
 

 

 

Muscle-plotter: an Interactive System based on Electrical 

Muscle Stimulation that Produces Spatial Output
Pedro Lopes

1
, Doğa Yüksel

1
, François Guimbretière

1,2
, and Patrick Baudisch

1 

1 Hasso Plattner Institute 
Potsdam, Germany 

{firstname.lastname}@hpi.de 

2 Cornell University, Information Science 
Ithaca, NY 14850, USA 
francois@cs.cornell.edu 

 

 

ABSTRACT 

We explore how to create interactive systems based on 

electrical muscle stimulation that offer expressive output. 

We present muscle-plotter, a system that provides users 

with input and output access to a computer system while on 

the go. Using pen-on-paper interaction, muscle-plotter 
allows users to engage in cognitively demanding activities, 

such as writing math. Users write formulas using a pen and 

the system responds by making the users’ hand draw charts 

and widgets. While Anoto technology in the pen tracks 

users’ input, muscle-plotter uses electrical muscle stimula-

tion (EMS) to steer the user’s wrist so as to plot charts, fit 

lines through data points, find data points of interest, or fill 

in forms. We demonstrate the system at the example of six 

simple applications, including a wind tunnel simulator. 

The key idea behind muscle-plotter is to make the user’s 

hand sweep an area on which muscle-plotter renders 

curves, i.e., series of values, and to persist this EMS output 

by means of the pen. This allows the system to build up a 

larger whole. Still, the use of EMS allows muscle-plotter to 

achieve a compact and mobile form factor. In our user 

study, muscle-plotter made participants draw random plots 

with an accuracy of ±4.07 mm and preserved the frequency 

of functions to be drawn up to 0.3 cycles per cm.  

Keywords: electrical muscle stimulation; spatial; haptics; 

ACM Classification: H.5.2 [Information interfaces and 

presentation]: User Interfaces: Input Devices and Strate-

gies, Interaction Styles. 

INTRODUCTION 

Interactive systems based on electrical muscle stimulation 

(EMS) actuate users by sending an electric signal to muscle 

fibers and motor neurons through electrodes attached to the 

skin. The possessed hand [29], for example, used this 

technique to assist users while learning the finger poses 

required to play an instrument. 

The main strength of EMS is that the resulting systems 
miniaturize well, thus lend themselves well to mobile use 

(mobile gaming [16]) or wearable use (pedestrian cruise 

control [23]). A second key strength is their ability to 

implement input/output interactions that use the same 

modality (i.e., symmetric interaction [25]) by using the 

same gesture language for input and output [17].  

Unfortunately, the price for these benefits is that the inter-

active EMS systems presented so far lack expressiveness. 
Existing interactive EMS systems output a single 1D output 

variable, such as screen tilt [16] or wrist tilt [17] or one of 

n behaviors [18]. Since subsequent output overwrites earli-

er output, users never see more than a single value. 

 

Figure 1: An interactive wind tunnel simulation with pen 

input and output—based on EMS. The user jotted down the 

word “wind  tunnel”, set down the pen left of the car, and 

started to drag it towards the car sketch. In response, muscle-

plotter computed this particular streamline in the context of 

the car sketch and is now stimulating the user’s wrist so as to 

plot this streamline. 

In this paper, we explore how to create more expressive 

EMS-based systems.  Muscle-plotter achieves this by per-

sisting EMS output, allowing the system to build up a larg-

er whole. More specifically, (1) muscle-plotter spreads out 

the 1D signal produced by EMS over a 2D surface by steer-

ing the user's wrist, while the user drags their hand across 

the surface. Rather than repeatedly updating a single value, 

this renders many values into curves. (2) By adding the pen, 

we persist this signal, allowing the system to build up a 

larger display, which in turn enables longer and more 

meaningful interactions. 

MUSCLE-PLOTTER 

Muscle-plotter is a closed-loop EMS system. It allows 

users to enter information into a computer system by writ-

user requests a wind-tunnel  
simulation of car sketches 

by writing with anoto pen 

muscle-plotter draws the  
wind streamlines by actuating 

the user’s wrist with electrical 
muscle stimulation 
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ing using an Anoto pen and it allows the computer system 

to respond by making the user plot. Muscle-plotter accom-

plishes this by actuating the user’s hand that is holding the 

pen by means of a medical-grade computer-controllable 

electrical muscle stimulator. 

Walkthrough 

We think of muscle-plotter as a tool for mobile sense-

making in that it allows users to interact (input and output) 
with an intelligent backend. 

Figure 1 shows an example of such a use case. Here, a car 

designer is iterating on the body of a new car, sketching it 

and analyzing implications of its design on the car’s aero-

dynamics. The designer wrote “wind  tunnel” onto the paper 

and has drawn crop marks around the car. Since the user 

does so using a pen that offers built-in tracking (Anoto [1]), 
muscle-plotter “sees” this input. It recognizes the handwrit-

ing using a handwriting recognizer (Tesseract [30]) and 

forwards its output to a wind tunnel simulator running in 

our custom backend. The system computes the wind veloci-

ty field and makes it available to the pen frontend. 

