A Language for Feedback Loops in Self-Adaptive
Systems: Executable Runtime Megamodels

7th Intl. Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2012)

Zurich, Switzerland, June 4-5, 2012

Thomas Vogel and Holger Giese

System Analysis and Modeling Group
Hasso Plattner Institute
University of Potsdam, Germany

Engineering Self-Adaptive Software

Internal vs. external approach
[Salehie and Tahvildari, 2009]

: Adaptation Engine
Feedback Loop (MAPE-K) e ——

[Kephart and Chess, 2003] @_ @
Multiple, flexible feedback loops < @@ }

o Different concerns :
[Vogel et al., 2010a, Vogel and Giese, 2010]

Monitor Execute

e Hierarchical structures ____S_e_b:l€0r5"”w w’E_ﬂfe_c_tq(g
[Hestermeyer et al., 2004, rManagea/ System :
Kramer and Magee, 2007] :

« Uncertainty [Esfahani and Malek, 2012~ ;~daptable Software

Models@run.time for K and MAPE

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 2

Interplay of Runtime Models?

c;COmﬂU“em

f2iInterface
rama -

\WW

if self.name = 'Shl
then self.component
else true

endi

wwnm
,;1 Component

[Eva(uzﬁan Models [chznge Hodels]

Analyze

\ ﬁ' Reflection Models | — |
1

Sensors Effectors

Managed system

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Specifying and Executing Feedback Loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]

o Making feedback loops explicit in the design of self-adaptive
systems [Mdller et al., 2008, Brun et al., 2009]

Execution — Model interpreter

e Coordinated execution/usage of multiple runtime models
¢ Flexible solutions and structures for feedback loops
~+ Adaptable feedback loops

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Specifying and Executing Feedback Loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]

o Making feedback loops explicit in the design of self-adaptive
systems [Milller et al., 2008, Brun et al., 2009]

Execution — Model interpreter

» Coordinated execution/usage of multiple runtime models
¢ Flexible solutions and structures for feedback loops
~+ Adaptable feedback loops

Executable Runtime Megamodels]

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Megamodels

Definition (Megamodel)

A megamodel is a model that contains models and relations by means
of model operations between those models.

In general:

Model é%ModelOp>H Model'

Model-Driven Architecture (MDA) example:
PIM —%Tra“s.f"' —> PsM
mation

e Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

e “Toward Megamodels at Runtime” [Vogel et al., 2010b]

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 5

An Example: Self-repair

Analyzed
gart Effected@
Legend @ Initial state
(concrete syntax) @ Final state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

An Example: Self-repair

<<Analyze>> detailed
etaile
<<Analyze>> |failures Deep ,Che(:k results
Check for for failures |"**"
failures ®

Analyzed <<Plan>>
Repair repaired
& <Monitor>>|yp-
Update |dated <<Execute>>
model Effect done

ga,t Effected ®

Legend @ Initial state E "
(concrete syntax) ® Final state | / 0PN [0

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

An Example: Self-repair

[else]

[c since

<<Analyze>>
Check for
failures

Analyzed

< <Monitor>>

Start

'no failures' > 5]

<<Analyze>>

Deep check
for failures

<<Plan>>
Repair repaired

<<Execute>>
done

Effected

Legend @ initial state E
(concrete syntax) ® Final state | /_OPeration

2

Control flow

—

[else]

[condition]

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

An Example: Self-repair

<<EvaluationModel>> lelse] <<EvaluationModel>>
Failure analysis rules Deep analysis rules

<<Analyze>>

Check for

[c since <<Analyze>> <<ChangeModel>>
Deep check dEtali‘Ed Repair
. results .
for failures | strategies

failures

Analyzed

'no failures' > 5]
<<Plan>>
Repair repaired

<<Execute>>

<<ReflectionModel>>

Architectural Model

< <Monitor>>

done

<<MonitoringModel>>
<<ExecutionModel>>

Start TGG Rules Effected

Legend @ Initial state : Model |a Control flow [else] -
Operation
@ Final state P 2 —_—

(concrete syntax) {condition]

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

<<EvaluationModel>>
Failure analysis rules

< <Monitor>>

An Example: Self-repair

Hs

<<Analyze>>

Check for

failures

[else]

[c since
'no failures' > 5]

<<Analyze>>

Deep check

T

<<EvaluationModel>>
Deep analysis rules
detailed
results

<<ChangeModel|>>

Repair

strategies

Analyzed

for failures

<<ReflectionModel>>

Architectural Model

<<MonitoringModel>>
<<ExecutionModel>>

H

<<Plan>>
Repair repaired

<

<Execute>>

done

Start TGG Rules Effected
Legend @ Initial state : Model T\ |Contro! flow leise] r;dgeel
) Operation [, -
(concrete syntax) @ Final state > onwon) >

