
Model-Driven Software
Engineering of Self-
Adaptive Systems
KTH, Stockholm, Sweden, 25.11.2010

Holger Giese
System Analysis & Modeling Group, Hasso Plattner
Institute for Software Systems Engineering at the
University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

2

Outline

I Motivation
 – Why self-adaptiveness?

II Foundations
 - What is self-adaptiveness?

III Construction
 – How to build them?

IV Quality Assurance
 – How to ensure their quality?

V Conclusion

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

3

Developer

I Motivation: Software
Evolution & Aging

Software Evolution [Lehman&Belady1985,Lehman1997]:

!  Programs always include explicit and implicit
assumptions about the real world domain

!  The real world domain and the program (and its explicit
and implicit assumptions) must be maintained
compatible and valid with one another

!  Developing software is a complex feedback system

Two types of software aging [Parnas1994]:

!  Lack of Movement: Aging caused by the failure of the
product’s owners to modify it to meet changing needs.

!  Ignorant Surgery: Aging caused as a result of changes
that are made.

!  This “one-two punch” can lead to rapid decline in the
value of a software product.

Environment

Validation:
Describes
the model
the original
for the
purpose
correct?

Original

Software
(Model)

Platform

runs on

abstract

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

4

I Motivation: Software

Complexity & Administration

Autonomic Computing [AC2001]:

!  Evolution via automation also produces complexity as
an unavoidable byproduct (especially true for IT
systems: incredible progress in speed, storage and
communication; extreme growth software with >30
million loc and > 4,000 programmers)

!  In fact, the growing complexity of the I/T infrastructure
threatens to undermine the very benefits information
technology aims to provide, because systems cannot be
managed any more.

Proposed solution:

!  make things simpler for administrators and users of I/T
by automating its management (Paradoxically, it
seems we need to create even more complex systems).

!  Inspiration is the massively complex systems of the
human body: the autonomic nervous system.

Environment

Original

Software
(Model)

Platform

runs on

Admin
abstract

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

5

Original Original

Platform Platform

Software
(Model)
Software
(Model)

I Motivation: Software
Landscapes vs. Applications

Industrial automation Automotive

Transportation Mobile Devices

IT Systems

Sensor Networks

!  Characteristics: large-scale, heterogeneous, distributed,
ad hoc evolution, no central authority

!  May include: Server backends, embedded subsystems,
wireless ad hoc networks, mobile devices, …

Environment

Original

Software
(Model)

Platform

runs on

Who?
abstract

The software must resolve adaption needs due to changes in
the context and platform itself to be able to work at all

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

6

I Motivation: Future
Software Landscape Example

A shuttle system that builds convoys
to optimize the energy consumption

Test shuttle

Test track
http://www.railcab.de/

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

7

II Foundations:
Self-Adaptiveness

What do we need?

[Salehie&Tahvildari2009]

Original Original

Platform Platform

Software
(Model)
Software
(Model)

Environment

Original

Software
(Model)

Platform

runs on

Who?
abstract

The software
itself!

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

8

II Foundations:
Adaptation Loop

[Brun+2009]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

9

II Foundations:
Architecture & Self

External Approach

Internal Approach

[Salehie&Tahvildari2009]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

10

II Foundations:
Models and Adaptation

Adapt “without” models:

!  Still explicit or implicit design-time
models are used to guide adaptation
processes

!  Limitation: covers only changes
covered by one model of the software’
+ context (potentially including some
parameters or structural changes that
can be observed)

Adapt with runtime models:

!  Explicit runtime models are used to
guide adaptation processes

!  Limitation: covers only changes
captured by the runtime models
(multiple!); requires correct
adjustment of them from the
observations

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

11

II Foundations:
Top-Down Architecture

! Layers for different purposes

! Decoupling of the layers in time

Reference Architecture for Self-Management:

[Kramer&Magee2007]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

12

Self-organization is a process in which structure and
functionality at the global level of a system emerge solely
from numerous interactions among the lower-level
components.