To plot the streamlines, this designer moves the hand to the 

left of the car sketch and sets down the pen. As the pen 

enters the wind tunnel simulator’s bounding box, mus-
cle-plotter starts sending electrical impulses to the user’s 

wrist, which from now on continuously actuate the user’s 

wrist. While the user moves the hand horizontally across 

the paper, muscle-plotter controls the hand’s vertical posi-

tion using a closed-loop control, resulting in plotted stream-

lines. Repeating this process produces a field of stream-

lines, allowing the user to judge the aerodynamic behavior 

of the current car design. 

Continuing the example from Figure 1, the designer is now 

contemplating whether the car should have a shorter rear 

and a rear door, also known as a hatchback. In Figure 2, the 

designer sketches one possible hatchback design and by 

having muscle-plotter draw streamlines on this new design, 

investigates what implications the change in body shape 

may have on the car’s on aerodynamics. 

 

Figure 2: (a) Selecting which sketches to simulate in the wind 

tunnel by drawing two crop marks. (b) The simulation out-

puts by actuating the user’s muscles as to plot the streamlines.   

Line chart: Surprisingly, the hatchback’s streamlines look 

straighter that the sedan’s (Figure 3a), possibly suggesting 

an aerodynamic advantage. The user decides to drill down 

by plotting aerodynamic profiles of the tail winds of the 

two car designs. As shown in Figure 3a, the user draws one 

vertical line across each of the two cars’ tail sections, and 

annotates them with “crosssection sedan” and “crosssec-

tion hatchback”, thereby creating a series of data points for 

each car. As shown in Figure 3b, the designer now sketches 

a blank coordinate system, writes “plot sedan”, sets down 

the pen down left of the coordinate system, and drags the 

pen into it. As shown in Figure 3c, muscle-plotter responds 
by plotting wind speeds across the cross section into the 

coordinate system. For comparison, the user now writes 

“plot hatchback” and plots the wind speed function for the 

hatchback into the same coordinate system.  

 

Figure 3: (a) Being curious about the tail winds the user de-

fines a cross section of the streamlines. (b) In order to inspect 

it in an X-Y plot, the user draws two axes, and (c) drags along 

the X-axis while muscle-plotter actuates the wrist to plot.  

Zooming: As shown in Figure 4a, the right halves of the two 

plots look different. Values below the X-axis indicate nega-

tive wind speeds, which suggests undesirable turbulences. 

Surprisingly, again the hatchback seems to be performing 

better. The user drills down further by writing “zoom tail”, 

drawing two crop marks that select the portion of the chart 

to re-plot, draws a fresh coordinate system, writes “plot tail 

sedan”, and plots the close-up of the chart. The close-up 

clearly indicates that the rear profile of the hatchback is 

indeed subject to less turbulence. 

 

Figure 4: (a) The user inspects a region of the wind speed 

charts by zooming in with crop marks, and then (b) re-

plotting zoomed view in a new chart.  
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Scale widget: Finally, the user wonders whether the im-

proved turbulences will really manifest themselves in lower 

wind resistance; hence better gas mileage. In Figure 5a, the 

user writes “plot drag” and (b) selects the car sketch by 

drawing a pigtail on it. Then the user draws a vertical line, 

labels the line’s ends “0” and “1”, and traces the line using 
the pen. (c) Half way in the line, the system whips the us-

er’s hand sideways, creating a tick mark on the line, repre-

senting the drag coefficient of the sedan design. The user 

now selects the hatchback design by drawing a pigtail into 

it and plots the drag coefficient of the hatchback onto the 

line. The hatchback’s drag coefficient is indeed smaller 

than the sedan’s, which implies that this particular hatch-

back design can actually be expected to offer more gas 

mileage that the sedan. 

 

Figure 5: The user inspects the drag coefficient of the car by 

(a) writing the command and sketching a vertical line, and (b) 

selecting the desired car with a pigtail. Then, the (c) the sys-

tem outputs the value as a tick-mark to the right as the user 

traces the line. 

Other Application Scenarios 

As discussed earlier, we think of muscle-plotter as a tool 

for sensemaking activities. To emphasize this point, here 

are 5 other scenarios we have enabled using muscle-plotter: 

Application 2: Solving Mathematical Exercises. Figure 6 de-

picts how a user interacts with Octave (software running in 

the backend) to solve mathematical problems through pen 

and paper.  

 

 Figure 6: (a) Plotting a fifth degree polynomial and (b) query-

ing where its integral totals 2 units. 

In Figure 6a, the user first plots a fifth degree polynomial. 

Using the notation “f(x)=…” the polynomial is saved for 

future reuse as f(x). Then (b) the user queries for the point 

in which the integral of f(x) totals 2 by writing “integral 

f(x)=2” followed by a question mark. The answer is given 

as a tick mark while the user traces the X-axis. 

Application 3: RC Circuit Simulator. Figure 7 depicts our 

simple filter design application built around first-order RC 

filters.  

 

 Figure 7: Iterating through the design of a high-pass RC filter 

(a) by scribbling the old value a user can input a new capaci-

tor value and then (b) re-plot the filter response. 

