
AI in Software Engineering
Prof. Dr. Holger Giese and Christian Medeiros Adriano

Head of the System Analysis and Modeling Group
Hasso Plattner Institute at the University of Potsdam

Software Engineering for AI

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 2

code executablecompile

code

models/
natural

language

tests

outcomes

Generate
tests

Generate
code

analyze

executablecompile

vs. AI in Software Engineering

Sven Burmester, Holger Giese and Oliver Oberschelp.
Hybrid UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Helder
Araujo, Alves Vieira, Jose Braz, Bruno Encarnacao and
Marina Carvalho editors, Proc. of 1st International
Conference on Informatics in Control, Automation and
Robotics (ICINCO 2004), Setubal, Portugal, Pages
222-229, INSTICC Press, August 2004.

Software Engineering for AI
We worked on …

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

3

Utility Change
Predictor

R Studio

generates prediction
models (.pmml)

predicts impact of
adaptation rules

generates data
for machine
learning

Managed resource

Simulator

simulates

adaptsobserves

Adaptation Engine

Managed resource

adaptsobserves

Adaptation Engine

Real system

or

Simulator

Provides
ground
truth

0 Linear 0 Combined0 Saturating 0 Discontinuous

1) Training

2) Evaluation
(meta level)

Self-Adaptive & Train Goals

Sona Ghahremani, Christian M. Adriano and Holger Giese. Training Prediction Models for Rule-Based Self-Adaptive
Systems. In 2018 IEEE International Conference on Autonomic Computing (ICAC), Pages 187-192, 2018. Sona
Ghahremani, Holger Giese and Thomas Vogel. Improving Scalability and Reward of Utility-Driven Self-Healing for Large
Dynamic Architectures. In ACM Trans. Auton. Adapt. Syst., Vol. 14(3), Association for Computing Machinery, New York,
NY, USA, February 2020.

How to optimally
allocate code
inspection task to
minimize cost and
time while
maximizing the
accuracy of
software failure
diagnostic?

Fault
identified

Task
outcome

Code inspection
Task

Sequencing model

Causal
model

Bug

Task
assignment

Convergence/
Stopping model

Voting

Recruitment

Task
generation

Programmer

Task

Qualified
programmer

Task
list

Approach: causal and sequential decision models decide which
tasks to generate and who should execute them.

What to inspect next?

Explore or Exploit?

When to stop
inspection?

Multi-Armed Bandit

AI/Machine Learning

Components

AI for Software Engineering
We worked on …

Software Engineering for AI

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 5

code executablecompile

code

models/
natural

language

tests

outcomes

Generate
tests

Generate
code

analyze

executablecompile

vs. AI in Software Engineering

Agenda

1. Background: Automation in SE

2. Overview: AI in SE

3. Use Case 1: Clone Detection

4. Use Case 2: Code Completion

5. Use Case 3: Code Generation

6. Conclusion & Outlook

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 6

1. Background: Automation in SE

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 7
https://www.slideshare.net/mastorey/ase-keynote-2022-from-automation-to-empowering-software-developers

Observations:

• Automation that affect the executable is more “dangerous” (generate
code, compile, …)

• Automation that do not affect the executable is less “dangerous” as it
may only affect the executable via human decisions (generate tests, …)

Automation in SE

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 8

code

models/
natural

language

tests

outcomes

Generate
tests

Generate
code

analyze

executablecompile

2. Overview: AI in SE

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 9
[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,
Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

AI in SE: Software Maintenance

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 10
[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,
Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

self-admitted technical debt

detection

AI in SE: Software Development

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 11
[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,
Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

1. Type-1 (Textual similarity) = Identical source
code fragments (ignore white-space, layout
and comments)

2. Type-2 (Lexical, token-based, similarity) =
Identical source code fragments (ignore
differences in identifier names)

3. Type-3 (Syntactic similarity) = Source code
fragments that differ at the statement level,
e.g., fragments can have statements added,
modified and/or removed.

4. Type-4 (Semantic similarity) = Syntactically
distinct source code fragments, but that
implement the same functionality

3. Use Case 1: Clone Detection

Easy
to

Detect

Difficult
to

Detect

[Belon et al. 2007] Bellon, Stefan, et al., 2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering 33, 9, 577-591
[Roy & Cordy 2007] C. K. Roy and J. R. Cordy. 2007. A survey on software clone detection research. Technical Report, Queen’s University at Kingston.

