Hasso
Plattner
— Ins»t_ltut

.—
5 — l'" ""‘u |||lIIl
lIIIIM 4“ i a|||§||i !""“I!“!

o
P T u'.’n||||u|||||||||ln||llllIIIIII!lIIIIlillllllll"l'“!

Al in Software Engineering ,

L

Prof. Dr. Holger Giese and Christian Medeiros Adriano

Head of the System Analysis and Modeling Group
Hasso Plattner Institute at the University of Potsdam

Software Engineering for Al Haces
vs. Al in Software Engineering ﬂ Plattner

Institut

i

— | executable, J

4?2:;5&. %
A

/
tests
Generate | | —
&
models/ tests £y 1] executable
natural
language /
g i
Generateﬁ 1 code QI:: ||i1n2::ti:vare
code ;1 i / g g
— Prof. Holger Giese

I Hasso Plattner
analyze, 4 outcomes | Insitute
o Chart 2

Software Engineering for Al
We worked on ...

Hasso
Plattner
Institut

Operator-Controller-Module (OCM)
TTITITIINT cognitve nformation pracessing /\
s behavior-based self-optimization
s

v
model-based self-optimization

W

1 f
(7 1 cognitive loop f P

[E 0T T refeciive information processing

- emergency
. EJ *%) configuration
L= Ty, control sequencer ..,

1 A
|\t\e\ﬂectlvelocp : @

S

1 1

1 1

1

1

1

i
arearime] |

action level

[Control B |—< !
\— control C | -
7—‘ control A ————

Sven Burmester, Holger Giese and Oliver Oberschelp.
Hybrid UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Helder
Araujo, Alves Vieira, Jose Braz, Bruno Encarnacao and
Marina Carvalho editors, Proc. of 1st International
Conference on Informatics in Control, Automation and
Robotics (ICINCO 2004), Setubal, Portugal, Pages
222-229, INSTICC Press, August 2004.

|
1
i
i
1
| soft reat time_
planning level

Self-Adaptive & Train Goals

1) Training

2) Evaluation
(meta level)

Utility Change
Predictor

N

generates prediction
models (.pmml)

R Studio

generates data
for machine
learning

Adaptation Engine

observes adapts

Managed resource

0 Linear 0 saturating 0 Discontinuous 0 Combined

Sona Ghahremani, Christian M. Adriano and Holger Giese. Training Prediction Models for Rule-Based Self-Adaptive
Systems. In 2018 IEEE International Conference on Autonomic Computing (ICAC), Pages 187-192, 2018. Sona
Ghahremani, Holger Giese and Thomas Vogel. Improving Scalability and Reward of Utility-Driven Self-Healing for Large

Dynamic Architectures. In ACM Trans. Auton. Adapt. Syst., Vol. 14(3), Association for Computing Machinery, New York,
NY, USA, February 2020.

Software Engineering 2

Software Engineering
for Self-Adaptive Systems B for Seit-adaptive Systems II

Software Engineering
for Self-Adaptive Systems Il

& Aswuran

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

3

Al for Software Engineering
We worked on ...

Hasso
Plattner
Institut

HI?W to optimally Approach: causal and sequential decision models decide which
? Ocate_ code tasks to generate and who should execute them.
inspection task to

minimize cost and
time While Programmer Recruitment

maximizing the
Task

Qualified
programmer Task

Task outcome
Task Code inspection
assignment Task

When to stop|
inspection?

Fault
identified

accuracy of
software failure
diagnostic?

Bug

Convergence/

Stopping model l

T T

I Sequencing model

l< What to inspect|next?

Explore or Exploit?

I I Multi-Armed Bandit
= 'z\‘ g

Causal
model

AI/Machine Learning

Components

Software Engineering for Al Haces
vs. Al in Software Engineering ﬂ Plattner

Institut

i

— | executable, J

4?2:;%. %
A

tests
Generate | | —
i i&

models/ tests il — | executable
natural
language /

Generate | code é\; i?nzgi:;vare

code ;1 i / g g
Prof. Holger Giese

I Hasso Plattner
analyze, 4 outcomes | Insitute
o Chart 5

attner
Agend d Institut

Background: Automation in SE
Overview: Al in SE

Use Case 1: Clone Detection
Use Case 2: Code Completion
Use Case 3: Code Generation
Conclusion & Outlook

oA wWNH

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 6

1. Background: Automation in SE

Inspiring Fagan’s’ —{—ml
3 gan S [ave } Code)
Reactices Code Inspection —1 “"L Review ke
Build/CI Continvous MaVen ‘*dOCer
Integration @
\.
- GNU Make I e ~ Jenkins Github Actions
Versioning Version control
& Review (RCS, CVS) SOUI'CQ a m
s :
Testing & Automation sonarqube\ e
Analysis (18M) " a:i: nz Pependabot
— e
P fr?de Refactoring ‘_(i 5 3
uthorin = —
g (]olms‘oh)]av—é 0. phay2 lEJ AutoM(GitHub Copiot
1968 1970 1980 1990 2000 2010 2020
Disruptive automations in software engineering industry =~ @margaretstorey

Open source

https://www.slideshare.net/mastorey/ase-keynote-2022-from-automation-to-empowering-software-developers

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 7

Automation in SE

4

Generate

RO
AN
models/ tests :LLQ”‘l’f

natural

language /

Generate

ko
code_gjﬁgi:g}
A W

Observations:

« Automation that affect the executable is more “"dangerous” (generate

code, compile, ...)

tests

code

Hasso
Plattner
Institut

executable J

4

analyze,

Automation that do not affect the executable is less “dangerous” as it
may only affect the executable via human decisions (generate tests, ...)