Characteristics:
!  No central control
!  Emerging structure
!  Resulting complexity
!  High scalability

Emergence is an apparently meaningful collaboration of
components (individuals) resulting in capabilities of the overall
system (far) beyond the capabilities of the single components.

II Foundations:
Bottom-Up Architecture

[Dressler2007]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

13

II Foundations:
Subject of Adaptation

Adaptation

Parameter Structure Behavior
(implicit)

Finite
domain

Infinite
domain

Reconfiguration Compositional
Adaptation

Static set
of entities

Dynamic
creation

and deletion

But how can we systematically build the software for
such systems (construction)?

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

14

Function

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

Development time:

Runtime:
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption

Adaption ||

III Construction:
Control Loop

Modell System

! | |!
""""""""""""""""
! | |!
""""""""""""""""
! | |!
""""""""""""""""
! | |!
""""""""""""""""
! | |!
""""""""""""""""

Software-
system

Legend:

|| Context

Challenges:

(1) How to design the
adaptation algo.?

(2) How to architect
systems with control
loops?

(3) How to develop the
necessary elements
of the loop?

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

15

III Construction: Complex
(1) design adaptation algo.

Complex development
time models:
!  Application: Monitoring and

Restart of Services

!  Instance of the MIAC scheme

!  Identification of required reliability
and availability parameters via
monitoring

!  An development time availability
model in form of an Stochastic
Petri Net is used to precompute
values for the required parameter
adaptation (using interpolation)

[ADS2004]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

16

III Construction:
(2) Architecting Loops

Problem [Brun+2009]:

!  Control loops are not directly
supported when architecting

Proposal: A UML Profile for feedback loops:

!  Identify loop elements and mark them using stereotypes

!  Identify whether loops overlap in undesired ways

!  Identify control related effects

?

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

17

Function

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

Development time:

Runtime:
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption:
Goal Mgt.

Change Mgt.

Change
Management ||

III Construction:
Control Loop & Layers

|| Context Goal
Management ||

Challenges:

(1) Support layers

(2) Provide decoupling between layers

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

18

III Construction:
Micro Architecture

Operator-Controller
Module

!  Cognitive operator
(“intelligence”)

decoupled from the hard
real-time processing

!  Reflective operator

Real-time coordination and
reconfiguration

!  Controller

Control via sensors and
actuators in hard real-time

[ICINCO04]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

19

III Construction: Relation
to the Reference Architecture

(1) Support layers

(2) Provides decoupling between layers

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

20

III Construction:
Control Loop & Architecture

Architektur

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

Context

Development time:

Runtime:

||

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption

||

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function‘

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption‘

Architektur

Adaption‘

Function‘

Adaption

Function

Relevant cases:

(1) Hierarchies

(2) Self-organizing

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

21

III Construction:
Complex Coordination

!  Real-time coordination via pattern [ESEC/FSE03]
!  Real-time protocol state machines for each role
!  Real-time state machines for each connector

!  Rule-based reconfiguration (self-coordination) [ICSE06]
!  Rules for instantiation and deletion of patterns

Shuttle 2 Shuttle 1

Shuttle2: Shuttle1:

Distance
Coordination

Reference
Data Pattern

:Registry

Reference
Data Pattern

Rule-based
reconfiguration

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

22

Shuttle1

Distance
Coordination

Shuttle2

Shuttle1

Shuttle2

Shuttle3

Shuttle5

Shuttle4

III Construction:
Rule-Based Reconfiguration

Problem:
!  Shuttles move and create

resp. delete Distance
Coordination patterns

!  Arbitrary large topologies
with moving shuttles

Solution:
!  State = Graph
!  Reconfiguration rules =

graph transformation rules
!  Safety properties =

forbidden graphs
" Formal Verification possible

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

23

III Construction:
Rule-Based Reconfiguration

Apply Graph
Transformation
Systems
! Map the tracks
! Map the shuttles
! Map the shuttle
movement to
rules (move-
ment equals
reconfiguration)