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 12

Benchmark BigCloneBench

Easy
to

Detect

Difficult
to

Detect

[Svajlenko et al. 2014] Svajlenko, J., 2014 Towards a big data curated benchmark of inter-project code clones, in 2014 IEEE ICSME, pp. 476–480

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 13

Rule-Based - SourcererCC

A software S is represented as a collection of code
blocks S : {B1, ..., Bn}, where each Bi corresponds
to a bag-of-tokens B : {T1..., Tk }, where T is token
(method, variable, operator names, etc.)

Assumption: source code follows the Zipf law
(similarly as natural language), which preconizes
that there are few very popular tokens, and the
frequency of tokens decreases very rapidly with
popularity rank (Figure-1)

Insight:

• Most code blocks contain one or more of the few
very popular tokens (e.g., keywords, counters
likes i, j)

• Few code blocks share rare tokens (e.g.,
identifiers that are domain or project specific).

• Hence, if we sort code blocks by the popularity of
tokens in the corpus, the sub-blocks will consist of
these rare tokens. This will ensure low probability
of different sub-blocks having a similar token.

the

of

and
Zipf Law – English
Language

Sajnani, H., et al., 2016, "Sourcerercc: Scaling code clone detection to big-code." Proceedings of the 38th International
Conference on Software Engineering.
Hindle, A., et al., 2016, "On the naturalness of software." Communications of the ACM 59.5: 122-131.
http://wugology.com/zipfs-law/

Figure-1 power-law like distribution of token
frequency (popularity)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

14

Hybrid Rule and Learning-based – Oreo

• Size Similarity: number of tokens

• Semantic Similarity: number of actions
tokens (function signature – getByte(),
toString(), etc.,) shared by two methods

• Metrics Similarity: Halstead effort,
Halsted difficulty, Cyclomatic complexity,
etc.

Candidates

Pre-
Processing

Metric
Filter
Match

Deep
Neural

Network

Type 3 & 4Type 1 & 2

No

Yes

Saini, V., et al., 2018, Oreo: Detection of clones in the twilight zone, Proceedings of the 26th ACM
ESC/FCE

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 15

Examples with Oreo

Clones
Type-4

Saini, V., et al., 2018, Oreo: Detection of clones in the twilight zone, Proceedings of the 26th ACM ESC/FCE

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 16

Clones
Type-4

Clones
Type-4

Only Learning-based – Sia-RAE

Feng, C., et al., 2020, Sia-RAE: A Siamese Network based on Recursive AutoEncoder for Effective Clone Detection, in 27th IEEE APSEC

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 17

Add
embedding!

Clone Detection Capabilities

• Rule-based approaches can detect simpler types (T1, T2)

• Learning-based approaches can detect more complex types (T3, T4)

• Deep Learning permits to better detect in particular hard types (ST3,
MT3, WT3, WT4)

Handling False Positives

• The results must be still manually checked, which can become quite
challenging in case of complex/hard cases

Studies about the productivity gains due to better clone detection with AI
are missing; likely as the long-term impact on maintenance is very hard to
evaluate …

Clone Detection: Discussion

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 18

1. Goal: given a code context, predict the next token, next line.

2. Token: names of methods, variables, operations, types

3. Facts affecting training [Allamanis & Sutton 2013]

■ Distribution - Most frequent tokens are few,
whereas low frequency are plentiful

■ Power-law - The frequency
is a logarithm function of
the count of token
appearances

■ Context - The more
frequent tokens are
more context dependent

4. Use Case 2: Code Completion

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

19

Allamanis, M., & Sutton, C., 2013, Mining source code repositories at massive scale using language modeling. In IEEE 10th MRS working conference, 207-216.

𝛼
= −0.853

Zipf Law (log-log axis)

, i.e., number of times a single token
appears

F
re

q
u
e
n
c
y
 o

f
to

k
e
n
s

th
a
t

h
a
v
e
 a

 s
p
e
c
if
ic

c
o
u
n
t

1. More frequent terms are easier to predict given a context.

2. Code Completion is less certain when predicting domain-specific

variable names, because they are less frequent.