outcomes J

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 8

Hasso
Plattner
Institut

2. Overview: AI in SE

Software design Classification
2% 46%
W Software Regression

requirements
4%

Software
management
11%

Fig. 2. The distribution of DL techniques in Fig. 3. The classification of primary Al in Software
Different SE activities. studies. Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 9

[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,
Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

Al in SE: Software Maintenance

Task type

Data type

Dataset

Reference

defect prediction

code-based data

code-based data

code-based data
code-based data

text-based data

PROMISE dataset

Ivy, jEdit, Log4j, Lucene, PBeans, POI,
Synapse, Velocity, Xalan-J, Xerces
cleaned NASA , AEEEM datasets
Bugzilla, Columba, Eclipse JDT, Eclipse
Platform, Mozilla and PostgreSQL
CSIC dataset

[SP04, IEEE46, IEEE43,
IEEES5, IEEE127]
[IEEE87, IEEE92]

[SP04]
[IEEES4]

[IEEE30]

program repair

code-based data
code-based data
code-based data
code-based data
code- and text-based data

DeepFix dataset

SATE IV

ETH-Py1502, MSR-VarMisuse
SPoC dataset

Bears, QuixBugs, ManySStuBs4]

[AAAI03, IEEE138]
[MITPO01]
[ICLR02]
[ACM11]
[IEEE29]

code- and text-based data Bugs.jar [IEEE29, IEEE46]
code- and text-based data Defects4] [IEEE29, IEEE46, IEEE132]
code clone detection code-based data BigCloneBench [AAAI04, ACM04, IEEE27,
MKO04, MKO05, IEEE110,
IEEE38, IEEE51, IEEE55]
code-based data QOJClone [AAAI04, MK04, MKO5,
ACM28, IEEE38]
code-based data Google Code Jam [ACMo04, IEEE27]
bug report related text-based data Summary Dataset(SDS) [IEEE137, IEEE39]

text-based data
text-based data

Authorship Dataset (ADS)
OpenOffice, Eclipse, Net Beans

[IEEE137, IEEE39]
[IEEE139]

self-admitted technical debt
detection

text-based
text-based data

[14]
[1]

[IEEE100]
[IEEE28]

code review

code-based data

cloudstack, ambari,aurora, drillgit,
accumulo and hbase-git.

[AAAI05]

code change

text-based data

QT, OPENSTACK datasets

[IEEE45]

software/code classification

code-based data

[AAAIOZ]

[AAAI02]

[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,

Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 10

Al in SE: Software Development

Task type Data type common dataset Reference
Cod code-based data Java-med [ICLRO7]
re resZn:ation code-based data eth_py150_open [ACM18, ACM338]
P code-based data Code.org’s Hour of Code (HOC) [ACM20]

code-based data

HearthStone (HS)

[SP09, MITP06]

Code code-based data Karel dataset [ICLR09, MITP08, ICLR03]
generation code-based data Spider [MITP06]
code-based data DeepCom [MITP07]
Code comment code-based data Google Code Jam [AAAI08]
eneration text-based data WMT19 [IEEE36]
& code- and text-baseddata CODEnn [IEEE36]
code- and text-based data StaQC benchmark [IEEE02]
Code search code- and text-based data CODEnn [IEEE24]
code- and text-based data COsBench [IEEE24]
Code code-based data JavaScript (JS) [MKO09]
completion code-based data Python (PY) [MKO09]
grocalization image-based data YouTube [SP08, ACM24, ACM36, IEEE140]
Code code-based data NCEF representation [ICLRO6]
summarization code- and text-baseddata LeClair et al. [IEEE136]
Method name code- and text-baseddata MCC corpus [IEEE59]

generation

[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv.,

Vol. 54(10s), Association for Computing Machinery, New York, NY, USA, September 2022

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 11

3. Use Case 1: Clone Detection

1.
Easy '\
to
Detect 2
3.
Difficult 4.
to
Detect

[Belon et al. 2007] Bellon, Stefan, et al., 2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering 33, 9, 577-591

Type-1 (Textual similarity) = Identical source
code fragments (ignore white-space, layout
and comments)

Type-2 (Lexical, token-based, similarity) =
Identical source code fragments (ignore
differences in identifier names)

Type-3 (Syntactic similarity) = Source code
fragments that differ at the statement level,
e.g., fragments can have statements added,
modified and/or removed.

Type-4 (Semantic similarity) = Syntactically
distinct source code fragments, but that
implement the same functionality

[Roy & Cordy 2007] C. K. Roy and J. R. Cordy. 2007. A survey on software clone detection research. Technical Report, Queen’s University at Kingston.

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 12

Benchmark BigCloneBench

Easy
to
Detect

Difficult
to
Detect

A\

PERCENTAGE OF CLONE TYPES IN BIGCLONEBENCH

Clone Type Number Percent(%)
Tl 48062 0.56
T2 4614 0.054

VST3 4182 0.053
ST3 16775 0.193
MT3 86109 1.0
WT3/T4 8416032 98.14

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 13

[Svajlenko et al. 2014] Svajlenko, J., 2014 Towards a big data curated benchmark of inter-project code clones, in 2014 IEEE ICSME, pp. 476-480

Rule-Based - SourcererCC

Hasso
Plattner
Institut

A software S is represented as a collection of code
blocks S : {B1, ..., Bn}, where each Bi corresponds
to a bag-of-tokens B : {T1..., Tk }, where T is token
(method, variable, operator names, etc.)