Track1 Track2

t1:Track t2:Track

Shuttle

Shuttle Shuttle

t1:Track t2:Track

s1:Shuttle

t1:Track t1:Track

s1:Shuttle

Rule:

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

24

III Construction:
(2) Self-organizing

Difference:
! Pattern capture

component interaction as
well as its instantiation
" self-coordination

! No new change plans but
only choices which can be
made by the local
cognitive operators

Self-organizing (degrees of freedom
for the local rule-based configuration)

distributed over the patterns and the
components realizing the pattern roles

Rule-based configuration

Shuttle 2 Shuttle 1

Shuttle2: Shuttle1:

Distance
Coordination

Reference
Data Pattern

:Registry

Reference
Data Pattern

Rule-based
reconfiguration

?

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

25

=f(,)

III Construction:
Runtime Models

Development time:

Runtime:

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!

Adaption:

Function Context Goals

Function Context Goals

Function Context ||
Adaption

|| Function Context

Goals

Function Context

Goals

Function Context

Goals

Challenge:

(1) Efficient and cost-effective realization of the runtime models

(2) Efficient and cost-effective realization of the function update (f)

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

26

III Construction:
(1) Runtime Models: MDE

!  Supports adaptation loops for models
using “meta-models” (EMF) and
bidirectional model transformation
techniques (Tripple Graph Grammars) for
an EJB application server

!  Extract abstract runtime models for
different autonomic managers for
monitoring EJB applications
(unchanged)

!  Adapting managed subsystem via
extracted runtime models (parameter and
structural adaptation; not as easy as
monitoring!)

!  Synchronize runtime models
incrementally (faster as non
incremental manual implementations)

[ICAC2009]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

27

III Construction:
(2) Function Update (Distributed)

!  Distributed learning of a model of the track (environment)
!  Local learning of a model of the shuttle (system hardware)
!  Planning an adaptation in form of an optimal trajectory

[STTT2008]

But how can we guarantee that they have a sufficient
quality (quality assurance)?

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

28

IV Quality Assurance:
Development time models

Bottom line: Self-adaptive systems must simply be
“better” and not “worse”

(1)  Correct working adaptation algorithm
(2)  Correct adaptation implementation

a. Correct monitoring: handle measurement failures; …
b. Correct system analysis: consistent with real changes;

…
c. Correct adaptation decisions: fits to real changes;

guarantees required properties; …

d. Correct execution of the adaptation: consistent update;
timing, …

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

29

Function

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

Development time:

Runtime:
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption:
Goal Mgt.

Change Mgt.

Change
Management ||

IV Quality Assurance:
Control Loop & Layers

|| Context Goal
Management ||

!  Correct working adaptation algorithm (1) " if simple properties, abstract models can
be formally verified

!  Correct adaptation implementation (2) " Can be tackled to some extend if we
abstract from adaptation details (consider only change management)

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

30 Operator-Controller Module (OCM) for
!  Cognitive operator (CO)
!  Reflective operator (RO)
!  Controller (C)

Formal verification (“RO part” only):
!  Formal model covers possible

pre-planned configuration steps
!  Only consistent and steps of the controller

that the reflective operator can do within
required time bounds occur (correct (1))

Code generation:
!  guarantees functional and timing properties

(correct (2))

IV Quality Assurance:
Correct (1) + (2)

[FSE2004]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

31

IV Quality Assurance:
Control Loop & Architecture

Architektur

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

Context ! Goals‘

Development time:

Runtime:

||

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption

||

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function‘

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Adaption‘

Architektur

Adaption‘

Function‘

Adaption

Function

!  Correct working adaptation algorithm (1) " simple properties for abstract
models can be formally verified, if we abstract from adaptation details
(consider only change management) and decomposing the problem (apply
a modular or compositional reasoning schemes)

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

32 Decompose verification:

! Verification guarantees properties for the collaborations

! Verification guarantees conformance for components (ports refine roles)

Compositional result: Properties hold for all collaborations in correctly
composed component deployments

frontRole rearRole

Distance
Coordination

But, it is yet not guaranteed that shuttles nearby are
connected via a collaboration!