Figure 7 shows a user iteratively exploring different filter 
designs by observing their frequency response. The user 

first defines the R (resistance) and C (capacitance) values 

and the filter type and plots the filter’s frequency response 

using muscle-plotter’s line chart. (a) Unhappy with the 

filter, the user scribbles the capacitor value and writes a 

new one. (b) Muscle-plotter re-computes the frequency 

response and outputs it to the user in the line chart.  The 

new filter now high-passes around 50 Hz. 

Application 4: Interacting with Forms. Now we demonstrate a 

user interacting with a simple form in order to configure 

muscle-plotter’s stimulation parameters. 

 

 Figure 8: Simple form widgets for quick queries in muscle-

plotter: (a) a multiple checkbox and (b) a radio button. 

In Figure 8a, the user queries which channels are active by 
writing “channel” followed by “?”, then creates a list of 

channel names (each in square brackets). While the user 

traces the options, muscle-plotter outputs a tick mark on 

those that are active. The user decides to activate the brake 

channel, by crossing its checkbox. Now, in Figure 8b, the 

user repeats the same procedure on a radio button to adjust 

the intensity of the “brake” stimulation. Lastly, in Figure 

8c, the user adjusts the power of the “brake” to medium. 

Application 5: Fitting a Trend Line in Statistics. Figure 9 de-

picts our simple statistics application built around muscle-

plotter.  
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 Figure 9: Working on statistics: (a) representing data as bars 

and (b) fitting a linear regression. 

In Figure 9, a user is exploring a dataset with sales arranged 

by months. The user does so by plotting the sales in a bar 

chart. This widget behaves similar to the line chart, except 

that muscle-plotter outputs the tick-marks for the horizontal 

axis as the user scans the axis. In Figure 9a, the user scans 

vertically from each tick-mark and muscle-plotter outputs a 

dash to the left and a pen up at the end of each bar. Lastly, 

in Figure 9b, the user makes a prediction of the next month 

sales by fitting a linear regression through the plot, which 

muscle-plotter outputs as a line chart. 

Application 6: Optical Lenses Simulator. Figure 10 depicts 

our simple optics application that allows exploring how 

rays of light refract in convex and concave lenses.  

 

 Figure 10: Using muscle-plotter to explore how rays of light 

refract through convex and concave lenses. 

In Figure 10, a user sketches a convex lens and explores 

how the light rays refract through it. Muscle-plotter outputs 

this by deviating the ray in a slope. Now the user wonders 

about how to further defocus the resulting beam and draws 

a concave lens to explore its refraction properties.  

Summary of Widgets 

We just saw six examples of interacting with muscle-
plotter, each of which was implemented in the form of a 

widget. Our widgets leverage pen-input techniques such as 

crossing to select 1D primitives (CrossY [2]), underline and 

crop marks (Papiercraft [15]), and a pigtail gesture to se-

lect 2D primitives (Scriboli [7]). All widgets output when 

the user crosses into their boundaries. The output ends 

when muscle-plotter stimulates the muscles that cause the 

user to lift the pen’s tip from the paper. We now summarize 

the set of widgets: 

Line chart: The walkthrough contained three specialized 

instances of the line chart widget, i.e., wind tunnel, the tail 

profile plots and the zoomed plots. The line chart widget 

supports the following interactions: zoom in/out by relabel-

ing the axes, zoom in by selecting with crop marks, fitting a 

line through existing data points, performing operations on 

data traces and re-plotting the results as a trace (e.g., deriv-

ative of a function). Also, the chart widget supports charts 
that do not start at the origin.  

Scale Widget: The scale widget outputs a single value per 

interaction, which is useful for comparing values. In case of 

clustered values in the same scale, muscle-plotter will out-

put them by alternating the tick-marks to the left/right. In 

the walkthrough and scenarios, we featured the scale widg-

et in: finding the drag-coefficient, finding an integral of a 

function and plotting individual bars in a chart. Just as with 
the axes of a plot, the scale widget allows to redefine its 

axis for zoom in/out. The scale widget is also used to allow 

users to find whether a plot starts at the origin or crosses 

the Y-axis. For this we insert a scale widget in the line 

chart’s Y-axis, which the user scans to find a tick-mark 

representing the plot’s starting point (e.g., in Figure 3). 

Radio button: The radio button allows selecting one option 
out of a range or receiving output from the option that is 

active. This can also be used for a yes/no dialog, which is 

useful when asking simple questions to muscle-plotter 

(e.g., to check if a number is prime). In the examples 

above, we demonstrated this widget at the example of a 

user configuring the intensity of an EMS channel.  

Checkbox: The checkbox is an extension of the radio button 

that allows for multiple choices to be active. This widget is 
useful for finding elements in lists such as options in a 

combo box. We demonstrated it at the example of a user 

querying which EMS channels are currently active.  

CONTRIBUTION, BENEFITS, AND LIMITATIONS 

Our main contribution with muscle-plotter is that it takes 

electrical muscle stimulation interfaces to the next level by 

demonstrating interactions that render significantly more 

complex data than previous EMS-based systems. The key 

idea behind it is to make the user’s hand sweep an area on 

which muscle-plotter renders curves, i.e., series of values, 

resulting in more information than that conveyed by a 

single actuated pose. 

By allowing EMS to produce spatial output, muscle-plotter 

enables a range of sensemaking activities, as we illustrated 

at the example of several scenarios, including the 

aerodynamics scenario at the beginning of our paper.  

