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Context – The Progress of Reinforcement Learning

Alpha Go-Zero learned to win without supervision, only 
by self-play [DeepMind 2017]

RL agent designed optimal layouts for TPU chip circuit  
[Google 2021]
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However
AI systems are not being deployed

• 55% of companies surveyed haven't deployed a 
machine learning model [Algorithmia 2020]

• 72% that began AI pilots before 2019 haven’t 
deployed a single system yet [Capgemini 2020]

Reason? systems cannot adapt to more complex 
and evolving realities - adversarial environments

Problem?
In practice: Lack of Robustness in Production 
In research: Lack of Generalizability

[Gartner 2020]
[Jordan 2019], [D’Amour et al. 2020] 

3



Smoking Gun-1 [Thompson et al. 2021] [NVIDIA 2021]

1- A bug in GPT3 was discovered but team decided not to fix because of the 
cost of retraining 

- Alpha Go ~ 35 million USD

- GPT3 ~ 3 million USD
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source: Thompson et al. 2021, Deep Learning Diminishing Returns, IEEE Spectrum

Source: [NVIDIA 2021]

MT-NLP contains 530 billion parameters



Smoking Gun-2 [Thompson et al. 2021]

2- Exponential environment cost for linear gains
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Thompson et al. 2021, Deep Learning Diminishing Returns, IEEE Spectrum



Smoking Gun-3 [Thompson et al. 2021]
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3- Even smaller models (few millions of parameters), the costs are already 
too high or business timeline too short

- "A large European supermarket chain recently abandoned a deep-
learning-based system ... because they judged that the cost of 
training and running the system would be too high."

Thompson et al. 2021, Deep Learning Diminishing Returns, IEEE Spectrum



How do we current think about robustness? 
Bias-Variance Trade-off Intuition
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Bias Variance Trade-off

Bias-Variance Decomposition (irreducible error)
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[Weinberger 2018]

More data helps
More data does not help
Need better model!

Lambda = strength of regularization
It pulls the model away from local minima

Ground truthPrediction



How should we be thinking about robustness?
Essential Sources of Lack of Robustness

Underspecified 
Models

Unsafe 
state-action 

Spaces

Non-IID and 
OOD Data
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Hidden confounders + Selection Bias

Simpson’s and Berkson’s paradoxes

Shortcut learning in Neural Nets

This goes beyond overfitting, as it cannot be 
solved with more or better data!

Real-world is non-stationary

Predictions affects the data 
generation process

Modeling better recommender 
systems is not enough, because 
uncertainty grows wildly when 
extrapolating out-of-distribution

Wrong predictions can spur unsafe 
actions that can lead to unsafe 
states.

Sensitivity analysis and testing on 
hold-out-sets are ad hoc approaches 
cannot guarantee safety.

“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!” ― 
Edsger W. Dijkstra 



How should we be thinking deeper about robustness?
Nature of the Problem - Structure vs Frequency

Frequency of 
positive events

Degree of  
structure

Sparse
(causal associations)

High 
(accidental associations)

Medium
(under-specified)

Strong
(well-constrained)

Human laws
human-in-the loop

image & text 
interfaces
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Artificial laws
games

simulators
software systems

2
Physical laws
circuit design
protein folding

autonomous driving

1

Adversarial laws
Non-IID and OOD

dynamical 
systems

4

[DeepMind 2017][Google 2021]

[Ghahremni, Adriano & 
Giese, 2018] [Adriano 2018]
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This is the space we have 
been working

by Christian M. Adriano



How are we approaching robustness?

An Outer Loop that keeps learning a representation of the world
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Execution 
Loop

Adapting 

Outer Loop

Learning to 
Adapt

OutcomeMediator

Confounder

Independent 
Variable

Dependent 
Variable

A Causal Model that guides learning

spurious

Execution 
Loop

Adapting 

Outer Loop

Learning to 
Adapt

Multiple Mechanisms
&

Intervention Options



Concrete Challenges and Solution

Catastrophic forgetting

Solution: uncover the causal structure by mapping hidden confounders and 
invariants

Sample efficiency

Solution: generative models (model-based RL, replay-buffer, digital-twins) 
to hallucinate hypothetical adversarial realities

Delayed rewards

Solution: continuous learning (transfer, meta, curriculum learning) to train 
for new, modified or more complex tasks

For all solutions we need a model that can recommend interventions that 
can generate adversarial situation (non-IID, OOD, possibly unsafe)

12



Typology of Interventions for Robustness

Accidental Shift (changes outside the causal path) 

• how? Choice of intervention creates no path or blocks the path to the outcome variable. 

• why? Uncover latent confounders, detect spurious correlations, disentangle accidental 
and essential attributes, necessary and sufficient causes

Essential Shift (changes in the causal path) 

• how? Choice of intervention creates one or more paths to the outcome variable. 
Sensitivity analysis can be used.