Code Completion: Using Statistics

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

20

Allamanis, M., & Sutton, C., 2013, Mining source code repositories at massive scale using language modeling. In IEEE 10th MRS working conference, 207-216.

Probability assigned to next token

Easy to
predict

Difficult
to

predict Difficult

Easy

Quality depends on
More data & Better

data

Datasets for Code
Completion:

GitHub Python PY150
150K Python files,

113.2M tokens
ETH Py150 Open corpus

7.4M Python file

Github Java Corpus
Projects 11K (training), 4 K(test)

Tokens 1Bi (training), 385M
(test)

Code Completion:
Traditional vs Deep-Learning

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

21

Raychev, V., et al., 2014, Code completion with statistical language models. In Proceedings of the 35th ACM SIGPLAN, pp. 419-428.
Tiwari, A., et al., 2022, Survey of Code Completion using DeepLearning.

Traditional/Statistical
(Built in most IDES)

Deep Learning-Based
(CoPilot, Tabnine, Kite)

Input Previous token Entire source code and Text comments

Output Next token or Next line Naming, code blocks and entire methods

Functional and larger
suggestions (in grey)

Type-based
Text-based

Colored – Typed by user
Grey - Recommendation

Code Completion:
Deep Learning-Based – CoPilot (1/3)

GitHub - https://docs.github.com/en/copilot
6 ways GitHub Copilot helps you write better code faster - https://www.youtube.com/watch?v=SXtMnn1v7d8

Colored – Typed by user
Grey - Recommendation

Suggests a whole set
of parameters for the
function with an
explanation.

Suggests the
entire body of the
function Prof. Holger Giese

Hasso Plattner
Insitute

AI in Software
Engineering

22

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

23

Code Completion:
Deep Learning-Based – CoPilot (2/3)

GitHub - https://docs.github.com/en/copilot
6 ways GitHub Copilot helps you write better code faster - https://www.youtube.com/watch?v=SXtMnn1v7d8

Step 2: Suggests a whole class based
on the file (model.test.js) that existed.

Step 1: Existing Test Class

!!! Knows that the class should add
double the number (number * 2)

Code Completion – Discussion (1/2)

What do programmers think about it? New Ways of Programming?

“LLM-assisted programming shares some properties of compilation, pair programming,
and programming via search and reuse, there are fundamental differences both in the
technical possibilities as well as the practical experience.”.

[Sarkar et al. 2022] Sarkar, Advait, et al. "What is it like to program with artificial intelligence?." arXiv preprint arXiv:2208.06213
(2022).

Faster: “I think of Copilot as an intelligent autocomplete... I already have the line of
code in mind and I just want to see if it can do it, type it out faster than I can.”

Reuse: “Copilot feels useful for doing novel tasks that I don’t necessarily know how to
do. It is easier to jump in and get started with the task”.

Nonetheless… “I was about to write the code and I knew what I wanted to write. But
now I’m sitting here, seeing if somehow Copilot came up with something better than the
person who’s been writing Haskell for five years, I don’t know why am I giving it the
time of day.”

[Barke, James & Polikarpova 2022] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded copilot: How
programmers interact with code-generating models." arXiv preprint arXiv:2206.15000 (2022).

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

24

Code Completion - Discussion

Productivity with Code Completion

• Recruited software developers were asked to implement an HTTP server in JavaScript
as quickly as possible. The treatment group, with access to the AI pair
programmer, completed the task 55.8% faster than the control group.

[Peng 2023] Peng, Sida, et al. "The Impact of AI on Developer Productivity: Evidence from GitHub Copilot." arXiv preprint
arXiv:2302.06590 (2023).

Quality of Code Completion

• Copilot-generated code is harder to debug

• Programmers validate suggestions by “pattern matching”

• Programmers are reluctant to accept or repair suggestions.

Risks of Code Completion

• Programmers suffer from an anchoring bias when looking through multiple
suggestions.

• Programmers suffer from cognitive overload due to multi-suggestion pane.

[Barke, James & Polikarpova 2022] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded copilot: How
programmers interact with code-generating models." arXiv preprint arXiv:2206.15000 (2022).