Assumption: source code follows the Zipf law
(similarly as natural language), which preconizes
that there are few very popular tokens, and the
frequency of tokens decreases very rapidly with
popularity rank (Figure-1)

Insight:

* Most code blocks contain one or more of the few
very popular tokens (e.g., keywords, counters
likes i, j)

* Few code blocks share rare tokens (e.g.,
identifiers that are domain or project specific).

* Hence, if we sort code blocks by the popularity of
tokens in the corpus, the sub-blocks will consist of
these rare tokens. This will ensure low probability
of different sub-blocks having a similar token.

Sajnani, H., et al., 2016, "Sourcerercc: Scaling code clone detection to big-code." Proceedings of the 38th International

Conference on Software Engineering.

Froquency (baged)
55
L

100 Most Frequent Words in Wikipedia

/4 the

> of

— an d

Zipf Law - English
Language

Figure-1 power-law like distribution of token
frequency (popularity)

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

14

Hindle, A., et al., 2016, "On the naturalness of software." Communications of the ACM 59.5: 122-131.

http://wugology.com/zipfs-law/

Hasso

- - Plattner
Hybrid Rule and Learning-based - Oreo Inetitut
. Size Similarity: number of tokens Staﬁ‘"feml’ Dynamic °i“’p“is°“s
s 2l N

« Semantic Similarity: number of actions r Y Y [

tokens (function signature - getByte(), Method 17> size. | Semantic [~ 7| Metrics Clone pairj

toString(), etc.,) shared by two methods Method 2—>{ Simllarity |—p| similatity || similarity
* Metrics Similarity: Halstead effort, lNo lNo lNo

Halsted difficulty, Cyclomatic complexity, _ , ‘

etc. Reject Reject Reject

Candidates J

=
=]
P

. 8o
Pre- Metric Deep s
Processin Filter Neural ™
9 Match Network = .
8 g4 Al in Software
m ' - -
Yed o || Logistic Regression_AUC=0.91542 Engineering
2., -~ Shallow NN_AUC=0.98885 -
= —.— Plain DNN_AUC=0.9929 Prof. Holger Giese
Type 1 &2 J Type 3 & 4 J 00 - —— Siamese DNN_AUC=0.99523 HaS_’SO Plattner
S - - : : : Insitute
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Chart 15

Saini, V., et al., 2018, Oreo: Detection of clones in the twilight zone, Proceedings of the 26th ACM
ESC/FCE

Examples with Oreo

Listing 3: Clone Pair Example: 1

1| private void sortByName() {

2 int i, j;

3 String v;

4 for (i = 0; i < count; i++) { Clones
5 Channelltem ch = chansli |; Type—4
6 v = ch.getTag();

7 j=1i;

8 while ((j > 0) && (collator .compare(chans[j — 1].getTag(), v) = 0)) {
9 chans[j] = chans[j — 1];

10 j—=:

11

12 chans[j] = ch;

13 }

14| }

15| —————— -

16| public void bubblesort(String filenames []) {

17 for (int i = filenames.length — 1; i = 0; i——){

18 for (int j = 0; j <1i; j++) {

19 String temp;

20 if (filenames[j]. compareTo(filenames[j + 1]) > 0) {
21 temp = filenames|[j];

22 filenames|[j] = filenames[j + 1];

23 filenames[j + 1] = temp;

24 }

25 }

26 }

27| }

=W

R-I- N |

10
11

13

08 =1 T W R W R e

r)

11
12
13

15
16
17

Listing 4: Clone Pair Example: 2

public static String getExtension(final String filename) {
if (filename == null || filename.trim().length() ==0 ||
!filename. contains(".")) return null;
int pos = filename. lastindexOf (".");
return filename . substring (pos + 1); Clones
—————————————————————————————————— Type-4
private static String getFormatByName(String name) |
if (name !'= null) {
final int j = name.lastindexOf('.") + 1, k = name.lastIndexOf(" /") + 1;
if (j = k && j < name.length()) return name.substring(j);

return null ;

Listing 5: False Positive Example

public static String getHexString(byte[] bytes) {
if (bytes == null) return null;
StringBuilder hex = new StringBuilder (2 » bytes.length);
for (byte b : bytes) {
hex.append(HEX CHARS[(b & 0xF0) >> 4]).append(HEX CHARS|[(b & 0x0F)]);

return hex. toString () ;

String sequenceUsingFor(int start, int stop) {
StringBuilder builder = new StringBuilder () ;
for (int i = start; i <=stop; i++) {

if (i > start) builder .append(',");
builder .append(i) ;

return builder . toString () ;
1

Saini, V., et al., 2018, Oreo: Detection of clones in the twilight zone, Proceedings of the 26th ACM ESC/FCE

jasso
attner
nstitut

ire

siese

Only Learning-based - Sia-RAE

Hasso
Plattner
Institut

Data Preprocessing

Code
Function

Function Extractor
Source |::> and
C

Recursive
Autoencoders

ode Standard Pretty-printer
Code Recursive
Function Autoencoders
|
1
1
1
i
Recall(% [
Approaches ccall(%) Precision(%) |
Tl T2 VST3 ST3 MT3 WT3/T4 !
Oreo 100 99 100 89 30 0.7 89.5
{ Word2Vec
CCLearner 100 98 98 89 28 1 93
Weighted RAE 100 99.06 99.81 91.19 71.51 22.35 99.24
CloneWorks 100 99 98 93 3 0 98.7 Ad d
NiCad 100 99 98 93 0.8 0 99 -
Deckad 60 58 62 31 12 1 348 embedding!
Sia-RAE 99.7 99.2 99 97.23 95.76 93.02 99.25

Similarity Measurement

Comparator
Network

5]

Pairs

e

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 17

Feng, C., et al., 2020, Sia-RAE: A Siamese Network based on Recursive AutoEncoder for Effective Clone Detection, in 27th IEEE APSEC

Clone Detection: Discussion

Clone Detection Capabilities
 Rule-based approaches can detect simpler types (T1, T2)
 Learning-based approaches can detect more complex types (T3, T4)

« Deep Learning permits to better detect in particular hard types (ST3,
MT3, WT3, WT4)

Handling False Positives

« The results must be still manually checked, which can become quite
challenging in case of complex/hard cases

Studies about the productivity gains due to better clone detection with Al
are missing; likely as the long-term impact on maintenance is very hard to
evaluate ...