:Shuttle :Shuttle
frontRole rearRole

Distance
Coordination

frontRole rearRole

Distance
Coordination

Distance
Coordination

:Shuttle
rearRole frontRole

IV Quality Assurance:
(1) Correct adaptation algo. (1/3)

[ESE/FSE2003]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

33

IV Quality Assurance:
(1) Correct adaptation algo. (2/3)

Track1 Track2

t1:Track t2:Track

Shuttle1

Shuttle1 Shuttle2

Shuttle2

Shuttle1

t:Track

s1:Shuttle s2:Shuttle

Distance
Coordination

Forbidden Graph

t1:Track t2:Track

s1:Shuttle

t1:Track t2:Track

s1:Shuttle

Rule: !  Correctness: all
reachable system graphs
do not match the
forbidden graph pattern

Problems:

!  there could be infinite many reachable system graphs

!  fixed initial topology not known (may change)

Now, both results together would
guarantee the absence of collisions!

[Monterey2007]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

34

IV Quality Assurance:
(1) Correct adaptation algo. (3/3)

Verification:

!  Analyze whether structural changes can lead from safe
to unsafe situations (inductive invariants)

Checking Options:

!  Model Checking (mapping to GROOVE; only debugging)

"  Limited to small configurations and finite models

"  Extension for continuous time have been developed

!  Invariant Checker (our own development)

"  Supports infinite many start configurations specified
only by their structural properties

"  Supports infinite state models

"  Extension of time and discrete variables exist

"  Incremental check for changed rules

"  Extension of hybrid behavior (recently!)

t:Track

s1:Shuttle s2:Shuttle

dc:Distance
Coordination

move

correct
system
graph

?

[ICSE2006, ISORC2008]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

35

IV Quality Assurance:
Runtime Models

Development time:

Runtime:

Context

! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""
! | |!
"""""""""""""""""""

Function

! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!
"""
! | |!

Adaption:

Function Context Goals

Function Context !
Goals ||

Adaption
|| Function Context

Goals

Function Context

Goals

Function Context

Goals

=f(,)
Function Context ! || Goals

Function Context Goals

with

!  Guarantee correct working adaptation algorithm (1)?

"  If solver for f exists, correctness can be derived

!  Correct adaptation implementation (2) " Can be tackled by MDE

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

36

IV Quality Assurance:
(1) Correct adaptation algo.

!  Distributed learning of a model of the track (environment)
!  Local learning of a model of the shuttle (system hardware)
!  Planning an adaptation in form of an optimal trajectory
!  Trajectory synthesis establishes required guarantees for f
!  Backup for the case of data errors!

[STTT2008]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

37

III Construction:
(2) Correct implementation

Correct adaptation implementation (2):

a.  Correct system model updates:
valid abstraction by construction

b.  Correct system model analysis

c.  Correct adaptation decisions

d. Correct execution of the adaptation
(special case: propagate changes in
updates system model):
functional correctness by
construction; timing?

[ICAC2009]

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

38

V Conclusion &
Outlook

!  Self-adaptive systems promises to automate the efforts required
today to adapt the software (by the developer and admin) as well
as enables software landscapes not feasible without. However, it
also makes the software even more complex.

!  Therefore, techniques for the systematic and cost-effective
software engineering of self-adaptive systems are crucial for
the while vision.

!  Construction (adaptation algo., loops, layers, hierarchies, self-
organizing, runtime models, function updates, …)

!  Quality assurance (adaptation algo., loops, layers,
hierarchies, self-organizing, runtime models, function updates,
…)

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

39

Conclusion & Outlook

!  Models and model-driven engineering can play a major role for the cost-
effective construction and quality assurance of such systems.

!  Development time models permit to construct such systems and
verify the correctness of the adaptation algo.

!  In case of runtime models, suitable function updates can be
constructed and verified to show the correctness pf the adaptation alog.