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

25

1. ChatGPT = conversational AI, which is very challenging because human language is

ambiguous, and conversations are bounded by contextual information.

2. Instruct GPT = language model trained to follow instructions from a prompt

3. RLHF (Reinforcement Learning from Human Feedback) = human gives

feedback on a generated text in order to align the pre-trained language model with

complex human values (what is funny, ethical, safe).

5. Use Case 3: Code Generation
ChatGPT = InstructGPT + RLHF

Lambert et al., 2022, Illustrating Reinforcement Learning from Human Feedback (RLHF), Hugging Face- https://github.com/huggingface/blog/blob/main/rlhf.md
Ouyang , L. et al., 2022, Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155

Step-1: Pre-Train a Language
Model

Step-2: Train a Reward Model Step-3: Fine-Tune with RL

Very large investment on
crowdsourcing annotation work

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 26

Code Generation (1/6)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

27

1st

version

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In
Nuclear Safety, Vol. 32, 1991

Code Generation (2/6)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

28

2nd version

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In
Nuclear Safety, Vol. 32, 1991

Code Generation (3/6)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

29

3rd

version

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In
Nuclear Safety, Vol. 32, 1991

Code Generation (4/6)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

30

1st

version

3rd

version

David Parnas, Jan Madey and G.
Asmis. Assessment of safety-
critical software in nuclear power
plants. In Nuclear Safety, Vol.
32, 1991

Parnas, D., et al., Assessment of safety-critical software in
nuclear power plants. In Nuclear Safety, Vol. 32, 1991

Code Generation (5/6)

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

31

Java code. It compiles

and it is well structured.

Ambiguity and natural language ➭ Many possible interpretations …

“Shut off the pumps if the mean water level over the past 4 seconds was above 100 m.”

“Shut off the pumps if the median water level over the past 4 seconds was above 100 m.”

“Shut off the pumps if the minimum water level over the past 4 seconds was above 100 m.”

Code Generation (6/6)

     1002/)()(),4(),4(+ −− tWLMINtWLMAX 

1004/)(
4







 −




dttWL

  100)(),4(− tWLMIN 

“Shut off the pumps if the water level remains above 100 m
for more than 4 seconds.”

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 32

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In
Nuclear Safety, Vol. 32, 1991

• Code has still to be adjusted

• Positioned in the code

• Replace variables

• Use the right
functions/operations

• …

• Code may be wrong

• Pumps are shut off too early in
version 2

• Best code offered (1st, 2nd, …)
must be identified and
adapted/corrected

• Reuse? But produces many clones
…

Code Generation - Discussion

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

33

• Automation will substantially improve using AI (resp. has already)

• Automation that does not affect the executable can therefore better
support human decisions

• Pro: better clone detection can result in better maintenance
decisions

• Cons: too much trust can also here lead also to wrong decisions

• Automation that affect the executable raises very subtle problems

• humans must evaluate the outcomes for the specific context (e.g.,
check that the code really does what is needed (do they know?
corner-cases?),

• humans must adapt the outcomes to the specific context (e.g.,
replace variables (may become quite complex)), and

• humans may have to change the outcomes later or regenerate place
them (maintenance may become harder? trade-off!).

6. Conclusion & Outlook

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 34

 Well-defined problems have specific goals,

clearly defined solution paths, and clear

expected solutions.

➔ Engineering becomes

an optimization problem

 Ill-defined problems are those that do not have

clear goals, solution paths, or expected

solution.

 Wicked problems are ill-defined problems that

are not understood until after the formulation of

a solution [Jeffrey2006]

➔ Design becomes an iterative search problem

Outlook – Wicked Problems

Science
Engineering

/ Design

solution-based

approaches

Analytic

scientific

method

Human

Endeavors
Study things as

they are ... Making new things …

Define problem

and look for the

best solution ...

Explore possibilities

iteratively to better

understand the problem

Software!

[Jeffrey2006] Jeffrey Conklin. Dialogue mapping: building shared understanding of wicked problems. Wiley Publishing, Chichester, England, 2006.

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 35

Outlook – Empower Developer

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 36
https://www.slideshare.net/mastorey/ase-keynote-2022-from-automation-to-empowering-software-developers

Thank you
for your attention!

