
Using Ontologies for Flexibly Specifying
Multi-User Processes

ICSE 2010 Workshop on Flexible Modeling Tools
Cape Town, South Africa, 2 May 2010

Gregor Gabrysiak, Holger Giese and Andreas Seibel
System Analysis and Modeling Group

Hasso Plattner Institute
University of Potsdam



Formal Tools

Pros
• automatic detection of errors

• maintenance throughout the
model is simple

• reusable throughout a project

Cons
• restricted by metamodel

• early commitment

• overhead for small projects Figure: UML Model (MS Visio)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Formal vs. Informal Tools 2



Informal and General-Purpose Tools

Pros
• easy to use

• everything can be captured

• degrees of freedom are
similar to whiteboards

Cons
• no metamodel

• changing references

• presentable, rarely reusable

D

A B1

B2 C

Figure: Process Model (Keynote)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Formal vs. Informal Tools 3



Bridging the Gap

Formal

Informal

Flexible
Metamodel

Ontologies as Flexible Metamodels
• less restrictive

• missing concepts can be added on demand
• capable of capturing the modeler’s intent

• a model can always be interpreted with its
corresponding metamodel

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Introducing Ontologies 4



Using a Formal Modelling Tool

customer:Role boss:Role assistant:Role

M2

M1
<<instanceOf>>

<<instanceOf>> <<instanceOf>>

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Introducing Ontologies 5

Metamodel
(Formal Tool)

User
Generated

Model



Extending the Meta Model

jane:Boss john:Assistant max:Customer

M1
<<instanceOf>> <<instanceOf>> <<instanceOf>>

M2

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Introducing Ontologies 6

Metamodel

Project-
Specific

User
Generated

Model



Using Ontologies as Meta Model

M1

M2

<<instanceOf>> <<instanceOf>><<instanceOf>>

jane:Boss john:Assistant max:Customer

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Introducing Ontologies 7

Basic
Ontology

Project-
Specific

User
Generated

Model



Creating Behavioral Specifications I

Using the terminology defined in the ontology, an analyst can...
• describe an observed situation
• describe the follow-up state
• the difference between both specifies an action

• specified in the terminology defined in the ontology

+2

receiver

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Modelling with Ontologies 8

Initial state Follow-up state



Creating Behavioral Specifications II

+2

receiver

︸ ︷︷ ︸

!"#$%&'()*

++
,"-").",

++
/"#$",

++%%(00(-1"$

%2%&'()*01)/%2%34/056", 7%2%8//)/0(#0

%2%9,5:5/(*

%2%&'()*01)/%2%;5*" 7%2%;5*"
++

,"-").",
++

/"#$",

%2%<)=)0(*8,0)>(-0

++%%(00(-1"$
1(/

1(/

!"#$%9,5:5/(*

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Modelling with Ontologies 9



So, what do we have?

• behavioral and situational
specification of a process

• formal specifications that
can be simulated

• all specifications reference
elements of the flexible
metamodel

• specified in the
terminology defined in the
ontology

• specification is affected by
changes in the ontology

M1

M2

!"#$%&'()*

++
,"-").",

++
/"#$",

++%%(00(-1"$

%2%&'()*01)/%2%34/056", 7%2%8//)/0(#0

%2%9,5:5/(*

%2%&'()*01)/%2%;5*" 7%2%;5*"
++

,"-").",
++

/"#$",

%2%<)=)0(*8,0)>(-0

++%%(00(-1"$
1(/

1(/

!"#$%9,5:5/(*

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Modelling with Ontologies 10



So, what do we have?

• behavioral and situational
specification of a process

• formal specifications that
can be simulated

• all specifications reference
elements of the flexible
metamodel

• specified in the
terminology defined in the
ontology

• specification is affected by
changes in the ontology

M1

M2

!"#$%&'()*

++
,"-").",

++
/"#$",

++%%(00(-1"$

%2%&'()*01)/%2%34/056", 7%2%8//)/0(#0

%2%9,5:5/(*

%2%&'()*01)/%2%;5*" 7%2%;5*"
++

,"-").",
++

/"#$",

%2%<)=)0(*8,0)>(-0

++%%(00(-1"$
1(/

1(/

!"#$%9,5:5/(*

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Modelling with Ontologies 10



So, what do we have?