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 18

4. Use Case 2: Code Completion

1. Goal: given a code context, predict the next token, next line.
2. Token: names of methods, variables, operations, types
3. Facts affecting training [Allamanis & Sutton 2013]

m Distribution - Most frequent tokens are few,
whereas low frequency are plentiful

m Power-law - The frequency

. .) _Zipf Law (log-log axis)
is a logarithm function of

the count of token

appearances

10:4' | \

count

m Context - The more
frequent tokens are

Frequency

Frequency of tokens
that have a specific

more context dependent

10° 10 10t 10t 1wt 10t 10°
Count of Token Appearances (rank)

107

, i.e., number of times a single token

appears

10

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

19

Allamanis, M., & Sutton, C., 2013, Mining source code repositories at massive scale using language modeling. In IEEE 10th MRS working conference, 207-216.

Hasso
Plattner
Institut

Code Completion: Using Statistics

Quality depends on

1. More frequent terms are easier to predict given a context.
o _ o _ - More data & Better
2. Code Completion is less certain when predicting domain-specific data
variable names, because they are less frequent. ‘
Probability assighed to next token Easy
100 Datasets for Code
Completion:

1 public void executel Trask) {

predict 2 = |
w0 3 throw new NullPointerException(); GitHub Python PY150
4 150K Python files,
E 113.2M tokens
104 5 if (88K instanceof ForkJoinTask<?>) // avoid re-wrap ETH Py150 Open corpus
7.4M Python file

= nForkJoinTas N<?>) H
Github Java Corpus
Projects 11K (training), 4 K(test)
Tokens 1Bi (training), 385M
(test)

106

Difficult
to
predict 10-8

Allamanis, M., & Sutton, C., 2013, Mining source code repositories at massive scale using language modeling. In IEEE 10th MRS working conference, 207-216.

Hasso
Plattner
Institut

Code Completion:
Traditional vs Deep-Learning _ Typed by user

Grey - Recommendation

Traditional /Statistical Deep Learning-Based
(Built in most IDES) (CoPilot, Tabnine, Kite)

Input Previous token Entire source code and Text comments
Output Next token or Next line Naming, code blocks and entire methods
function processItems(DA
¢ CSS let activeltems Q;
Text-based ’
. { Calendar now = new Gr‘egor‘ianta‘lendar(T)MType_based
f Calendar.THURSDAY (= 5) (java.util) int
fon) ¢ Calendar.TUESDAY (= 3) (java.util) int
} font f Locale.TAINAN (= TRADITIONAL_CHINESE) (java.util) Locale -
font-feature-settings f Locale.TRADITIONAL_CHINESE (java.util) Locale 1 fUrICtiOH pr‘oceSSItemS(Z’f@f"f’S) {
ot tfani m TimeZone.getTimeZone (String ID) (java.util) TimeZone : 3 -
gLy ® TineZone java.util let activeltems = 0;
font-kerning ® Tine java.sql
font-language-override m TimeZone.getTimeZone (Zoneld zonelId) (java.util) TimeZone) 7 5 - g
font-size m TimeZone.getDefault() (java.util) TineZone : (let 1 9; 1 items.length; i++) {
font-size-adjust % Throwable java.lang
font-stretch © Thread java.lang
font-style rL.-:hm:ud::?:h\ﬁvﬁ -‘-Iﬁd\ that are suitable by type Next Tip e :

e —— Functional and Iarger

suggestions (in grey)

font-synthesis
font-variant
font-variant-alternates

Raychev, V., et al., 2014, Code completion with statistical language models. In Proceedings of the 35th ACM SIGPLAN, pp. 419-428.
Tiwari, A., et al., 2022, Survey of Code Completion using DeeplLearning.

Code Completion: Hasso
Deep Learning-Based - CoPilot (1/3) ﬂ natiter

const activeltems

function addBook(

GitHub - https://docs.github.com/en/copilot
6 wavs GitHub Copilot helps vou write better code faster - https://www.voutube.com/watch?v=SXtMnnl1v7d8

items.filter(

)

(value: T, index: number, array: readonly T[])

- Typed by user
Grey - Recommendation

=> value is S, thisArg?: any): S[]

A function that accepts up to three arguments. The filter
method calls the predicate function one time for each element
RGEETEIA

Returns the elements of an array that meet the condition
specified in a callback function.

) i .
Suggests the

function

—

Suggests a whole set
of parameters for the
function with an
explanation.

Al in Software

— entire body of the Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

22

Code Completion: Hasso
Deep Learning-Based - CoPilot (2/3) ﬂ natiter

Step 1: Existing Test Class Step 2: Suggests a whole class based
= Extension: Githlub Copilot | J5 modeltestjs X on the file (model.test.js) that existed.

