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Formal Tools

Pros
• automatic detection of errors

• maintenance throughout the
model is simple

• reusable throughout a project

Cons
• restricted by metamodel

• early commitment

• overhead for small projects Figure: UML Model (MS Visio)
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Informal and General-Purpose Tools

Pros
• easy to use

• everything can be captured

• degrees of freedom are
similar to whiteboards

Cons
• no metamodel

• changing references

• presentable, rarely reusable

D

A B1

B2 C

Figure: Process Model (Keynote)

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Formal vs. Informal Tools 3



Bridging the Gap

Formal

Informal

Flexible
Metamodel

Ontologies as Flexible Metamodels
• less restrictive

• missing concepts can be added on demand
• capable of capturing the modeler’s intent

• a model can always be interpreted with its
corresponding metamodel
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Using a Formal Modelling Tool

customer:Role boss:Role assistant:Role

M2

M1
<<instanceOf>>

<<instanceOf>> <<instanceOf>>
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Extending the Meta Model

jane:Boss john:Assistant max:Customer

M1
<<instanceOf>> <<instanceOf>> <<instanceOf>>

M2
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Using Ontologies as Meta Model

M1

M2

<<instanceOf>> <<instanceOf>><<instanceOf>>

jane:Boss john:Assistant max:Customer
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Creating Behavioral Specifications I

Using the terminology defined in the ontology, an analyst can...
• describe an observed situation
• describe the follow-up state
• the difference between both specifies an action

• specified in the terminology defined in the ontology

+2

receiver
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Creating Behavioral Specifications II

+2

receiver
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So, what do we have?

• behavioral and situational
specification of a process

• formal specifications that
can be simulated

• all specifications reference
elements of the flexible
metamodel

• specified in the
terminology defined in the
ontology

• specification is affected by
changes in the ontology

M1

M2
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When Working with Flexible Metamodels...

We have to deal with ...
• addition, modification, and removal of
• classes, properties, methods, and associations

+2 +2 +2

Worst Case Scenario
modeled specifications become unreadable with modified metamodel
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Modifications of the Ontology

Addition Removal Modification
Class �X �

X

�

X(user assisted)

Property �X �

X(user assisted)

�

X(user assisted)

Association �X �

X(user assisted)

�

X(user assisted)
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Addition of any new Element
• not referenced yet =⇒ no action necessary
• save as often as possible

• small deltas between versions
• old version of the ontology is kept
• when saving, IDs can be added

Removal of any referenced Element
• Class: dangling references are redirected (recursively) to

the corresponding superclass
• Property: either delete references or move to superclass
• Association

• pointing to deleted class: redirect to superclass
• else: either delete references or propose substitutes

Modification of any referenced Element
• modeler’s intent is unclear
• syntactical change (Bosss becomes Boss):

• same concepts apply, references still valid
• IDs can be used to redirect from Bosss to Boss

• semantical change (+getX() becomes +setX()):
• different concepts apply, references invalid
• remove old version + add new version
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Conclusions
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b:Role

+age: int

this:Customer2

+ + + value: int+

• ontologies as flexible metamodels
• concepts for handling metamodel changes
• implementation in Eclipse & EMF

• automatic reload of changes in metamodel
• Addition of elements fully functional

Gregor Gabrysiak, FlexiTools 2010, 2 May 2010 Handling Ontology Modifications 13


	Formal vs. Informal Tools
	Introducing Ontologies
	Modelling with Ontologies
	Handling Ontology Modifications