• behavioral and situational
specification of a process

• formal specifications that
can be simulated

• all specifications reference
elements of the flexible
metamodel

• specified in the
terminology defined in the
ontology

• specification is affected by
changes in the ontology

M1

M2

!"#$%&'()*

++
,"-").",

++
/"#$",

++%%(00(-1"$

%2%&'()*01)/%2%34/056", 7%2%8//)/0(#0

%2%9,5:5/(*

%2%&'()*01)/%2%;5*" 7%2%;5*"
++

,"-").",
++

/"#$",

%2%<)=)0(*8,0)>(-0

++%%(00(-1"$
1(/

1(/

!"#$%9,5:5/(*

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Modelling with Ontologies 10



When Working with Flexible Metamodels...

We have to deal with ...
• addition, modification, and removal of
• classes, properties, methods, and associations

+2 +2 +2

Worst Case Scenario
modeled specifications become unreadable with modified metamodel

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 11



When Working with Flexible Metamodels...

We have to deal with ...
• addition, modification, and removal of
• classes, properties, methods, and associations

+2 +2 +2

Worst Case Scenario
modeled specifications become unreadable with modified metamodel

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 11



Modifications of the Ontology

Addition Removal Modification
Class �X �

X

�

X(user assisted)

Property �X �

X(user assisted)

�

X(user assisted)

Association �X �

X(user assisted)

�

X(user assisted)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 12

Addition of any new Element
• not referenced yet =⇒ no action necessary
• save as often as possible

• small deltas between versions
• old version of the ontology is kept
• when saving, IDs can be added

Removal of any referenced Element
• Class: dangling references are redirected (recursively) to

the corresponding superclass
• Property: either delete references or move to superclass
• Association

• pointing to deleted class: redirect to superclass
• else: either delete references or propose substitutes

Modification of any referenced Element
• modeler’s intent is unclear
• syntactical change (Bosss becomes Boss):

• same concepts apply, references still valid
• IDs can be used to redirect from Bosss to Boss

• semantical change (+getX() becomes +setX()):
• different concepts apply, references invalid
• remove old version + add new version



Modifications of the Ontology

Addition Removal Modification
Class �X �X �

X(user assisted)

Property �X �X(user assisted) �

X(user assisted)

Association �X �X(user assisted) �

X(user assisted)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 12

Addition of any new Element
• not referenced yet =⇒ no action necessary
• save as often as possible

• small deltas between versions
• old version of the ontology is kept
• when saving, IDs can be added

Removal of any referenced Element
• Class: dangling references are redirected (recursively) to

the corresponding superclass
• Property: either delete references or move to superclass
• Association

• pointing to deleted class: redirect to superclass
• else: either delete references or propose substitutes

Modification of any referenced Element
• modeler’s intent is unclear
• syntactical change (Bosss becomes Boss):

• same concepts apply, references still valid
• IDs can be used to redirect from Bosss to Boss

• semantical change (+getX() becomes +setX()):
• different concepts apply, references invalid
• remove old version + add new version



Modifications of the Ontology

Addition Removal Modification
Class �X �X �X(user assisted)
Property �X �X(user assisted) �X(user assisted)
Association �X �X(user assisted) �X(user assisted)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 12

Addition of any new Element
• not referenced yet =⇒ no action necessary
• save as often as possible

• small deltas between versions
• old version of the ontology is kept
• when saving, IDs can be added

Removal of any referenced Element
• Class: dangling references are redirected (recursively) to

the corresponding superclass
• Property: either delete references or move to superclass
• Association

• pointing to deleted class: redirect to superclass
• else: either delete references or propose substitutes

Modification of any referenced Element
• modeler’s intent is unclear
• syntactical change (Bosss becomes Boss):

• same concepts apply, references still valid
• IDs can be used to redirect from Bosss to Boss

• semantical change (+getX() becomes +setX()):
• different concepts apply, references invalid
• remove old version + add new version



Conclusions

M1

M2

!"#$%&'()*

++
,"-").",

++
/"#$",

++%%(00(-1"$

%2%&'()*01)/%2%34/056", 7%2%8//)/0(#0

%2%9,5:5/(*

%2%&'()*01)/%2%;5*" 7%2%;5*"
++

,"-").",
++

/"#$",

%2%<)=)0(*8,0)>(-0

++%%(00(-1"$
1(/

1(/

!"#$%9,5:5/(*

2

b:Role

+age: int

this:Customer2

+ + + value: int+

• ontologies as flexible metamodels
• concepts for handling metamodel changes
• implementation in Eclipse & EMF

• automatic reload of changes in metamodel
• Addition of elements fully functional

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 13


	Formal vs. Informal Tools
	Introducing Ontologies
	Modelling with Ontologies
	Handling Ontology Modifications