S e . = Extension: GitHub Copilot S model.test.js
'./model.js";

{ deepEqual } 'assert’; I :
class Model {

it('should return an empty array by default', (O => {

const model Model(Q);

deepEqual(model.get(), [1D;

1Dk

it('should add double the number to the list', () => {
const model Model();

model.add(7);
deepEqual(model.get(), [14]);

});
17 |

Il Knows that the class should add
double the number (number * 2)

GitHub - https://docs.github.com/en/copilot
6 wavs GitHub Copilot helps vou write better code faster - https://www.voutube.com/watch?v=SXtMnnl1v7d8

ﬂ Hasso
Code Completion — Discussion (1/2) Inetitut

What do programmers think about it? New Ways of Programming?

“LLM-assisted programming shares some properties of compilation, pair programming,
and programming via search and reuse, there are fundamental differences both in the
technical possibilities as well as the practical experience.”.

[Sarkar et al. 2022] Sarkar, Advait, et al. "What is it like to program with artificial intelligence?." arXiv preprint arXiv:2208.06213
(2022).

Faster: "I think of Copilot as an intelligent autocomplete... I already have the line of
code in mind and I just want to see if it can do it, type it out faster than I can.”

Reuse: "Copilot feels useful for doing novel tasks that I don’t necessarily know how to
do. It is easier to jump in and get started with the task”.

Nonetheless... "I was about to write the code and I knew what I wanted to write. But)
now I'm sitting here, seeing if somehow Copilot came up with something better than the Al in Software

person who's been writing Haskell for five years, I don’t know why am I giving it the Engineering
time of day.” Prof. Holger Giese

. . . : . Hasso Plattner
[Barke, James & Polikarpova 2022] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded copilot: How Insitute
programmers interact with code-generating models." arXiv preprint arXiv:2206.15000 (2022). 24

Hasso

H - H Plattner
Code Completion - Discussion Inatinat
Productivity with Code Completion
« Recruited software developers were asked to implement an HTTP server in JavaScript
as quickly as possible. The treatment group, with access to the Al pair
programmer, completed the task 55.8% faster than the control group.
[Peng 2023] Peng, Sida, et al. "The Impact of Al on Developer Productivity: Evidence from GitHub Copilot." arXiv preprint
arXiv:2302.06590 (2023).
Quality of Code Completion
« Copilot-generated code is harder to debug
* Programmers validate suggestions by “pattern matching”
« Programmers are reluctant to accept or repair suggestions.
Risks of Code Completion Al in Software
- Programmers suffer from an anchoring bias when looking through multiple Engineering
suggestions. Prof. Holger Giese
. . . Hasso Plattner
« Programmers suffer from cognitive overload due to multi-suggestion pane. Insitute
[Barke, James & Polikarpova 2022] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded copilot: How 25

programmers interact with code-generating models." arXiv preprint arXiv:2206.15000 (2022).

5. Use Case 3: Code Generation
ChatGPT = InstructGPT + RLHF

1. ChatGPT = conversational Al, which is very challenging because human language is

ambiguous, and conversations are bounded by contextual information.

2. Instruct GPT = language model trained to follow instructions from a prompt

3. RLHF (Reinforcement Learning from Human Feedback) = human gives

feedback on a generated text in order to align the pre-trained language model with
complex human values (what is funny, ethical, safe).

Step-1: Pre-Train a Language

Prompts & Text Dataset

Train Language Model Prompts Datssel

Initial Language Model

Sempia many prompts

Human Augmented
Text (Optional)

L

Inftial Language Model

(i

Very large investment on
crowdsourcing annotation work

Step-2: Train a Reward Model

Reward (Preference)
Mode!

Step-3: Fine-Tune with RL

Prampts Datasat

4 dog s, J

Tuned Language
Model (RL Policy)

Reiniorcement Learoing
Update (r.g. PO}

00+ Ve J(0)

=k Dy (mepo @) || Towe(yla)}
KL prediction shift penalty

mm—

rolylz)

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 26

Lambert et al., 2022, Illustrating Reinforcement Learning from Human Feedback (RLHF), Hugging Face- https://github.com/huggingface/blog/blob/main/rlhf.md
Ouyang, L. et al., 2022, Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155

Hasso
Plattner
Institut

Code Generation (1/6)

;ﬂ Write a program a that “shuts off the pumps if the water level

remains above 100 m for more than 4 seconds.”

1St water_level = read_water_level_sensor()

version
water_level >

water_level_timer +=

As an Al language madel, | don't have direct access to the physical pumps and water level

sensors to implement the program. However, | can provide a basic pseudocode water_level_timer =

implementation that describes the logic of the program:

water_level timer >=

pump_status =

turn_off_pumps()

pump_status =

turn_on_pumps()

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In wait_for_next_iteration()
Nuclear Safety, Vol. 32, 1991 I —

Hasso
Plattner
Institut

Code Generation (2/6)

w¥y Write a program a that “shuts off the pumps if the water level

remains above 100 m for more than 4 seconds.”

2nd yersion

I'm sorry, as an Al language model, | do not have the capability to directly control physical
devices or write executable programs that interact with the physical world. However, | can

provide a high-level algorithm that could be used to achieve the desired functionality:

1. Continuously monitor the water level sensor.

2. If the water level is above 100 m, start a timer and set a flag indicating that the water

level has been above 100 m. Al in Software

3. If the water level drops below 100 m, reset the timer and clear the flag. Engineering

A. If the timer reaches 4 seconds and the flag is still set, shut off the pumps. Prof. Holger Giese
Hasso Plattner
Insitute

This algorithm can be implemented using a variety of programming languages, platforms, 28

ant hardiware compoeents, dessnding on ths specific requiramenis of the application.

Code Generation (3/6)

Hasso
Plattner
Institut

;ﬂ Write a program a that “shuts off the pumps if the water level

remains above 100 m for more than 4 seconds.”

