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Self-Adaptive Systems
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Figure: Feedback Loop [Kephart and Chess, 2003]

Separation of managing and managed elements
→ Runtime representation of the running managed system
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Motivation & Related Work

Architectural model as a runtime
representation:
• One-to-one mapping between

implementation classes and model
elements [Oreizy et al., 1998]

• All concerns of interests like
performance, costs, failures etc.
[Garlan et al., 2004]
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Motivation & Related Work

Pros
• Easing the connection between the

model and the running system
• Avoiding the maintenance of several

models
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Cons
• Complexity of the model (all concerns + low level of abstraction)
• Platform- and implementation-specific model (solution space)
• Limited reusability of autonomic managers
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Adaptation and Abstract Runtime Models

Multiple Target Models
• More abstract
• Focused on specific

concerns

→ Reduced complexity
→ Problem space oriented
→ Leveraging reusability of

models and managers
across managed systems
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[Vogel et al., 2009]

• Maintenance of target models by a model transformation engine
• Incremental, bidirectional model synchronization
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Case Study for EJB: Source Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 6



Source Metamodel (simplified)
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Form Source to Target Metamodel
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Form Source to Target Metamodel
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White box
views



Form Source to Target Metamodel
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Black box
views



Form Source to Target Metamodel
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Target Metamodel (simplified)

• Black-box view on component types and components
• Abstract and platform-independent model
• Focused on one problem space: architecture + occurred failures
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Runtime Model Synchronization
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(1) Refinement for Adaptation

Challenge
• Desired abstraction gap between source and target model

impedes the bidirectional model synchronization
[Hettel et al., 2008, Stevens, 2010]

• Refinement of abstract target model changes to source model
changes
 architecture refinement [Moriconi et al., 1995, Garlan, 1996]

• Case study: white box (source model) vs. black box (target model)
views on component types and components
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(1) Refinement for Adaptation
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(1) Refinement for Adaptation
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Solution: Factories (cf. [Gamma et al., 1995])
• Operating on the source model (no abstraction gap)
• Invoked on target models
• Pragmatically extends the transformation engine
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(2) Restrictions to Adaptation

Challenge
• Interfacing autonomic managers with target models
→ How changes are performed on a model?

• Definition of allowed changes on abstract target models
→What changes can be performed on a model?

Solution
• Solution similar to adaptation operators in Rainbow

[Garlan et al., 2004]
• For each target metamodel: specification of specific actions a

manager can perform on a target model for adapting the system
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(3) Ordering of Adaptation Steps

Challenge
• Structural adaptation involving a set of atomic changes/steps
• Synchronizing a set of target model changes in one run to the

source model, and then in one run to the system transaction
• Interactions esp. dependencies among different steps
• Different orders for target model, source model or system changes
• Overwriting of changes and losing of intermediate changes
• Consistency of the system affected by not suitable orders
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(3) Ordering of Adaptation Steps

Solution: 3 options
1 Target Model Usage

• Triggering of intermediate synchronizations by managers at runtime
• Example: c1, sync, c2, sync

2 Transformation Engine
• Design of rules using application contexts or constraints
• Example: c1||c2 on target model, but constraint/context of rule for c2

is not fulfilled until rule for c1 has been applied→ c1 before c2 on
source model

3 Causal Connection between Source Model and System
• Generic ordering of changes for executing them on the system

depending on the types of changes
• Example: stop comp, remove conn and comp, deploy comp, create

conn, set parameter values, start comp
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Conclusion & Future Work

Conclusion
• Multiple and abstract models for monitoring and adaptation
• Reusability of models and managers across managed systems
• Runtime model synchronization to maintain multiple models

Future Work
• Concurrent adaptations by different managers on different models
→ Coordination to balance competing adaptations and concerns
• Distributed setting
→ Distributed, generic, and incremental model synchronization
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