In the process of creating muscle-plotter, we developed a 
number of EMS-related techniques. (1) To quickly actuate 

the user’s wrist (instead of merely informing the user where 

and when to turn), we simultaneously actuate pairs of 

opposing wrist muscles, resulting in a more controlled 

motion. (2) We compensate for latency introduced by the 

Anoto tracking system (around 90 ms) by extrapolating pen 

positions. (3) In order to turn around sharper angles, we 

slow down the user’s wrist. We achieve this by actuating 

the flexor carpi ulnaris muscle. This causes this muscle to 

push the pen against the paper, increasing friction, and 

slowing the hand down. (4) To mark the end of an output 

b 

a 



 

 

trace, we actuate the user’s wrist upwards, hence lifting the 

pen’s tip away from the paper.  

On the flipside, like any solution based on electrical muscle 

stimulation, muscle-plotter requires placing electrodes, 

calibration and recalibration if the muscles fatigue over 

time [10]. Furthermore, since we actuate the user’s wrist 

only (rather than wrist and shoulder) our system is limited 

in terms of the shapes it can output through the user’s hand.  

IMPLEMENTATION 

The muscle-plotter system is comprised of a wireless Ano-

to digitizer pen & paper [1] for input, as well as a 

HASOMED medically compliant 8-channel portable EMS 

stimulator [6] for output. Muscle-plotter utilizes 4 channels 

of the EMS stimulator at 200 Hz. This EMS stimulator is 

powered using a battery and interfaces with muscle-plotter 
via USB. This allows our prototype to run based on a lap-

top computer with a USB Bluetooth 4.0 dongle and a USB 

connection. While our current version is merely portable, a 

wearable signal generator such as the one proposed in Pro-

prioceptive Interaction [17] could make muscle-plotter 

mobile. 

To help readers replicate our prototype, we now provide a 

detailed description of its implementation. Also, we pro-
vide muscle-plotter’s source code1 for replicating the ex-

periments under an open-source license. 

Electrode Placement 

Muscle-plotter controls four muscle groups, each responsi-

ble for a different axis of motion as depicted in Figure 11: 

(a) The extensor carpi radialis brevis and partially the 

flexor digitorum move the pen to the right (assuming a 

right-handed user), while the extensor carpi radialis longus 

lifts the pen tip away from the paper. (b) The flexor carpi 

radialis moves the pen to the left, while the flexor carpi 

ulnaris pushes the pen down into the paper, acting as a 

“brake” to prevent oscillations or improve straight lines.  

 

Figure 11: Electrode placement to perform (a) pen right, pen 

up, (b) pen left, and pen down (i.e., “brake”) movements. 

Calibration Procedure 

Muscle-plotter uses a three-step calibration procedure:  

1. Comfortable use: By slowly increasing the intensity, we 

first determine the minimum value required to actuate the 

user’s muscles. Then, we find the maximum intensity (in 

mA) and pulse width (in µs) that feel comfortable and pain-

free.  

                                                             
1 http://hpi.de/baudisch/projects/muscleplotter.html 

2. Drawing slanted lines: Users start by trying to draw a 

straight line onto the paper. At a random position along the 

way, muscle-plotter actuates their wrist, turning the re-

mainder of the user’s line into a slanted line. By performing 

this step repeatedly with varying pulse widths, the calibra-

tion routine determines the pulse widths that produce 20, 
40 and 60-degree slants to the left and to the right.  

3. Drawing straight lines: Users draw slanted lines, as in the 

previous step. When they reached a second random point 

along the way, the system actuates them to draw a straight 

line. By performing this step repeatedly with varying pulse 

widths, the calibration routine determines two pulse widths 

that return the user’s hand to drawing a straight line.  

Figure 12 depicts the average pulse widths determined by 

means of this calibration routine for all users in our exper-

iment. Similarly, the calibration routine determined that the 

extensor muscle should be actuated using an average inten-

sity of 10.3 mA (SD = 1.3 mA) and the flexor muscle using 

an average of 8 mA (SD = 0.5 mA).  

 

Figure 12: Average pulse width per slant, for both extensor 

and flexor muscles, for all participants of our experiment.  

Control Loop & Model of the Wrist 

The purpose of muscle-plotter’s control loop is to actuate 

the wrist to reach a target as quickly as possible, yet with-

out overshooting. The main algorithm receives the tracking 

data asynchronously (i.e., the X/Y location of the Anoto 

pen in coordinate system of the paper). It then re-evaluates 

the situation and picks one of three possible strategies: aim 

for a target, compensate if the user is constantly lagging 
behind the target trace, or brake. The loop executes this 

strategy by sending electrical impulses to the user’s wrist 

muscles. In the following, we look into the each of these 

steps in detail. 

1. Receiving pen location data: The communication between 

the Anoto Windows API (from we’inspire
2) and muscle-

plotter is done via Open Sound Control (OSC). Each OSC 
packet is sent to muscle-plotter’s Python server. It encapsu-

lates an X/Y position, an event type (pen up, pen down or 

                                                             
2 http://we-inspire.com 
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pen drag), and a timestamp. We found the latency of this 

operation to be below 1 ms for both loopback and Ethernet. 

