and the Right Design. 2007.

4. Comparison of Open Source OCR packages.

http://www.mathstat.dal.ca/~selinger/ocr-test.

5. Guiard, Y. Asymmetric Division of Labor in Human

Skilled Bimanual Action: The Kinematic Chain as a

Model. In J. of Motor Behavior, 1987. 19(4): 486-517.

6. HASOMED FES/EMS, http://www.hasomed.de.

7. Hinckley, K., Baudisch, P., Ramos, G., and Guimbre-

tiere, F. Design and Analysis of Delimiters for Selec-

tion-Action Pen Input Phrases in Scriboli. In Proc.

CHI’05, 451-460.

8. Hinckley, K., Pausch, R., Proffitt, D., Patten, J., and

Kassell, N. Cooperative bimanual action. In Proc.

CHI '97, 27-34.

9. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: a

sketching interface for 3D freeform design. In Proc.

SIGGRAPH' 09, 409-416.

10. Ito, K., Takahiro S., and Toshiyuki K. Lower-limb

Joint Torque and Position Controls by Functional Elec-

trical Stimulation (FES). In Complex Medical Engi-

neering’07. 239-249.

11. Kim, H., Kim, S., Lee, B., Pak, J., Sohn, M., Lee, G.,

and Lee, A. Digital rubbing: playful and intuitive in-

teraction technique for transferring a graphic image on-

to paper with pen-based computing. In Proc. CHI

EA'08, 2337-2342.

12. Kruijff, E., Schmalstieg, D., and Beckhaus, D. Using

neuromuscular electrical stimulation for pseudo-haptic

feedback. In Proc. VRST '06, 316-319.

13. Lattice-Boltzmann Simulation of a 2D Fluid.

http://physics.weber.edu/schroeder/fluids.

14. LaViola, J., and Zeleznik, R. MathPad2: a system for

the creation and exploration of mathematical sketches.

In ACM Trans. Graph. 23, 3 (August 2004), 432-440.

15. Liao, C., Guimbretière, F., and Hinckley, K. Pa-

pierCraft: a command system for interactive paper.
In Proc. UIST '05, 241-244.

16. Lopes, P. and Baudisch, P. Muscle-propelled force

feedback: bringing force feedback to mobile devices.

In Proc. CHI' 13, 2577–2580.

17. Lopes, P., Ion, A., Mueller, W., Hoffmann, D., Jonell,

P., and Baudisch, P. Proprioceptive Interaction. In

Proc. CHI '15, 939–948.

18. Lopes, P., Jonell, P., and Baudisch, P. Affordance++:

allowing objects to communicate dynamic use. In

Proc. CHI '15, 2515-2524.

19. Murayama, J., Bougrila, L., Luo, Y., Akahane, K.,

Hasegawa, S., Hirsbrunner, B., Sato, M. SPIDAR

G&G: a two-handed haptic interface for bimanual VR

interaction. In Proc. EuroHaptics '04, 138-146.

20. Mynatt, E.D., T. Igarashi, W.K. Edwards, and A. La-

Marca. Flatland: new dimensions in office white-
boards. In Proc. CHI '99, 346-353.

21. Oakley, I., Brewster, S., and Gray, P. Solving multi-

target haptic problems in menu interaction. In Proc.

CHI EA '01, 357-358.

22. Pangaro, G., Maynes-Aminzade D., and Ishii, H. The

actuated workbench: computer-controlled actuation in

tabletop tangible interfaces. In Proc UIST '02, 181-

190.

23. Pfeiffer, M., Dünte, T., Schneegass, S., Alt, F., and

Rohs, M. Cruise Control for Pedestrians. In Proc.

CHI '15, 2505–2514.

24. Rekimoto, J. Traxion: a tactile interaction device with

virtual force sensation. In Proc. UIST '13, 427-432.

25. Roudaut, A., Rau, A., Sterz, C., Plauth, M., Lopes, P.,

and Baudisch, P. Gesture output: eyes-free output us-

ing a force feedback touch surface. In Proc. CHI '13,

2547-2556.

26. Song, H., Grossman, T., Fitzmaurice, G., Guimbre-

tiere, F., Khan, A., Attar, R., and Kurtenbach. G., Pen-

Light: combining a mobile projector and a digital pen

for dynamic visual overlay. In Proc. CHI '09, 143-152.

27. Strojnik, P., Kralj, A., and Ursic, I. Programmed six-

channel electrical stimulator for complex stimulation

of leg muscles during walking. IEEE Trans. Biomed.

Eng. 26, 112.

28. Sutherland, I. Sketchpad a man-machine graphical

communication system. In Papers on Twenty-five

years of electronic design automation, 1988, 507-524.

29. Tamaki, E., Miyaki, T., and Rekimoto, J. Pos-

sessedHand: Techniques for controlling human hands

using electrical muscles stimuli. In Proc. of CHI '11,

543-552.

30. Tesseract OCR. http://github.com/tesseract-ocr.

31. Thin lens simulation with Python.

http://www.frantzmartinache.com/blog/?p=84.

32. Tsetserukou, D., Sato, K., and Tachi, S. ExoInterfaces:

novel exosceleton haptic interfaces for virtual reality,

augmented sport and rehabilitation. In Proc. AH '10,

Article 1.

33. Ullman, D. G., Wood, S., and Craig, D. The im-

portance of drawing in the mechanical design process.

In Computers and Graphics, 1990, 14(2): 263–274.

34. Wall, S. and Brewster, S. Assessing haptic properties

for data representation. In Proc. CHI EA '03, 858-859.

35. Yamaoka, J. and Kakehi, Y. A pen-based device for

sketching with multi-directional traction forces. In

Proc. UIST '14 Adjunct, 43-44.

36. Yamaoka, J. and Kakehi, Y. dePENd: augmented

handwriting system using ferromagnetism of a ball-

point pen. In Proc. UIST '13, 203-210.

37. Zeleznik, R., Bragdon, A., Adeputra, F., and Ko, H.
Hands-on math: a page-based multi-touch and pen

desktop for technical work and problem solving.

In Proc. UIST '10, 17-26.