3rd
version

@ As an Al language model, | don't have direct access to the physical pumps and water level
sensors to implement the program. However, | can provide a basic pseudocode

implementation that describes the logic of the program:

David Parnas, Jan Madey and G. Asmis. Assessment of safety-critical software in nuclear power plants. In
Nuclear Safety, Vol. 32, 1991

water_level =

pumps_on =

pump_on_time =

water_level >

pumps_on:

pumps_on =

pump_off_time = time.time()

pump_off_time - pump_on_time > 4:
print

pumps_on:
pumps_on
pump_on_time = time.time()

print()

water_level +=

time.sleep(l)

Code Generation (4/6)

water_level = read_water_level_sensor()

water_level >

water_level timer +=
water_level_timer =
water_level_timer >=
pump_status =

turn_off_pumps()

pump_status =

turn_on_pumps()

wait_for_next_iteration()

1 st
version

3rd
version

water_level =
pumps_on =

pump_on_time =

water_level >
pumps_on:

pumps_on =

print(

pump_off_time = time.time()

pump_off_time - pump_on_time > 4:

print(

pumps_on:
pumps_on =
pump_on_time = time.time()

print()

water_level +=

time.sleep(1l)

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

30

David Parnas, Jan Madey and G.
Asmis. Assessment of safety-
critical software in nuclear power
plants. In Nuclear Safety, Vol.
32,1991

Code Generation (5/6)

Write a program in Java to shut off the pumps if the water level remains above 100 m for

more than 4 seconds.

Sure, here's an example Java program that can shut off the pumps if the water level remains

above 100 m for more than 4 seconds:

Note that this code assumes you have a way to read the water level sensor input and control

the pump. You may need to modify the code to match your specific hardware and libraries.

Additionally, please test and validate any code you use for controlling important equipment

like pumps, and follow appropriate safety protocols.

O Copy code

java.util.Timer;

java.util.TimerTask;

Timer shutoffTimer;

(O

Parnas, D., et al., Assessment of safety-critical software in
nuclear power plants. In Nuclear Safety, Vol. 32, 1991

O L
shutoffTimer = Q0);
shutoffTimer.schedule(

- checkliaterlevel();
(waterLevelAboveThresholdNow &8 !waterlevelAboveThreshold) {

waterlLevelAboveThreshold = H
startMillis = System.currentTimeMillis();
(!waterLevelAboveThresholdNow) {

waterlLevelAboveThreshold =
startMillis = @;
(waterLevelAboveThresholdNow && waterlevelAboveThresh:
&& (System.currentTimeMillis() - startMillis) >= SHUTOF

shutoffPump();

Hasso
Plattner
Institut

Java code. It compiles

and it is well structured.

O {

shutoffTimer.cancel();

(String[] args) {

monitor.startMonitoring();

()i
{
Thread.sleep();
(InterruptedException e) {

H

monitor.stopMonitoring();

Hasso
Plattner
Institut

Code Generation (6/6)

Ambiguity and natural language © Many possible interpretations ...

“Shut off the pumps if the mean water level over the past 4 seconds was above 100 m.”

U:_LlWL(t)dtJ /4>100

“Shut off the pumps if the median water level over the past 4 seconds was above 100 m.”

MAX ., WL®)]+MIN,_, , WL(t)]}/2>100

Al in Software
Engineering
4 seconds was above 100 m.”

“Shut off the pumps if the minj

MIN,,_, ,WL(t)]>100

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 32

David Parnas, Jan Madey and G. Asmis. Assessme
Nuclear Safety, Vol. 32, 1991

car power plants. In

Code Generation - Discussion

water_level = read_water_level_sensor()

Code has still to be adjusted
« Positioned in the code
« Replace variables

« Use the right
functions/operations

Code may be wrong

* Pumps are shut off too early in
version 2

Best code offered (1st, 2nd, ...)
must be identified and
adapted/corrected

Reuse? But produces many clones

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

33

6. Conclusion & Outlook

« Automation will substantially improve using Al (resp. has already)

- Automation that does not affect the executable can therefore better
support human decisions

« Pro: better clone detection can result in better maintenance
decisions

« Cons: too much trust can also here lead also to wrong decisions
« Automation that affect the executable raises very subtle problems

« humans must evaluate the outcomes for the specific context (e.g.,
check that the code really does what is needed (do they know?
corner-cases?),

« humans must adapt the outcomes to the specific context (e.g.,
replace variables (may become quite complex)), and

« humans may have to change the outcomes later or regenerate place
them (maintenance may become harder? trade-off!).

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 34

Outlook — Wicked Problems

Human

Study things as
Endeavors

they are ...

Making new things ...

Define problem
and look for the
best solution ...

Analytic
scientific
method

Explore possibilities
iteratively to better
understand the problem

Engineering
/ Design

solution-based

approaches
PP Software!

O Well-defined problems have specific goals, O lll-defined problems are those that do not have
clearly defined solution paths, and clear clear goals, solution paths, or expected
expected solutions. solution.

= Engineering becomes O Wicked problems are ill-defined problems that
an optimization problem are not understood until after the formulation of

a solution [Jeffrey2006]

=>» Design becomes an iterative search problem

MJeffrev2006] Jeffrev Conklin. Dialogue mappina: building shared understandina of wicked problems. Wilev Publishinag, Chichester. Enagland, 2006.