2. Evaluating the current strategy: Our system aims for the 

most likely target, which may not necessarily be the closest 

one. It determines the most likely target by extrapolating 

the current location based on the current speed, as depicted 

in Figure 13. This approach allows the system to cope with 

differences in hand movement velocities and with the Ano-

to tracking latency (around 90 ms, determined using a high-

speed camera). 

 

 Figure 13: Key principles in muscle-plotter’s control loop. 

Then, for every decision cycle the system evaluates if the 

user is: (a) close to a plausible target or (b) consistently 

lagging behind the target trace or (c) approaching the target 

at a high speed with a chance of overshooting. According-

ly, it performs one of the following three responses. 

Strategy (a): aim for a target. In order to reach a target, mus-

cle-plotter computes the slant between the target and the 

current estimated location (Figure 13). Then, according to 

this slant, muscle-plotter finds a pair of pulse widths that is 

the closest to the pre-calibrated slants from the user’s cali-

bration dataset. Muscle-plotter actuates the wrist by apply-

ing a simultaneous signal to both sides of the wrist. We 
found this to allow for smoother control than when actuat-

ing just one side at a time. This is particularly important if 

the user’s dragging speed is fast.  

Strategy (b): compensate for wrist lagging behind. If the ac-

cumulated error (i.e., sum of all distances to previous tar-

gets) exceeds 20 mm we consider that the user is lagging 

behind. To compensate, we dynamically increase the inten-

sity of the muscle that moves the pen closer to the target in 
1 mA steps (up to 2 mA). Finally, we reset the accumulated 

error and disable the intensity boost when the user’s trace 

crosses again with the target trace.  

Strategy (c): brake. If the user approaches a target too fast, 

there’s a risk of overshooting. If the system observes the 

user’s hand approaching the target at increasing speed and 

if is less than 3.3 mm away, the system “brakes” the user’s 

wrist. By actuating the muscles that push the wrist into the 
paper, the system increases the friction between pen and 

paper, hence slowing the pen’s tip down. The brake strate-

gy is also particularly useful for improving the performance 

of straight lines and to prevent undesired oscillations.  

3. Executing the current strategy: Muscle-plotter executes 

one of the strategies by sending the electrical impulses to 

the user’s wrist. This is done in a separate thread, which 
allows it to keep a constant stimulation frequency of 

200 Hz. To achieve precise control, muscle-plotter controls 

the pulse width (from 20 µs to 500 µs) of the waveform 

rather than the amplitude. Changing the amplitude is only 

used while the user is lagging behind, i.e., strategy (b).  

Lastly, to terminate the current output trace, muscle-plotter 

moves the tip of the pen away from the paper by actuating 

the user’s wrist upwards. 

Heuristics used in the Control Loop  

To avoid muscle-plotter from overshooting the target we 

hand-tuned the main loop’s parameters as follows. 

The 20 mm threshold is sufficient to detect when the user is 
lagging behind without producing oscillation effects. If this 

value is heavily decreased (e.g., 2 mm) the automatic com-

pensation in intensity will create unwanted oscillations.  

The 3.3 mm braking distance provides sufficient braking 

distance to avoid overshooting. We found that the braking 

technique is most efficient if initiated at least 2 mm away 

from the target, otherwise the system tends to overshoot. 

Our brake implementation uses 11 to 44 impulses depend-

ing on the user's speed. We found that when the user ap-

proaches slowly (e.g., around 3.3 mm/s) 11 impulses are 

sufficient to halt the trajectory without undershooting. 

Intuitively, when the user’s speed increases we increase the 

brake impulses; we found that 44 pulses allows us to brake 

before the target (no overshoot) at speeds up to 10 cm/s.  

Computing Geometry for Widget Interaction 

The geometry computed in muscle-plotter uses OpenCV 

via Python bindings. For instance, line chart widgets start 
when the user draws two axes that intersect one another. 

This is calculated as the cross product of two fitted lines 

between the two drawn axes. Likewise, the two crop marks 

that define the wind tunnel widget are detected using the 

same method for each; the perpendicular lines determine 

the wind tunnel dimensions. Lastly, for the cross-section 

and scale widget, the user drawn lines are fitted with a line.  

Handwriting Recognition using Tesseract 

To recognize hand-written input, we integrated Tesser-

act [30], a trained recognizer with several languages and 

one of the most robust open-source optical character recog-

nizers (OCR) [4]. Our system loads only the English lan-

guage and common symbols such as “?”, “(“, etc. Before 
applying Tesseract to the user’s strokes we: (1) concatenate 

all strokes that are less than 3 mm apart from their center 

(enables multi-stroke writing). (2) Interpolate the points 

from the Anoto tracking to complete a line. (3) Convert to a 

black and white image for OCR. (4) If the next stroke is 

more than 1 cm apart, the previous strokes are grouped into 

a command keyword and evaluated with the OCR. (5) After 

a command keyword is detected, we evaluate the incoming 

strokes character by character; this allows to directly write 

commands such as “PLOT F(X)=SIN(X)”.  