• why? Test the direction and magnitude of causality, and the independence between 
interventions and mechanisms

Mechanism Shift (changes in mechanisms)

• how? Causal paths to the outcome variable depends on the magnitude or value of the 
intervention, i.e., violation of the mechanism independence assumption. Domain shifts 
can be used.

• why? Uncover the invariant mechanisms across domains 13



Results of Interventions
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Intervention-Accidental Shift
Changes in Score Distribution-E2

Statistically distinct? YES
Kruskal-Wallis chi-squared = 1787, 
df = 61, p-value < 2.2e-16

Entropy values distinct? NO

Change (
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑−𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) = -0.53%

Statistically distinct? POSSIBLY NOT
Kruskal-Wallis chi-squared = 5, 

df = 5, p-value = 0.4159

Entropy values distinct? NO

Change (
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑−𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) = 0.04%

Adjusted Score from Item Response Theory Model: fits a 
logistic model based on difficulty of programming tests
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Intervention-Accidental Shift
Changes in Score Distribution – E1

Statistically distinct? YES
Kruskal-Wallis chi-squared = 3695, 
df = 15, p-value < 2.2e-16

Entropy values distinct? NO

Change (
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑−𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) = -1.04%

Statistically distinct? POSSIBLY NOT
Kruskal-Wallis chi-squared = 4, 

df = 4, p-value = 0.406

Entropy values distinct? YES

Change (
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑−𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) = -24.13% Trade-off

Adjusted Score from Item Response Theory Model: fits a 
logistic model based on difficulty of programming tests
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Intervention - Essential Shift
Changes in Task duration across professions
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Gaussian Mixture Model by Profession 

Proportion (Blue,Red), Blue ϵ fast-cluster, Red ϵ slow-cluster

(36,13) (101,11)

(417) (440,44)

(260,23)(384,59)
10%

30%

100%

15%

10%

10%
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Effect of duration on original score by speed-cluster

Mixture Model membership is a confounder of the effect of task duration on score.

Profession Speed-
Cluster

Original 
Score

Duration 19



Effect of duration on adjusted score by speed-cluster

Mixture Model membership is a confounder of the effect of task duration on score.

Profession Speed-
Cluster

Adjusted 
Score

Duration 20



Small variations in association (original vs adjusted score)
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Intervention – Mechanism Shift
Overall approach to causal inference

source: Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: 
Foundations and Learning Algorithms. MIT Press.



1- No need to distinguish programmers 
among the Others

2- If the only information is that the 
person is a student, then can only rely on 
interventions that change the speed 
relative to the average students.

Consequence for Planning 
Interventions

3- Irrelevant non-invariant, because speed 
is not a valid intervention for this group

Causal Graphs by Profession: Constraint-Based Method [Glymour et al 2019]



1- No need to distinguish programmers 
among the Others

2- If the only information is that the 
person is a student, then can only rely on 
interventions that change the speed 
relative to the average students.

Consequence for Planning 
Interventions

3- Irrelevant non-invariant, because speed 
is not an valid intervention for this group

Causal Graphs by Profession: Score-Based Method [Glymour et al 2019]



Infrastructure to run causal system experiments

Feedback loop models

"When solving a problem of interest, do not solve a more general 
problem as an intermediate step. Try to get the answer that you 
really need but not a more general one." Vladimir Vapnik

Simulation models

"Thinking is acting in an imagined space" Konrad Lorenz

"Perception is a generative act" – [Gross et al. 1999] 
" Consciousness is a controlled hallucination " - [Seth et al. 2000]
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Intelligent 
System

Digital 
Twin

System State and 
Configurations

New Model 
Parameters



Take-aways

What are effective and plausible environment changes?

• Change outcome distribution forced Accidental Shifts (adjusted score)

• Change input distribution forced Essential Shifts (profession)

• Change features forced Mechanism Shift (speed membership)

What is the lack of robustness detected after environment changes?

• Reversal or cancelling of effects (Simpson’s and Berkson’s paradoxes)

• Weak and non-significant effects (close to zero)

What are the model invariants? 

• Hidden confounders that entail spurious correlations (structural)

• Discovery of relationships that are environment specific (accidental)
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END

“There is no causation without manipulation” (Rubin 1975) (Holland 1986)
- We need to design “system experiments”.

“All models are wrong, some are useful” – (George Box 1976)
- Models must be continuously updated to cope with a changing environment
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Link between Robustness and Reproducibility:
Principled Engineering + Counterfactual Models

Fundamental inquiry: If my model performs better (whatever better means), can I reproduce
it in similar contexts (whatever similar means)? Something that is not reproducible has already 
failed a very simple test of robustness – generalizability.

My insight: This requires forward and backward reasoning. 