Hasso
Plattner
Institut

Al in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 35

Outlook — Empower Developer

“Shared theories about problem and solution domains
that are in the minds of developers” [Peter Naur, 1985]

“Every person’s mental model is incomplete and out of date
but we need them all!” [Jessica Kerr, Explore DDD Conference, 2018]

“People are part of the code” [Jean Yang, QCon Panel, 2021]

Flow is a state of mind, a holistic sensation, that people feel when they
act with total involvement [Mihaly Csikszentmihalyi]

Clear goals

Total sense of involvement

Loss of self-consciousness

Feeling of control and being in control
Altered sense of time

Above average skills and challenges

§

Challenge

§

Reduce cognitive
complexity

s

/_*_\/ Improve velocity of = - Remove friction,
N feedback - G ~ empower flow

50 | The dimensions of developer experience may be in tension

40| Developer Flow and Fulfillment

https://www.slideshare.net/mastorey/ase-keynote-2022-from-automation-to-empowering-software-developers

Hasso
Plattner
Institut

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

Chart 36

Thank you
for your attention!

Hasso
Plattner
Institut

Digital Engineering + Universitat Potsdam

. | : ""I'& :
ﬂl
e I'M} lﬂ?ﬂ:":'i:”h '|| |‘| I‘!"‘l,“!

gkt li"‘Lﬂ’u||||u||m||||l||||llllIIIIIIllIIIIlilllllIII||'“!

A ¥

L

Prof. Dr. Holger Giese and Christian Medeiros Adriano

Head of the System Analysis and Modeling Group
Hasso Plattner Institute at the University of Potsdam

Hasso
Plattner
BN |nstitut

-—
, - - u't rs l‘ |l||'

l
m ||
| d:,t:qm nnuxu!:lll"g":lll L !'l"“l!"!
T wnllmuumlnlﬂllllllIIIIII!llllllilllllIIIIIIIl!

Backup Slides !

]
Prof. Dr. Holger Giese and Christian Medeiros Adriano
Head of the System Analysis and Modeling Group
Hasso Plattner Institute at the University of Potsdam

Hasso

- - Plattner
Al in SE: Software Testing Institut
nstitu
Task type Data type Dataset Reference
Bug detection code-based data Linux, MySQL and Apache HTTPD server [IEEE68]
code-based data [12] includes 986 apps,578 normal apps and 408 [EL17]
vulnerable apps
text-based data bug report from Mozilla [EL12]
Bug localization code-based data Defects4] benchmark [TEEE40]
text-based data [13] bug report benchmark [IEEE40]
code- and text-based data Aspect] in Bugzilla, SWT, JDT, Tomcat [IEEE135]
Vulnerability detection code-based data MC&NH dataset [EL03]
text-based data CVE Details websit [[EEE57]
Test case generation code-based data REAPER [TEEE17]
image-based data MNIST, fashion-MNIST [IEEE93]
image-based data CIFAR-10, CIFAR-100 [[EEE93] Al in Software
Program analysis text-based data static analysis alarm data [IEEE62] Engineering
Prof. Holger Giese
bug classification code-based data MorzillaProject, Radare2Project [EL13] Hasso Pl agttn er
Insitute
Chart 39

[Yang+2922] Yanming Yang, Xin Xia, David Lo and John Grundy. A Survey on Deep Learning for Software Engineering. In ACM Comput. Surv., Vol. 54(10s),
Association for Computing Machinery, New York, NY, USA, September 2022

Code Completion: Hasso
Deep Learning-Based - CoPilot (3/3) ﬂ natiter

Or suggests a SQL code

function addBook()
query(

However, accepting this might create a SQL injection
vulnerability. The reason is that content of params is passed
“as-is” without any protection*

*Four options of avoiding SQL Injection:
1. Use of Prepared Statements (with Parameterized Queries)

Hazard!

Al in Software
Engineering

2. Use of Properly Constructed Stored Procedures <« | _

3. Allow-list Input Validation ::rOf- Hé)llgt(?cr Giese
4. Escaping All User Supplied Input Ias_’fot attner
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html 4'2)5' ute

GitHub - https://docs.github.com/en/copilot
Source: 6 ways GitHub Copilot helps you write better code faster - https://www.youtube.com/watch?v=SXtMnn1v7d8

Summary of Approach
and Results

Chris’ PhD Thesis

AI in Software
Engineering

Prof. Holger Giese
Hasso Plattner
Insitute

41

Impact of Fault Understanding on bug fixing

Hasso
Plattner
Institut

Do explanations make bug fixes more accurate?

Categorization of 122 explanations, 8 people

. 21 programmers, average of 11.7

70 years of experience

60 mAll occurrences Single occurrences
w50 -
S m No Explanation Fault removal
Y3

20

0 I I [] Accuracy 46% 81% 100%

0

Root-cause of Program Failure description | Fault removal More information
failure comprehension suggestion

Explanation types No Explanation| Root-Cause | No Explanation
< < <

. Root-cause Fault removal | Fault removal

Yes, but only for explanations

that reflect fault understanding

0.012 0.018 0.00001
0.74 0.68 AIin Softlvé
Engineering
Prof. Holgegs firse
Large Large Ha;so Plaqt_i:ﬁgp%
pos-hoc 48% 43% T 949

Power

tt
Summary of Results |n§ti?3{

1: What are the factors related to the correct identification of a software fault?

Besides programming skill and professional background, the programmer’s confidence and her
perceived difficulty of the task comprised to the main factors, i.e., the stronger interventional
effects measured by the causal models.

2: How many replications are necessary until we correctly recognize a software fault?
On average 4 times (20% x 20)

3: Are programmers more accurate in their bug fixes if they have access to the explanations?

Yes, programmers are more accurate if they have access to two types of explanations: the root-
cause and the fault removal suggestion.