!  Model-driven engineering can often assure via code generation that
the verified properties also hold for the running system

!  In case of runtime models, model-driven engineering can in addition
be employed to provide a basis for structural adaptation that guarantees
correct implementation.

But much left to be done …

Submission deadline: 12th Dec

Author notification: 15th Feb

Camera ready copy: 1st March

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

42

References (1/2)

[AC2001] Autonomic Computing: IBM's Perspective on the State of Information Technology.
International Business Machines Corporation, 2001.

[Andersson+2009] Jesper Andersson, Rogério de Lemos, Sam Malek, Danny Weyns: Modeling
Dimensions of Self-Adaptive Software Systems. Software Engineering for Self-
Adaptive Systems 2009: 27-47

[Brun+2009] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger M.
Kienle, Marin Litoiu, Hausi A. Müller, Mauro Pezzè, Mary Shaw: Engineering Self-
Adaptive Systems through Feedback Loops. Software Engineering for Self-
Adaptive Systems 2009: 48-70

[Cheng+2009] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,
Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,
Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary
Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, Jon Whittle: Software
Engineering for Self-Adaptive Systems: A Research Roadmap. Software
Engineering for Self-Adaptive Systems 2009: 1-26

[Dressler2007] Falko Dressler, Self-Organization in Sensor and Actor Networks, Chichester, John
Wiley & Sons, 2007.

[Kramer&Magee2007] Kramer, J. and Magee, J. 2007. Self-Managed Systems: an Architectural
Challenge. In 2007 Future of Software Engineering (May 23 - 25, 2007).
International Conference on Software Engineering. IEEE Computer Society,
Washington, DC, 259-268.

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

43

References (2/2)

[Oreizy+1999] Peyman Oreizy, Michael M. Gorlick, Richard Taylor, Dennis Heimbigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum and Alexander L.
Wolf. An Architecture-Based Approach to Self-Adaptive Software. In IEEE
Intelligent Systems, Vol. 14(3):54--62, June 1999.

[Kephart&Chess2004] Jeffrey O. Kephart and David Chess. The Vision of Autonomic Computing. In
Computer, Vol. 36(1):41--50, IEEE Computer Society Press, Los Alamitos, CA,
USA, January 2003

[Kokar+1999] Mieczyslaw M. Kokar, Kenneth Baclawski and Yonet A. Eracar. Control Theory-
Based Foundations of Self-Controlling Software. In IEEE INTELLIGENT SYSTEMS,
Vol. 14(3):37-45, Article, 1999.

[Serugendo+2004] Giovanna Di Marzo Serugendo, Noria Foukia, Salima Hassas, Anthony
Karageorgos, Soraya Kouadri Mostéfaoui, Omer F. Rana, Mihaela Ulieru, Paul
Valckenaers and Chris Van Aart. Self-Organisation: Paradigms and Applications. In
Engineering Self-Organising Systems, Vol. 2977:1--19 of Lecture Notes in
Computer Science, 2004.

[Salehie&Tahvildari2009] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. In ACM Trans. Auton. Adapt. Syst., Vol. 4(2):1--42, ACM,
New York, NY, USA , 2009.

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

44

Own References

[ESEC/FSE03] Giese, H., Tichy, M., Burmester, S., and Flake, S. 2003. Towards the compositional verification of real-time UML designs. In
Proceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT international Symposium on
Foundations of Software Engineering (Helsinki, Finland, September 01 - 05, 2003). ESEC/FSE-11. ACM, New York, NY, 38-47.

[FSE04] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Oberschelp, 'Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration', in Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pp. 179--188, ACM Press, November 2004.

[ICINCO04] Thorsten Hestermeyer, Oliver Oberschelp, and Holger Giese, 'Structured Information Processing For Self-optimizing Mechatronic
Systems', in Proc. of 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2004), Setubal, Portugal
(Helder Araujo, Alves Vieira, Jose Braz, Bruno Encarnacao, and Marina Carvalho, eds.), pp. 230--237, INSTICC Press, August 2004.