- The forward reasoning is a set of principles that should be part of an engineering body of 
knowledge discipline (principled engineering) 

- The backward reasoning relies on explaining the outcomes via associations derived from a 
causal mechanism (counterfactual models)

Principled Engineering = is a set of methods to guide design decisions at various levels of 
granularity and constrained by well-specified requirements and concrete implications 

Counterfactual Models = allow to explain the outcome of mechanism by answering what-if 
questions
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The apparent paradox
Occam-Razor versus Elaborate Hypotheses

The Ockham’s-Razor or The Principle of Parsimony

Simpler models (theories) are preferable because they require fewer conditions to explain a phenomenon 
[Duigan 2021]. With fewer fundamental conditions [Schaffer 2015], there are higher chances that the 
model will generalize over many instances (variations) of the same generative data process (phenomenon).

“Make your hypotheses elaborate” principle – Sir Ronald Fisher

”…one should envisage as many different consequences of its (theory) truth as possible, and plan 
observational studies to discover whether each of these consequences is found to hold “ (explanation to 
Fisher’s answer to a question about the Occam-Razor principle, see section 5 in [Cochran & Chambers 
1965]). This agrees with the Falsification Principle [Popper 1962].

Hence, there is no paradox. 

- The Ockham’s-Razor principle aims at the internal mechanisms (as simple as possible) that still 
generate correct predictions. This is important to prevent that failing explanations can always salvage by 
ad hoc hypotheses, which would prevent any model to be falsified 

- The elaborate hypotheses principle aims at the generalizability of predictions (as many instances as 
possible) 
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https://en.wikipedia.org/wiki/Ad_hoc_hypotheses


How to Optimally Allocate Bug Inspection Tasks to 
Minimize Cost and Maximize Accuracy?
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Limit of the Falsification Principle

The escape to this conundrum is to be guided by a more fundamental goal 
of falsification [Popper 1945]. 

Note however, that falsification is not silver bullet either, because one 
cannot guarantee a unique mapping between generative processes 
(phenomenon), explanations (hypotheses) and models.
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Definitions for Robustness

Bertrand Meyer [Meyer 1997] definitions:

Correctness : The ability of software products to perform their exact 
tasks, as defined by their specification.

Robustness : The ability of software systems to react appropriately to 
abnormal conditions.

Reliability : A concern encompassing correctness and robustness.

35

What are the abnormal conditions and how to detect and measure them?

To answer that in the context of Machine Learning models, we need to look at  
what is abnormal from the perspective of the user of predictions. The 
abnormal correspond to many categories of bias (next)



Essential and Accidental Changes

Accidental is a problem caused by the technology, the method, hence epistemological in 
nature. 

Essential is problem inherent to the object, hence ontological in nature.

Philosophical Groundings

For more into these topics see Kant immanence concepts and Aristotle essential and 
accidental properties, which George Lakoff summarizes "make the thing what it is, and 
without which it would be not that kind of thing” [Wikipedia 2020]

Software systems Groundings

Fred Brooks in seminal paper No Silver-Bullet – Essence and Accidents  in Software, 
proposed four characteristics that make developing software difficult: changeability, 
invisibility, complexity, and conformity.

Because they are essential, their effects can only be mitigated, not eliminated. 36



Taxonomy of Biases

• There are many reasons for an engineer 
to have a wrong model of the world 
(figure-1)

• These biases also impact users in very 
diverse ways.

• I am more interested on bias sample 
selection bias and confounding bias 
(under the data analysis) 

• Before we delve into these bias, we 
need to answer the question, why 
simply getting more data does not solve 
the bias problem?

• The Reason: the bias-variance trade-off 
(next)

3
7

[Srinivasan & Chander 2021]



Implications to predictive models

Goal: Generalize data associations as predictive patterns

Assumptions: good data and observable patterns

Reality: sparse data and hidden states 

• Sparse data (Essential limitation, cannot eliminate with better prediction models)

• Latent patterns (Accidental, can eliminate with better models)

• Source – Misspecification

Not enough data or bad tunning of a model can make the concept drift more severe, as 
models might present strong bias (insensitive to crucial features) or high variance (too sensitive 
to noise). 

• Under-specification (leads to bias-underfitting)

• Over-specification (leads to variance-overfitting)
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Sources of Sparsity and Unobservability

Changes in the Data Generation Process:

• Covariate Shift (change in data distribution)

• Domain Shift (change in the state space)

• Concept Drift (change in the associations)

These changes are independent of the model, but the model might make the problem 
worse. 

Goal: A robust model should have structures and conditions in place to mitigate the effect 
of these changes on the performance of the model.

Plausible Changes -> Sparsity + Observability -> Model performance
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Robustness approaches

Robustness approaches involve simulating, measuring, and identifying the 
situations (e.g., a given environment change) in which the prediction 
models will not be robust.