Al in Software

Engineering 43/46

Complex Self-Awareness & Train Goals Hasso
(1/4) Institut

[Ghahremani+2017]
[Ghahremani+2018]

utilit

Failure free oPtimization Uti"ty
optimal) -based (C) -based (A) | -driven (B)
solution
Optimal order v X v
of repairs
Scalable X v v
| x|,
Expressiveness + - +/- . .
Ricft Hofgeargiese

HagsoeRlabimer
Required: Function computing the impact on the utility for each possible ruléraiyskcation
Open Question: Can we learn these functions offline (training)?

—Complex Self-Awareness

& Train Goals (2/4)

Hasso
Plattner
Institut

[Ghahremani+2018]

1) Training Analytical
} Utility
2) Evaluation Computer
(meta level)
— predicts impact of
Utility adaptation rules _
Change >
Predictor

Adaptation Engine

observes/]\ \l, adapts

computes impact of
, adaptation rules

‘ Simulator ’ E—
generates prediction | Provide
s Comml) \L <
simulate | ground
A o Managed truth
observes \y FCR0LE resource
45
i — V Riof Bofyea@iese
! ! , Vd HagsoeRlabimer
/ . Insitute
0 Linear 0 saturatin 0 Discontinuous 9 Combine
g d

Complex Self-Awareness & Train Goals ﬂHasso
(3/4) Institut

[Ghahremani+2018]

RQ: Does the performance approximate the analytic-defined YES
optimum?

O1K @3K m9K ®Optimal

1.00 0.982 0.991

0.956 I I

GBM

0.988

0.970
0.945
0.95 0.925

0.938
0.901
o0 1]
0.85
RF XGB

Normalized rewards across prediction models for the combined variant

22,

Normalized
Reward

7//////“

%

46

Ridfh Hofgear@iese

Reward (mod)—Reward(Baseline) HagieRkatiner

Insitute

Normalized Reward (mod)=
() Reward (Optimal)—Reward(Baseline)

Complex Self-Awareness & Train Goals

Hasso
(4/4) Plattner
Institut
PROBLEM: There is no guarantee that the
Train goals: adjust trained goals are valid due to fact that they
goals according to always rely on potentially erroneous or
. outdated measurements/perceptions
success w.r.t. higher level > i ity i
goals
Learn runtime models (known
unknowns); parameters,
- elements, and relations of runtime
N models are learned according to
Model of the perception
cse —» Adaptation «— Software’ + 14—
Context
=t 47
‘// ld Rraf. Sativggae Giese
- Software’ d :: Context i——yﬂ Ewé"au:ner
C 1 Insitute

Hasso
Plattner

Some Literature Institut

Samuel Kounev - Jeffrey 0. Kephart

Aleksandar Milenkoski - Xiaoyun Zhu

: Software Engineering Editors
@ Software Engineering Software Engineering for Self-Adaptive Systems II

B for Self-Adaptive Systems for Self-Adaptive Systems I Assurances

Self-Aware
Computing
Systems

Books:
Software Engineering for Self-Adaptive Systems
Software Engineering for Self-Adaptive Systems II 48
: : _ . Riof Bofgear@iese
Software Engineering for Self-Adaptive Systems III. Assurances BagiweBktmer

Insitute

	Slide 1: AI in Software Engineering
	Slide 2: Software Engineering for AI
	Slide 3: Software Engineering for AI We worked on …
	Slide 4: How to optimally allocate code inspection task to minimize cost and time while maximizing the accuracy of software failure diagnostic?
	Slide 5: Software Engineering for AI
	Slide 6: Agenda
	Slide 7: 1. Background: Automation in SE
	Slide 8: Automation in SE
	Slide 9: 2. Overview: AI in SE
	Slide 10: AI in SE: Software Maintenance
	Slide 11: AI in SE: Software Development
	Slide 12: 3. Use Case 1: Clone Detection
	Slide 13: Benchmark BigCloneBench
	Slide 14: Rule-Based - SourcererCC
	Slide 15: Hybrid Rule and Learning-based – Oreo
	Slide 16: Examples with Oreo
	Slide 17: Only Learning-based – Sia-RAE
	Slide 18: Clone Detection: Discussion
	Slide 19: 4. Use Case 2: Code Completion
	Slide 20: Code Completion: Using Statistics
	Slide 21: Code Completion: Traditional vs Deep-Learning
	Slide 22: Code Completion: Deep Learning-Based – CoPilot (1/3)
	Slide 23: Code Completion: Deep Learning-Based – CoPilot (2/3)
	Slide 24: Code Completion – Discussion (1/2)
	Slide 25: Code Completion - Discussion
	Slide 26: 5. Use Case 3: Code Generation ChatGPT = InstructGPT + RLHF
	Slide 27: Code Generation (1/6)
	Slide 28: Code Generation (2/6)
	Slide 29: Code Generation (3/6)
	Slide 30: Code Generation (4/6)
	Slide 31: Code Generation (5/6)
	Slide 32: Code Generation (6/6)
	Slide 33: Code Generation - Discussion
	Slide 34: 6. Conclusion & Outlook
	Slide 35: Outlook – Wicked Problems
	Slide 36: Outlook – Empower Developer
	Slide 37: Thank you for your attention!
	Slide 38: Backup Slides
	Slide 39: AI in SE: Software Testing
	Slide 40: Code Completion: Deep Learning-Based – CoPilot (3/3)
	Slide 41: Summary of Approach and Results
	Slide 42: Impact of Fault Understanding on bug fixing
	Slide 43: Summary of Results
	Slide 44: Complex Self-Awareness & Train Goals (1/4)
	Slide 45: Complex Self-Awareness & Train Goals (2/4)
	Slide 46: Complex Self-Awareness & Train Goals (3/4)
	Slide 47: Complex Self-Awareness & Train Goals (4/4)
	Slide 48: Some Literature