Prof. Dr. Holger Giese and Christian Medeiros Adriano
Head of the System Analysis and Modeling Group

Hasso Plattner Institute at the University of Potsdam

Backup Slides
Prof. Dr. Holger Giese and Christian Medeiros Adriano

Head of the System Analysis and Modeling Group
Hasso Plattner Institute at the University of Potsdam

AI in SE: Software Testing

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

Chart 39
[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv., Vol. 54(10s),
Association for Computing Machinery, New York, NY, USA, September 2022

Code Completion:
Deep Learning-Based – CoPilot (3/3)

However, accepting this might create a SQL injection
vulnerability. The reason is that content of params is passed
“as-is” without any protection*

Or suggests a SQL code

*Four options of avoiding SQL Injection:
1. Use of Prepared Statements (with Parameterized Queries)
2. Use of Properly Constructed Stored Procedures
3. Allow-list Input Validation
4. Escaping All User Supplied Input
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

Hazard!

GitHub - https://docs.github.com/en/copilot
Source: 6 ways GitHub Copilot helps you write better code faster - https://www.youtube.com/watch?v=SXtMnn1v7d8

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

40

Summary of Approach
and Results

Chris’ PhD Thesis

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

41

Impact of Fault Understanding on bug fixing

Statistic
No Explanation

<
Root-cause

Root-Cause
<

Fault removal

No Explanation
<

Fault removal

p-value 0.012 0.018 0.00001

Cohen-d 0.74 0.68 1.48

Strength Large Large Large

pos-hoc
Power

48% 43% 94%

Statistic No Explanation Root-Cause Fault removal

Accuracy 46% 81% 100%

Do explanations make bug fixes more accurate?

Yes, but only for explanations
that reflect fault understanding

21 programmers, average of 11.7
years of experience

Prof. Holger Giese
Hasso Plattner
Insitute

AI in Software
Engineering

43/46

1: What are the factors related to the correct identification of a software fault?

Besides programming skill and professional background, the programmer’s confidence and her
perceived difficulty of the task comprised to the main factors, i.e., the stronger interventional
effects measured by the causal models.

2: How many replications are necessary until we correctly recognize a software fault?

On average 4 times (20% x 20)

3: Are programmers more accurate in their bug fixes if they have access to the explanations?

Yes, programmers are more accurate if they have access to two types of explanations: the root-
cause and the fault removal suggestion.

Summary of Results

AI in Software
Engineering

Complex Self-Awareness & Train Goals
(1/4)

max utility
A

CB
Utility

Time ti

Repair /
optimization
Steps

highest utility

A
B

C

Optimal order
of repairs

Scalable

Maximum
Utility

Expressiveness

✔

✔

✔ ✔

✔

✔

+

✘

✘

✘

+ − +/−

Optimization
-based (C)

Rule
-based (A)

Utility
-driven (B)

Self-adaptive systems that are rule-based
Architecture-based self-healing and self-optimization

[Ghahremani+2017]
[Ghahremani+2018]

AI in Software
Engineering

Required: Function computing the impact on the utility for each possible rule application

Open Question: Can we learn these functions offline (training)?

44

Prof. Holger Giese
Hasso Plattner
Insitute

Complex Self-Awareness
& Train Goals (2/4)

Utility
Change

Predictor

R Studio

generates prediction
models (.pmml)

predicts impact of
adaptation rules

generates data
for machine
learning

Managed
resource

Simulator

simulate
s

adaptsobserves

Adaptation Engine

Managed
resource

adaptsobserves

Adaptation Engine

Real system

or

Simulator

Provide
s
ground
truth

Utility
Change

Predictor

R Studio

generates prediction
models (.pmml)

predicts impact of
adaptation rules

Analytical
Utility

Computer

computes impact of
adaptation rules

generates data
for machine
learning

Managed
resource

Simulator

simulate
s

adaptsobserves

Adaptation Engine

Managed
resource

adaptsobserves

Adaptation Engine

Real system

or

Simulator

Provide
s
ground
truth

0 Linear 0
Combine

d

0 Saturatin
g

0 Discontinuous

AI in Software
Engineering

[Ghahremani+2018]
1) Training

2) Evaluation
(meta level)

45

Prof. Holger Giese
Hasso Plattner
Insitute

Complex Self-Awareness & Train Goals
(3/4)

RQ: Does the performance approximate the analytic-defined
optimum?