In the next slides, I will detail three families of these robustness models:

• Generative Models – rely on methods to generate data that can 
simulate the environmental conditions that challenge prediction model 
robustness 

• Structural Models – rely on methods to capture hidden and observable 
states and their associations, which allow to generate hypotheses about 
spurious correlations

• Validation Models – rely on methods to measure the outcome of model 
under various environmental conditions
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Robustness approaches

Generative Models

Anticipate the effect of changes (approximate changes if nonstationary process, determine 
performance envelopes of performance to detect a systematic trend that will breach the 
envelope).

Data augmentation (Model-Based Simulation, Data Transformations)

Oversampling

Probability Weighting

Data Splitting

Train-Test-Validation Split

Cross-Validation
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Robustness approaches

Validation models (1)

Models of validation allow to measure of the performance of the prediction models. Because 
these measurements consist of well-defined metrics, it their outcome also allows to compare 
more models. 

Entropy-based methods 

Information Criteria are methods based on entropy

WAIC is the most modern method and currently preferred over other IC methods like AIC, BIC, 
DIC.

Pareto-Smooth LOOC also a modern method, which produce comparable results to WAIC. The 
best practice is to always execute both methods to check for inconsistencies.

4
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Robustness approaches

Validation models (2)

Definition: Intervention Models determine how to modify the inputs in meaningful ways to 
discover the frontier when the prediction models start producing predictions with 
unacceptable accuracy.

Sensitivity Analysis tests if changes in the putative causes (inputs) should be 
accompanied by expected changes in the effects (outcomes). This requires a proper 
definition of causes effects and the mechanisms that connect both. Essentially, this allow to 
test the model w.r.t. to the sensitivity to unobserved confounders [Franks, D’Amour & Feller 
2019][Wang & Blei 2018] 

Transductive Tests [Chapelle et al. 2009] consists of measuring the performance of the 
prediction model with datasets, that were not used during training/validation, but that still 
resemble to the same distribution of the training data.

Inductive Tests consists of measuring the performance of the prediction model with 
datasets, that were not used during training/validation, but that still resemble to the same 
distribution of the training data.

Ablation Studies 43



Robustness approaches

Structural models

Model-free methods do not allow to know what went wrong but preclude assumptions about 
the unknowns. Robustness requirements are concerned to avoid harm from catastrophic 
failure (extreme events). In this case the robustness requirements involve fail-safe or 
degraded performance.

Model-based methods make strong assumptions about the unknowns which could be 
justifiable when robustness requirements assume stationarity or smooth nonstationary 
changes. i.e., no abrupt changes that invalidate the past completely, for instance, one expect 
that fundamental model properties like the Markov property and  Causal Markov condition will 
hold.

Generative models approximate the process (phenomenon) that generates the data. 

Latent models approximate the hidden states and their relationships with the observable 
states, e.g., Hidden Markov Models, Partially Observable Markov Decision Processes, Causal 
Models.

Model invariant methods aims at discovering elements of the model (usually the internal 
associations) that do not change significantly across environments. 44



Model Invariance Discovery Methods

Empirical Risk Minimization (bias-variance trade-off tunning)

Invariant Risk Minimization (does not assume causal mechanisms)

Invariant Causal Prediction

45

[Peters 2016]



Requirements:

Environments should present shifts that are large enough to expose the 
effect of latent confounder, but not too large that the causal mechanism is 
invalidated.

Strong reliance on the how on the correctness of model, i.e., the model 
presenting all the covariate coefficients that correspond to the effect of 
these covariates in the treatment assignment.

So, because one might not obtain perfect ignorability, we can mitigate that 
by applying adjustment and reweighting techniques before we fit the multi-
variate regression
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Multi-Environments Setting

The data generation process changes across environments 𝐸𝑖

This means that each environment produces a different 
observable contexts 𝑋𝑖 and unobservable contexts 𝑈𝑖. 
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(𝑿𝟏, 𝑼𝟏)

(𝑿𝟐, 𝑼𝟐)

𝑬

𝑃1(𝐸)

𝑃2(𝐸)
Different generating 
processes varied that sample 
from the same distribution E



Robust Policy 𝜋
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Gaussian Mixture Model with the Expectation Maximization algorithm

E-STEP

M-STEP

Initialize prior using K-Means, which will give us:

Loop between E-Step and M-Step until 
convergence, i.e., ∆𝜇𝑘< 10−6

𝜇 𝜎2 𝛼
3.75 3.18 0.74
8.97 13.16 0.26

1=blue

2=red

1=blue
2=red

𝜇 𝜎2 𝛼
3.68 2.75 0.77
10.1 7.73 0.33

Membership to cluster kj
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Causal graphs (adjusted score)

50

Non-Invariant Associations



Causal graphs (adjusted score)
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Non-Invariant Associations

Adjusted Score

Original Score
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