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Modularity and Composition
e e)

Analysis step v
- <<Analyze>>
for self-repair k

Check for
failures

else] <<EvaluationModel>>
Deep analysis rules
LT
[c since
'no failures' > 5),

<<Analyze>> -
Deep check ‘r’:stjl':id
for failures

<<ReflectionModel>>

Failures
Analyze Architectural Model

<<ChangeModel>>
Repair
strategies
=

Self—repair.C>
Analyze

Self-repair

Analyzed

<<ReflectionModel>>
Architectural Model

<<Execute>>

v

\<<Monitor>>| done
Update

\ 3

<<MonitoringModel>>
<<ExecutionModel>>

Start TGG Rules

Effected

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Modularity and Composition

Analysis step
for self-repair

Complex model
operations

Self-repair

\<<Monitor>>|
Update

<<EvaluationModel>>

Failure analysis rules
Hs

<<Analyze>>

Check for m

failures

[c since
'no failures' > 5]

else] <<EvaluationModel>>
Deep analysis rules
‘ LT

<<Analyze>>
Deep check
for failures

detailed
results

<<ReflectionModel>>
Architectural Model

Analyze

Failures

Self—repair.C>
Analyze

Analyzed

<<ChangeModel>>
Repair
strategies
=

<<Plan>>

Repair

repaired

<<ReflectionModel>>
Architectural Model

<<Execute>>

B4

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

done

Effected

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Modularity and Composition

Analysis step
for self-repair

Complex model
operations

Self-repair

\<<Monitor>>|
Update

<<EvaluationModel>>
Failure analysis rules
Hs

[c since

<<Analyze>>
Check for
failures

O]
[o]

=

else] <<EvaluationModel>>
Deep analysis rules
‘ LT

'no failures' > 5]

<<Analyze>>)
Deep check detailed

. results
for failures

Analyze

<JReflectionModel>>
itectural Model

Failures

Self—repair.C>
Analyze

Analyzed

<<ChangeModel>>
Repair
strategies
=

<<Plan>>
Repair

repaired

<<ReflectionModel>>

Architectural Model

<<Execute>>

B4

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

done

Effected

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Modularity and Composition

Analysis step
for self-repair

Shared runtime
models

Self-repair

\<<Monitor>>|
Update

<<EvaluationModel>>

Failure analysis rules
Hs

<<Analyze>>

Check for m

failures

[c since
'no failures' > 5]

else] <<EvaluationModel>>
Deep analysis rules
‘ LT

e

<<Analyze>>
Deep check
for failures

detailed
results

“a

Analyze

<<ReflectionModel>>
Architectural Model

Failures

Self—repair.C>
Analyze

Analyzed
E'Y

<<ChangeModel>>
Repair
strategies
=

<<Plan>>
Repair

repaired

<<ReflectionModel>>
Architectural Model

<<Execute>>

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

done

Effected

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Modeling Interacting Feedback Loops
Self-repair Self-optimization

<<ChangeModel>>
Parameter variability

Update

.f ®.
Start

Two example solutions:

© Linearizing Complete Feedback Loops

@ Linearizing Analysis and Planning Steps of Feedback Loops
by using complex model operations and shared runtime models

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

(1) Linearizing Complete Feedback Loops

Self-repair Self-optimization

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

(1) Linearizing Complete Feedback Loops

Self-repair Self-optimization

o Self-managed
Self-optimization.
Analyze

Effected

o
Self-repair. Analyzed
Self-manage Start o

. Self-optimization.

o, I Start

4 iy Apw
<<ReflectionModel>>
Architectural Model

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

(2) Linearizing Analysis and Planning Steps

Shared M+E Self-repair Self-optimization

f‘ i! Analyzed Analyzed
Planned AP A
E . ﬂ Planned

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 10

(2) Linearizing Analysis and Planning Steps

Shared M+E Self-repair Self-optimization

]

o
Self-optimization.AP
© |analyzed
Planned r éw
r‘:i‘w ' <<Execute>>
<<ReflectionModel>> Effect |done
Architectural Model
._r v

[c since
'Self-repair.AP.Planned'

\<<Monitor>>
Update
m .
A <<MonitoringModel>> L
<<ExecutionModel>> Effected
TGG Rules

Start

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 10

Layer,

Hierarchy of Feedback Loops

Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Hierarchy of Feedback Loops

Self-repair

<<EvaluationModel>>
Failure analysis rules:
i

<<Analyze>>
Check for m
Failures |rmtures/>
Architectural Model
Update |[dated
model
. <<MonitoringModel>>
<<ExecutionModel>> | ...
Start TGG Rules

Running System

[c since ©
no failures' > 51 \\ Self-repair-

<> 2 Adapt

<<ChangeModel>>
Repair
strategies

Layer;

\C<Monitor=>] up-.