Normalized rewards across prediction models for the combined variant

YES

Normalized Reward (mod)=
𝑅𝑒𝑤𝑎𝑟𝑑 𝑚𝑜𝑑 −𝑅𝑒𝑤𝑎𝑟𝑑(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑅𝑒𝑤𝑎𝑟𝑑 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 −𝑅𝑒𝑤𝑎𝑟𝑑(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

AI in Software
Engineering

[Ghahremani+2018]

46

Prof. Holger Giese
Hasso Plattner
Insitute

Complex Self-Awareness & Train Goals
(4/4)

AI in Software

Engineering

47

Learn runtime models (known

unknowns); parameters,

elements, and relations of runtime

models are learned according to

the perception

Software’ Context
u

up

d

Model of

Software’ +

Context

Model as

Reference
Adaptation

yp

Train goals: adjust

goals according to

success w.r.t. higher level

goals

PROBLEM: There is no guarantee that the
trained goals are valid due to fact that they

always rely on potentially erroneous or
outdated measurements/perceptions
➜ optimality is not guaranteed

Prof. Holger Giese
Hasso Plattner
Insitute

Some Literature

Books:

Software Engineering for Self-Adaptive Systems

Software Engineering for Self-Adaptive Systems II

Software Engineering for Self-Adaptive Systems III. Assurances
AI in Software
Engineering

48

Prof. Holger Giese
Hasso Plattner
Insitute

	Slide 1: AI in Software Engineering
	Slide 2: Software Engineering for AI
	Slide 3: Software Engineering for AI We worked on …
	Slide 4: How to optimally allocate code inspection task to minimize cost and time while maximizing the accuracy of software failure diagnostic?
	Slide 5: Software Engineering for AI
	Slide 6: Agenda
	Slide 7: 1. Background: Automation in SE
	Slide 8: Automation in SE
	Slide 9: 2. Overview: AI in SE
	Slide 10: AI in SE: Software Maintenance
	Slide 11: AI in SE: Software Development
	Slide 12: 3. Use Case 1: Clone Detection
	Slide 13: Benchmark BigCloneBench
	Slide 14: Rule-Based - SourcererCC
	Slide 15: Hybrid Rule and Learning-based – Oreo
	Slide 16: Examples with Oreo
	Slide 17: Only Learning-based – Sia-RAE
	Slide 18: Clone Detection: Discussion
	Slide 19: 4. Use Case 2: Code Completion
	Slide 20: Code Completion: Using Statistics
	Slide 21: Code Completion: Traditional vs Deep-Learning
	Slide 22: Code Completion: Deep Learning-Based – CoPilot (1/3)
	Slide 23: Code Completion: Deep Learning-Based – CoPilot (2/3)
	Slide 24: Code Completion – Discussion (1/2)
	Slide 25: Code Completion - Discussion
	Slide 26: 5. Use Case 3: Code Generation ChatGPT = InstructGPT + RLHF
	Slide 27: Code Generation (1/6)
	Slide 28: Code Generation (2/6)
	Slide 29: Code Generation (3/6)
	Slide 30: Code Generation (4/6)
	Slide 31: Code Generation (5/6)
	Slide 32: Code Generation (6/6)
	Slide 33: Code Generation - Discussion
	Slide 34: 6. Conclusion & Outlook
	Slide 35: Outlook – Wicked Problems
	Slide 36: Outlook – Empower Developer
	Slide 37: Thank you for your attention!
	Slide 38: Backup Slides
	Slide 39: AI in SE: Software Testing
	Slide 40: Code Completion: Deep Learning-Based – CoPilot (3/3)
	Slide 41: Summary of Approach and Results
	Slide 42: Impact of Fault Understanding on bug fixing
	Slide 43: Summary of Results
	Slide 44: Complex Self-Awareness & Train Goals (1/4)
	Slide 45: Complex Self-Awareness & Train Goals (2/4)
	Slide 46: Complex Self-Awareness & Train Goals (3/4)
	Slide 47: Complex Self-Awareness & Train Goals (4/4)
	Slide 48: Some Literature