Once Tesseract returns the recognized text to muscle-

plotter, our system replaces it with the word from its cus-

tom keyword dictionary that is closest in terms of Le-

venshtein distance (edit distance). This corrects for com-

mon misrecognitions such as “L” for “(“ or “X” for “K”.  



 

 

Application-specific Implementations 

We now detail the implementations that are specific to each 

of our applications. 

Mathematical formulae manipulation & solvers. To solve 
mathematical formulas, we invoke Octave by means of its 

Python bindings. We use it for mathematics (derivatives, 

integrals, and so forth) and for plotting functions from 

formulae. We interface muscle-plotter and Octave by: 

(1) converting user-notation to Octave notation. When the 

user writes “sin(x)”, for example, we convert it to “fe-

val((sin(x), <range-of-plot>)”; then, (2) send the formulae 

to Octave, sample it into points and return it to muscle-

plotter; and, lastly, (3) transform these points to the Anoto 

paper’s coordinates and into the user-defined axis.   

RC-Filter Response. We implemented a simple solver for 

high and low pass RC circuit filters. It works by solving the 

filter equations directly in the frequency domain. The val-

ues for R and C are read from the users’ input when they 

write “cap 10UF” (i.e., 10 µF) and “resistor 330” (in 

Ohms).  

Statistics Example. To perform statistical operations we use 

Python’s Scipy Statistics package. This allows us to com-

pute standard deviations and regressions, which we use in a 

simple demo application that draws a linear regression 

through bar charts.  

Optical lenses ray casting. The optics demonstration is a 

simple 2D ray casting based on [31] that deals exclusively 
with concave and convex lenses. We disambiguate the lens 

type by measuring the width of the lens’ middle section 

against a fixed threshold (i.e., convex is wider). 

Wind tunnel simulation. The wind tunnel simulation is based 

on the Lattice-Boltzmann equations and adapted from 

Schroeder’s implementation [13]. To run a wind tunnel 

simulation (i.e., to compute the wind speed streamlines) 
we: (1) rotate the model according to the rotation of the 

wind tunnel boundaries; (2) extract the shapes drawn in-

side; (3) down-sample these shapes (e.g., the car) into a 

binary matrix of 200 px height; this matrix contains the 

obstacles to the wind flow; (4) for 30 steps we execute 

Lattice Boltzmann by advancing the streamlines one step at 

a time and re-evaluating the collisions to compute the ve-

locity flow; (5) once the user draws a line, we use Python’s 

Matplotlib streamlines function to obtain the streamline 

that starts at the user’s pen-down position. 

USER STUDY: VALIDATING OUR IMPLEMENTATION 

To validate the mechanism behind muscle-plotter, i.e., the 

production of spatial output using EMS, we conducted a 
user study. Our focus was on which types of signals can 

muscle-plotter reproduce as is and which signals require 

pre-processing. In the study, muscle-plotter actuated partic-

ipants to repeatedly draw curves and we measured how 

closely these curves matched the intended target signal.  

Task 

For each trial, participants plotted one function onto paper 

using muscle-plotter as depicted on Figure 14. 

 

Figure 14: One trial: one plot (image from the study, with 

consent of the participant). 

In each trial, participants plotted one of eight mathematical 

functions. Participants placed their hand on the left side of 

the paper so as to point the pen at the marked starting posi-

tion. Participants then moved their hands towards the oppo-

site side of the page, at any speed they chose. During this 

period muscle-plotter actuated their wrist, hence plotting 

the curve. When participants reached 16 cm from the left to 

right margin, the trial ended. The system recorded the in-
tended function, the user drawn function, as well as the 

time between start and end of plot. 

Every participant performed each function twice, resulting 

in 128 trials: 8 functions × 2 repetitions × 8 participants. 

The Dataset 

The eight mathematical functions are shown in Figure 16. 

The first six functions were composed by adding off-

phased sine waves of increasing difficulty; hence we denote 

them as Sin1-Sin6 (ascending in frequency and amplitude). 
We added a triangular wave (denoted as Tri) and a sine 

wave that ended in a flat section (denoted as Flat) to ex-

plore how the system behaves with regards to abrupt 

changes in slope and curvature (as well as to prevent partic-

ipants from getting used to sine wave patterns).  

Apparatus  

Figure 15 shows our apparatus. Participants wore mus-

cle-plotter’s electrodes on the wrist flexor and extensor 

muscles (as described in Implementation). They were seat-

ed with the dominant forearm rested on the table to reduce 

fatigue. We used the controller described in Implementa-

tion, which actuated flexors and extensors simultaneously 

but without the brake channel, which was introduced as an 
outcome of this study. The muscle-plotter software admin-

istered the respective functions to the user; all other func-

tionality was disabled. Muscle-plotter was calibrated with 

the procedure described in the Implementation section. 

  

Figure 15: Setup for our experiment (image taken from the 

study, with consent of the participant).  



 

 

Participants 

We recruited 8 right-handed participants (1 female), be-

tween 22 and 26 years old (M = 23.9 years) from our local 

university. With consent of the participants, we videotaped 

the study sessions.  

Results 

Raw data Figure 16 shows the curves drawn by participants. 

The average error from target across all 128 trials was 

4.07 mm (SD = 3.03 mm).  