Effected @

Layer,

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Hierarchy of Feedback Loops

Self-repair

<<EvaluationModel>>
Failure analysis rules:
i

[c since. ©
no failures' > 51 \\ Self-repair-

Adapted

Adapt

<<ChangeModel>>
Repair
<<Analyze>>[cail I
Check for strategies
failures_[Tures/ 7

Layer;

®
Analyzed

\C<Monitor=>] up-.

Update |dated
model

Architectural Model

<<MonitoringModel>>
<<ExecutionModel>>
TGG Rules

Start Effected @

Layero Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Causal connection

e sensors + effectors required

e implementation efforts!

Hierarchy of Feedback Loops

<<EvaluationModel>> <<ChangeModel>>
Repair strategies Repair strategies
analysis rules synthesis rules

v v

Layer2 R —<penss
Check [checked Synthesize new
repair strategies|
A7

success rate
a

synthe-
sized

<<Execute>>T -
Replace | .y
strategies

Adapted (@)

Adapt

Self-repair

<<EvaluationModel>>

=
[c since K
o failures' > 51 \| Self-repair-

Failure analysis rules: Adapted
o apte
H <<ChangeModel>>
<<Analyze>> Adapt Repair
Checi for e strategies
Layer; i -

®
Analyzed
a

Architectural Model

\C<Monitor=>] up-.

Update |dated
model

. <<MonitoringModel>>
<<ExecutionModel>> | ...
Start TGG Rules

Running System

Causal connection

Effected @

e sensors + effectors required

e implementation efforts!
Layery

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Layer»

Layer;

Layer,

Hierarchy of Feedback Loops

<<Eva
Repal
anal

luationModel>>
ir strategies
lysis rules

Adapt

Self-i

<<Monitor>>up-
Observe [dated
model

<<ChangeModel>>
Repair strategies
synthesis rules

v v

<<Plan>>
checked Synthesize new
repair strategies|

synthe-
sized

<<Analyze>>
Check

success rate
A3

<<ReflectionModel>> ©
Self-repair

repair

<<Execute>>]
Replace
strategies

re-
placed

Adapted (@)

<<tval
Failure

luationModel>>

i [c since
analysis rules:
i

=
no failures' > 51 \\ Self-repair-

\C<Monitor=>] up-.

P
Update |dated

Adapt

<<Analyze>>tailures
Check for
failures

Adapted

7

<<ChangeModel>>
Repair
strategies

model

Start

Running System

Effected @

Layer, directly uses the
megamodel of Layer

e no specific sensors and
effectors required

e adapts the models or control
flow of the Layer; megamodel

e interpreter (flexibility)!

Causal connection

e sensors + effectors required
e implementation efforts!

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Execution Semantics and Interpreter

Focus

» Coordinated execution of operations (adaptation steps)
¢ Handling input/output models for these operations

Simple approach

e A megamodel as a singleton
o Execution information
e count and time
o Expression language for conditions
e Synchronous, single-threaded execution

Implementation
e EMF, JavaCC

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Discussion: Executable Megamodels (l)

o Explicit specification of feedback
loops by megamodels

e Modularity: individual adaptation
steps and feedback loops M [E] M [E]

o Composing steps to a feedback loop
e Composing multiple feedback loops ‘Wm (P]

o Abstraction level similar to software architectures
¢ Reusing implementations of adaptation steps
e Coordinated interplay and execution of such steps

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 13

Discussion: Executable Megamodels (ll)

o Executable specifications kept explicit and alive at runtime
— Runtime megamodels

¢ Interpreter: flexibility to cope with
megamodel changes at runtime

e Megamodels as reflection models for
feedback loops

o Hierarchical control/structures
¢ No specific sensors and effectors required

~+ Supports the design/engineering of self-adaptive systems
~ Eases development/implementation efforts

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

Related Work

Frameworks [Garlan et al., 2004, Schmidt et al., 2008]
e Focus on reducing development efforts for single feedback loops
e Rather prescribe static solutions for feedback loops

Explicit Feedback Loops
o Abstraction level of controllers, no runtime support [Hebig et al., 2010]

e Formal modeling and analysis of design alternatives for
self-adaptive systems, no runtime support [Weyns et al., 2010]

Multiple, Interacting Feedback Loops

¢ Implementation framework for distributed self-adaptive systems
[Vromant et al., 2011]

Modeling Languages
e Flowcharts and dataflow diagrams, like UML Activities

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 15

Conclusion and Future Work

Conclusion

e Modeling language for feedback loops based on runtime models
(Adaptation steps, single and multiple feedback loops)

e Executable megamodels kept alive at runtime
« Flexibility to dynamically change megamodels (interpreter)
e Leverages advanced solutions, like layered feedback loops

Future Work
e Elaborate the modeling language

o Formal interface definitions for models and model operations
o Analysis of megamodels

o Discuss restrictions on the execution semantics (concurrency)