[ADS2004] Matthias Tichy and Holger Giese, A Self-Optimizing Runtime Architecture for Configurable Dependability of Services. Architecting
Dependable Systems II, (Rog\'erio de Lemos and Cristina Gacek and Alexander Romanovsky, ed.), vol. 3069, Lecture Notes in
Computer Science (LNCS), Springer Verlag, 2004. p. 25–51,

[WADS2005] Matthias Tichy and Holger Giese and Daniela Schilling and Wladimir Pauls, Computing Optimal Self-Repair Actions: Damage
Minimization versus Repair Time, Proc. of the ICSE 2005 Workshop on Architecting Dependable Systems, St. Louis, Missouri, USA, (Rog
\'erio de Lemos and Alexander Romanovsky, ed.), vol. , ACM Press, 2005, p. 1–6,

[ICSE06] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling, 'Symbolic Invariant Verification for Systems with Dynamic
Structural Adaptation', in Proc. of the 28th International Conference on Software Engineering (ICSE), Shanghai, China, pp. 72--81,
ACM Press, 2006.

[Monterey2007] Holger Giese, Modeling and Verification of Cooperative Self-adaptive Mechatronic Systems, Reliable Systems on Unreliable Networked
Platforms - 12th Monterey Workshop 2005 . Laguna Beach, CA, USA, September 22-24,2005 . Revised Selected Papers, (Fabrice
Kordon and Janos Sztipanovits, ed.), vol. 4322, Lecture Notes in Computer Science, Springer Verlag, 2007, p. 258-280,

[ISORC2008] Basil Becker and Holger Giese, On Safe Service-Oriented Real-Time Coordination for Autonomous Vehicles, In Proc. of 11th
International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC), vol. , IEEE Computer
Society Press, 5 2008, p. 203–210,

[STTT2008] Sven Burmester and Holger Giese and Eckehard Münch and Oliver Oberschelp and Florian Klein and Peter Scheideler,. Tool Support for
the Design of Self-Optimizing Mechatronic Multi-Agent Systems, International Journal on Software Tools for Technology Transfer (STTT)
10 (3), 207-222, 2008.

[ICAC2009] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven Architectural Monitoring and Adaptation for Autonomic
Systems. In: Proc. of the 6th International Conference on Autonomic Computing and Communications (ICAC’09), Barcelona, Spain,
ACM (15-19 June 2009).

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

45

Additional
Slides

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

46

I Motivation: Future
Software Landscapes

Prognoses:

!  “In the near future, software-intensive systems will
exhibit adaptive and anticipatory behavior; they
will process knowledge and not only data, and
change their structure dynamically. Software-
intensive systems will act as global computers in
highly dynamic environments and will be based
on and integrated with service-oriented and
pervasive computing.”
M. Wirsing, ed., Report on the EU/NSF Strategic Workshop on Engineering Software-Intensive Systems "Challenges, Visions and Research Issues
for Software-Intensive Systems„ at ICSE 2004. Edinburgh, UK, May 2004.

!  “The sheer scale of ULS systems will change
everything. ULS systems will necessarily be
decentralized in a variety of ways,
developed and used by a wide variety of
stakeholders with conflicting needs,
evolving continuously, and constructed from
heterogeneous parts.

!  Adaptation is needed to compensate for changes
in the mission requirements (…) and operating
environments (..)
Northrop, Linda, et al. Ultra-Large-Scale Systems: The Software Challenge of the Future. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2006.

Aber wie können wir solchen Systemen vertrauen

16.02.2010 | Holger Giese | Model-Driven Software Engineering of Self-Adaptive Systems

47

The Basic Case:
Engineering & Design Models

Modell

System
requirements

fiktives
Original

abstracts

realisized?

(prescriptive)

abstract

(descriptive)

construction

Analysis confirms
the fulfillment of
requirements Models

Original

! Question: How do engineers
develop complex systems?

! Solution: design models

!  used as representations
for real or imaginary
systems

!  Allow to try out
alternatives

!  Allow reliable predictions

! Characteristics of design
models
!  Complete coverage of the

problem
!  Accurate representation
!  Constant