 

Figure 16: Raw data from 8 participants and 128 trials. The 

white trace represents the desired trajectory and colored 

traces depict user drawn plots (scale in mm). Average per 

function represents error (distance to target).  

Preservation of sine-based functions: Figure 16 also shows 

the average error per by function (Sin1: M = 2.45 mm, 

SD = 1.42 mm; Sin2: M = 2.65 mm, SD = 1.29 mm; Sin3: 

M = 2.66 mm, SD = 0.90 mm; Sin4: M = 3.15 mm, 

SD = 1.00 mm; Sin5: M = 4.55 mm, SD = 1.31 mm; Sin6: 

M = 10.06, SD = 2.67 mm). As expected, there was an 

increase in error with the increase in the function’s highest 

partial confirmed by a linear regression with R2 = 0.64 

through Sin1 – Sin6. To provide an estimate of how much 

each trial differed between each other, the reported stand-

ard deviations (SD) are between the mean errors of each 
trial. 

Preservation of non-sine functions: When plotting the two 

functions that contained sharper changes in slope and cur-

vature participants performed similarly to the sine waves 

(Tri: M = 4.77 mm, SD = 1.53 mm; Flat: M = 2.29 mm, 

SD = 0.82 mm).  

Preservation of features: The plots in Figure 17 illustrate in 

how far plots made through muscle-plotter preserved the 

original function. The plots show frequency histograms 

produced by means of Fourier transformation. We see the 

original signal in green, as well as user-specific jitter—i.e., 

noise, in red. As the plots illustrate, jitter tends to revolve 

around wavelengths smaller than 0.5 cycles/cm.  

 

Figure 17: Exemplary Fourier transforms for Sin2, Sin3, Sin5 

and Sin6: original signal (red) and users output (green).  

Jitter in Sin2 and Sin3 has very little impact on the signal 

(the same as observed in Sin1 and Sin4). This gets more 
challenging with Sin5, which has its highest partial at a 

wavelength of around 0.23 cycles/cm. Still, signal and jitter 

are clearly distinct, which means that the original function 

still stands out clearly, so that awareness of one’s jitter 

allows users to visually filter out the noise. The distance 

between signal and jitter gets smaller with increasing signal 

frequency until they start to overlap in Sin6, suggesting that 

part of this signal has drowned in the noise and thus has 

become unrecognizable. 

We conclude that muscle-plotter is suitable for reproducing 

signals of up to 0.3 cycles/cm wavelengths, but should not 

be used for frequencies higher than this. 

Speed/Accuracy tradeoff: The fact that participants picked 

their own pace resulted in a wide range of speeds. Figure 

18 illustrates the resulting speed/accuracy tradeoff. Partici-

pants plotted the 16 cm-wide functions in between 7.98 s 
and 29.5 s (M=16.17 s, SD=4.90 s).  

 

Figure 18: Average error (in mm) for each trial in relation to 

its duration (in seconds). Each color is a different participant. 

Discussion 

The main finding of the study is that muscle-plotter is able 

to reproduce signals up to 0.3 cycles/cm wavelengths (e.g., 

Sin5 signal), while higher frequencies (e.g., Sin6 signal) 

cannot be reproduced as is. This insight is useful in that it 

allows application designers to decide how to pre-process 

their data before outputting it through muscle-plotter, e.g., 

by stretching the signal horizontally before plotting. 



 

 

Interestingly, two out of the eight participants stated that 

they had not looked at the paper while plotting. This hap-

pened naturally, since we had not instructed them either 

way.  

We opted to study the performance of rhythmic curves (i.e., 

based on the arithmetic combination of multiple sine-

waves) as these allowed us to separate out signal and jitter 

using the frequency analysis we presented in Figure 17. 

However, in our experiments we found that non-rhythmic 

curves behaved similarly. The reason is that muscle-plotter 

plots at a slow enough pace that every movement is in-

duced separately. In fact, muscle-plotter moves the wrist 

from target to target, rather than in a rhythmic manner. 

Hence, the way in which our system plots is different from 

the way humans tend to sketch waves quickly by perform-

ing a single oscillating movement. 

Based on these results we improved the system by adding 
the aforementioned brake functionality, i.e., muscle-plotter 

slows down the user by actuating the wrist muscles down-

wards as to push into the paper; this increases the friction 

between pen and paper. Also, this helps returning the wrist 

to a neutral position, improving the quality of straight lines. 

RELATED WORK 

Our work relates directly to research conducted in interac-

tive systems based on exoskeletons, pen-based interfaces, 

and interactive electrical muscle stimulation systems.  

Pen-based Devices and Sensemaking Systems 

For many spatial activities such as sketching, researchers 

argue that pen and paper (or digital paper and its emula-

tions) are the most adequate tools [3, 33]. This is due to 

their superior ergonomics and support for bimanual use [5, 
8], but also because they leverage existing know-how (e.g., 

signing your name using a pen is easier than with a track-

pad) [3]. Also, sketching itself is an important and enjoya-

ble cognitive tool [33]. In fact, Ullman et al. identified that 

sketching using pen and paper is a crucial tool for (mechan-

ical) designers that allows “communicating ideas between 

designers and between the designer”, “as an analysis tool”, 

“to simulate the design” and “as an extension of the design-

er's short term memory” [33].  