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 16

References |

[Barbero et al., 2007] Barbero, M., Fabro, M. D., and Bézivin, J. (2007).
Traceability and Provenance Issues in Global Model Management.
In Proc. of 3rd Workshop on Traceability (ECMDA-TW 2007), pages 47-55

[Bézivin et al., 2003] Bézivin, J., Gerard, S., Muller, P--A., and Rioux, L. (2003).
MDA components: Challenges and Opportunities.
In First Intl. Workshop on Metamodelling for MDA, pages 23-41

[Bézivin et al., 2004] Bézivin, J., Jouault, F,, and Valduriez, P. (2004)
On the Need for Megamodels.
In Proc. of the Workshop on Best Practices for Model-Driven Software Development.

[Brun etal, 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H. M., Kienle, H. M., Litoiu, M., Miller, H. A., Pezz&, M., and Shaw, M. (2009).
Engineering Self-Adaptive Systems through Feedback Loops.
In Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages 48-70. Springer.

[Esfahani and Malek, 2012] Esfahani, N. and Malek, S. (2012).
Uncertainty in Self-Adaptive Software Systems.
In Software Engineering for Self-Adaptive Systems 2, LNCS. Springer.
to appear.

[Favre, 2005] Favre, J.-M. (2005)
Foundations of Model (Driven) (Reverse) Engineering : Models — Episode I: Stories of The Fidus Papyrus and of The Solarus.
In Language Engineering for Model-Driven Software Development, number 04101 in Dagstuhl Seminar Proc. IBFI.

[Garlan etal., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46-54,

[Hebig et al., 2010] Hebig, R., Giese, H., and Becker, B. (2010).

Making Control Loops Explicit When Architecting Self-Adaptive Systems.
In Proc. of the 2nd Intl. Workshop on Self-Organizing Architectures (SOAR 2010), pages 21-28. ACM

I etal., 2004] ., Oberschelp, O., and Giese, H. (2004).
i g For Self-optimizing ic Systems.
In Proc. of the st Intl. Conference on Informatics in Control, Automation and Robotics (ICINCO 2004), pages 230-237. INSTICC Press
[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. (2003).
The Vision of Autonomic Computing.
Computer, 36(1):41-50.

[Kramer and Magee, 2007] ~ Kramer, J. and Magee, J. (2007)
Sell-Managed Systems: an Architectural Challenge.
In Future of Software Engineering (FOSE 2007), pages 259-268. IEEE.

[Miller et al., 2008] Miller, H. A., Pezzé, M., and Shaw, M. (2008).
Visibility of control in adaptive systems.

In Proc. of the 2nd Intl. Workshop on Ultra-large-scale Software-intensive Systems (ULSSIS 2008), pages 23-26. ACM.

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012

References Il

[OMG Specification, 2011] OMG Specification (2011)
OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1.

[Salehie and Tahvildari, 2009] ~ Salehie, M. and Tahvildari, L. (2009).
Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):1-42

[Schmidt et al., 2008] ~ Schmidt, D., White, J., and Goknale, A. (2008).
Simplifying autonomic enterprise Java Bean applications via model-di ineering and simulation.
Software and Systems Modeling, 7(1):3-23.

[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010).
Adaptation and Abstract Runtime Models.
In Proc. of the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010), pages 39-48. ACM

[Vogel et al., 2010a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010a).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In MoDELS 2009 Workshops, volume 6002 of LNCS, pages 124-139. Springer.

[Vogel et al., 2010b] Vogel, T., Seibel, A., and Giese, H. (2010b).
Toward Megamodels at Runtime.
In Proc. of the 5th Intl. Workshop on Models@run.time, volume 641 of CEUR Workshop Proceedings, pages 13-24. CEUR-WS.org
(best paper)

[Vogel etal., 2011] Vogel, T., Seibel, A., and Giese, H. (2011).

The Role of Models and Megamodels at Runtime.
In MoDELS 2010 Workshops, volume 6627 of LNCS, pages 224-238. Springer

[Vromant et al., 2011] Vromant, P, Weyns, D., Malek, ., and Andersson, J. (2011)
On interacting control loops in self-adaptive systems.
In Proc. of the 6th Intl. Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), pages 202-207. ACM
[Weyns etal., 2010] Weyns, D., Malek, S., and Andersson, J. (2010).
FORMS: a formal reference mode! for self-adaptation.
In Proc. of the 7th Intl. Conference on Autonomic Computing (ICAC 2010), pages 205-214. ACM

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 18

	Motivation
	Megamodels
	Single Feedback Loops
	Multiple Feedback Loops
	Hierarchy of Feedback Loops

	Execution Semantics and Interpreter
	Discussion
	Related Work
	Conclusion and Future Work
	References

