
Adaptation and Abstract Runtime Models

5th Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2010)
Cape Town, South Africa, 3-4 May 2010

Thomas Vogel and Holger Giese
System Analysis and Modeling Group

Hasso Plattner Institute
University of Potsdam

Self-Adaptive Systems

Autonomic Manager

Effectors

Managed Element

Monitor

Analyze Plan

Execute

Sensors

Knowledge

Figure: Feedback Loop [Kephart and Chess, 2003]

Separation of managing and managed elements
→ Runtime representation of the running managed system

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Introduction: Self-Adaptive Systems 2

Motivation & Related Work

Architectural model as a runtime
representation:
• One-to-one mapping between

implementation classes and model
elements [Oreizy et al., 1998]

• All concerns of interests like
performance, costs, failures etc.
[Garlan et al., 2004]

Monitor

Analyze Plan

Execute

Autonomic Manager

Source Model

Sensors Effectors

Managed Element

Knowledge

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Introduction: Self-Adaptive Systems 3

Motivation & Related Work

Pros
• Easing the connection between the

model and the running system
• Avoiding the maintenance of several

models

Monitor

Analyze Plan

Execute

Autonomic Manager

Source Model

Sensors Effectors

Managed Element

Knowledge

Cons
• Complexity of the model (all concerns + low level of abstraction)
• Platform- and implementation-specific model (solution space)
• Limited reusability of autonomic managers

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Introduction: Self-Adaptive Systems 4

Adaptation and Abstract Runtime Models

Multiple Target Models
• More abstract
• Focused on specific

concerns

→ Reduced complexity
→ Problem space oriented
→ Leveraging reusability of

models and managers
across managed systems

Plan

Autonomic Manager

ExecuteMonitor

Analyze

architectural element
model
monitoring

defined by
uses

adaptation/challenges Knowledge

Managed System

Sensors Effectors

Model Transformation Engine

Target Model

Source ModelMetamodel

Metamodel

TGG Rules

[Vogel et al., 2009]

• Maintenance of target models by a model transformation engine
• Incremental, bidirectional model synchronization

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 5

Case Study for EJB: Source Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 6

Source Metamodel (simplified)

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 7

Instances

Deployment

Types

Form Source to Target Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 8

Abstract
from

Instances

Deployment

Types

Form Source to Target Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 8

White box
views

Form Source to Target Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 8

Black box
views

Form Source to Target Metamodel

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 8

Platform-
specific

view

Target Metamodel (simplified)

• Black-box view on component types and components
• Abstract and platform-independent model
• Focused on one problem space: architecture + occurred failures

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 9

Runtime Model Synchronization

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 10

EChallenges

Adaptation

X[Vogel et al., 2010]

Monitoring

(1) Refinement for Adaptation

Challenge
• Desired abstraction gap between source and target model

impedes the bidirectional model synchronization
[Hettel et al., 2008, Stevens, 2010]

• Refinement of abstract target model changes to source model
changes
 architecture refinement [Moriconi et al., 1995, Garlan, 1996]

• Case study: white box (source model) vs. black box (target model)
views on component types and components

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 11

(1) Refinement for Adaptation

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 12

Target ModelSource Model

(1) Refinement for Adaptation

Plan

Autonomic Manager

ExecuteMonitor

Analyze

architectural element
model
monitoring

defined by
uses

Knowledge

Managed System

Sensors Effectors

adaptation

Model Transformation Engine

Target Model

Source ModelMetamodel

Metamodel

TGG Rules Factories

Solution: Factories (cf. [Gamma et al., 1995])
• Operating on the source model (no abstraction gap)
• Invoked on target models
• Pragmatically extends the transformation engine

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 13

(2) Restrictions to Adaptation

Challenge
• Interfacing autonomic managers with target models
→ How changes are performed on a model?

• Definition of allowed changes on abstract target models
→What changes can be performed on a model?

Solution
• Solution similar to adaptation operators in Rainbow

[Garlan et al., 2004]
• For each target metamodel: specification of specific actions a

manager can perform on a target model for adapting the system

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 14

(3) Ordering of Adaptation Steps

Challenge
• Structural adaptation involving a set of atomic changes/steps
• Synchronizing a set of target model changes in one run to the

source model, and then in one run to the system transaction
• Interactions esp. dependencies among different steps
• Different orders for target model, source model or system changes
• Overwriting of changes and losing of intermediate changes
• Consistency of the system affected by not suitable orders

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 15

(3) Ordering of Adaptation Steps

Solution: 3 options
1 Target Model Usage

• Triggering of intermediate synchronizations by managers at runtime
• Example: c1, sync, c2, sync

2 Transformation Engine
• Design of rules using application contexts or constraints
• Example: c1||c2 on target model, but constraint/context of rule for c2

is not fulfilled until rule for c1 has been applied→ c1 before c2 on
source model

3 Causal Connection between Source Model and System
• Generic ordering of changes for executing them on the system

depending on the types of changes
• Example: stop comp, remove conn and comp, deploy comp, create

conn, set parameter values, start comp

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Adaptation and Abstract Runtime Models 16

Conclusion & Future Work

Conclusion
• Multiple and abstract models for monitoring and adaptation
• Reusability of models and managers across managed systems
• Runtime model synchronization to maintain multiple models

Future Work
• Concurrent adaptations by different managers on different models
→ Coordination to balance competing adaptations and concerns
• Distributed setting
→ Distributed, generic, and incremental model synchronization

Thomas Vogel, SEAMS 2010, 3-4 May 2010 Conclusion & Future Work 17

References

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns - Elements of Reusable Object Oriented Software.
Addison-Wesley, 32 edition.

[Garlan, 1996] Garlan, D. (1996).
Style-Based Refinement for Software Architecture.
In Joint Proc. of the 2nd Intl. Software Architecture Workshop and Intl. Workshop on Multiple Perspectives in Software Development, pages 72–75. ACM.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54.

[Hettel et al., 2008] Hettel, T., Lawley, M. J., and Raymond, K. (2008).
Model Synchronisation: Definitions for Round-Trip Engineering.
In Proc. of the 1st Intl. Conference on Model Transformation, pages 31–45.

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003).
The Vision of Autonomic Computing.
IEEE Computer, 36(1):41–50.

[Moriconi et al., 1995] Moriconi, M., Qian, X., and Riemenschneider, R. (1995).
Correct Architecture Refinement.
IEEE Transactions on Software Engineering, 21(4):356–372.

[Oreizy et al., 1998] Oreizy, P., Medvidovic, N., and Taylor, R. N. (1998).
Architecture-based Runtime Software Evolution.
In Proc. of the 20th Intl. Conference on Software Engineering, pages 177–186. IEEE.

[Stevens, 2010] Stevens, P. (2010).
Bidirectional model transformations in QVT: semantic issues and open questions.
Software and Systems Modeling, 9(1):7–20.

[Vogel et al., 2009] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009).
Model-Driven Architectural Monitoring and Adaptation for Autonomic Systems.
In Proc. of the 6th Intl. Conference on Autonomic Computing and Communications, pages 67–68. ACM.

[Vogel et al., 2010] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In Ghosh, S., editor, Models in Software Engineering, Workshops and Symposia at MODELS 2009, Reports and Revised Selected Papers, volume 6002 of LNCS, pages 124–139. Springer.

Thomas Vogel, SEAMS 2010, 3-4 May 2010 References 18

	Introduction: Self-Adaptive Systems
	Adaptation and Abstract Runtime Models
	Abstract Runtime Models
	Challenges and Solution for Adaptation

	Conclusion & Future Work
	References