For these and other reasons, since the 60’s researchers have 

utilized pen-input for their interfaces, canonically 

SketchPad [28]. Notable examples include Teddy, a system 

for 3D modeling based on 2D sketching [9]. CrossY is a 

fluid language of pen strokes that allows controlling GUI 

elements based on crossing elements with a pen stroke [2]. 

PapierCraft is an annotation system for paper in which 

users directly interact with their printouts, using pen ges-

tures such as pigtails, crop marks or underlines to execute 

commands such as copy & paste, linking, and so forth [15]. 

Several researchers have created pen-based systems intend-

ed to help users with sensemaking tasks, in particular with 

mathematical problems. Flatland [20], for example, is a 

pen-based interface for whiteboards that supports basic 

math and map drawing. Also, both MathPad [14] and 

Hands-on Math [37] are systems that provide deeper sup-

port for sensemaking in mathematics.  

Other researchers explored projection in order to augment 

physical paper. For instance, PenLight [26] pairs up an 

Anoto pen with an overhead projector and an external 3D 

tracking system, allowing to visually overlay information 

and menus on top of the physical paper.  

Closing the Loop in Haptic and Tangible Systems 

Some researchers have taken tangible input further by using 

it not only for input but also for output. Notably the Actuat-

ed Workbench closed the loop for a tangible tabletop sys-

tem by actuating the pucks using magnetic forces [22]. Our 

inspiration for closing the loop comes from Gesture Out-

put [25] in which the loop of touch gestures on a mobile 

phone is closed by actuating the user’s finger. 

Haptics Systems: Actuated Pens 

Most haptic systems with sufficient force to actuate users 

transmit forces from a motor to the user’s body via pul-

leys [19] or exoskeletons [32]. An exemplary device is the 

Phantom, a desktop sized robotic arm featuring a pen as its 

ending. Phantom or comparable systems have been used 

for pen-based menu interaction [21], for rendering bar 

charts for visually impaired users [34], and so forth.  

Other systems, such as Digital Rubbing, allow users to 
transfer digital graphics onto paper [11]. Users accomplish 

this by rubbing a pen featuring an actuated tip onto a paper 

on a digitizer tablet. The tip writes only when the user 

passes at the target location. The system is targeted at 

drawing textured images, rather than plots/lines, and re-

quires the user to always scan the complete surface.  

Also using Actuated Workbench’s principle of magnetic 

forces as guides, dePENd is a sketching system that uses a 
custom ferromagnetic surface to actuate a ballpoint 

pen [36]. The system is unfortunately stationary but in turn 

provides 2D actuation across the surface. A re-iteration of 

this interface, Depend 2.0 [35], mitigates the mobility issue 

by using asymmetric vibration patterns to generate a virtual 

traction force which the user must respond to and turn in 

that direction voluntarily; this is based on the same under-

lying principle as Traxion [24].  

Interactive Systems based on EMS 

EMS is a technique originated in the field of medical reha-

bilitation that applies electrical impulses to involuntarily 

contract muscle fibers; these impulses are delivered to the 
user’s muscles via electrodes that are attached to the 

skin [12, 27].  

Recently, researchers in HCI started to build interactive 

systems based on EMS. Possessed Hand [29], for example, 

is a guidance device that helps users learn, for example, 

how to play a new instrument. Pedestrian Cruise Control 

informs the user’s leg muscles when to turn [23]. In con-

trast, muscle-plotter actuates muscles directly, thereby 
eliminates the cognitive load involved by systems that 

merely inform users when to turn. 

One motivation for the use of EMS in interactive systems is 

that it allows replacing motors, thereby resulting in much 



 

 

smaller, even mobile form factors. Muscle-propelled force 

feedback, for example, uses EMS to provide directional 

force feedback (left & right) in mobile gaming [16]. Pose-

IO is an interactive wearable system that allows for eyes-

free input output with a computer system [17]. Af-

fordance++ extends on this concept by allowing objects to 
actuate the user’s hand in order to make it manipulate the 

object properly [18]. 

CONCLUSIONS AND FUTURE WORK 

We presented muscle-plotter, an interactive system based 

on electrical muscle stimulation that provides pen-on-paper 

interactions for both input and output. In our system, users 

input by writing, e.g., writing mathematical formulae or 

drawing shapes. The system outputs by actuating the users’ 

wrist so as to draw graphs, strokes, etc. 

We designed muscle-plotter to render significantly more 

complex data than previous EMS-based systems. The key 

idea behind muscle-plotter is to make the user’s hand 

sweep an area on which muscle-plotter renders curves, i.e., 

series of values, and to persist this EMS output by means 

of a pen. This allows the system to build up a larger whole, 

enabling it to assist users in cognitively demanding 

activities, such as designing an aerodynamically sound 

vehicle, by providing users with access to a computer 

system while they are sketching on pen and paper. Still, the 

use of EMS allows muscle-plotter to achieve a compact and 

mobile form factor. 

We have demonstrated six simple applications, including a 
wind tunnel simulator, an RC circuit simulator, function 

plotting, as well as a set of generic widgets. As future 

work, we plan to use muscle-plotter to make textbooks 

interactive. 
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