Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Architecting Self-Adaptive
Critical Systems:

Contradiction or Panacea?
Invited Talk at WADS 2009, 29.06.2009

Holger Giese

System Analysis & Modeling Group, Hasso Plattner
Institute for Software Systems Engineering at the
University of Potsdam, Germany

holger.giese@hpi.uni-potsdam.de

What are Critical
Software Systems?

Hasso
Plattner
Institut

Characteristics: Examples:

m large-scale, heterogeneous, distributed
May include:

m Server backends, embedded il"
subsystems, wireless ad hoc networks, L ™
mobile devices 2,; 5

Require: Indus iaI autom ion

m Safety, security, high reliability, high
availability, ...

i ;: 'g

Meaflicine @PMnissions

Enterprise Critical Systems
Critical System of Systems: RailCab
29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Cirtical Software

| .Hasso
Systems - Threats E Inatitut

dependability

security

Typical threats: hardware failure, not fulfilled context assumption, misuse, attacks, ...
Sources for threats: system hardware (incl. computer), environment, software, ...

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Self-Adaptive Critical

Hasso
Plattner
Software Systems Institut
Context = system hardware + environment
adapt <\
-« —P Adaptation
A
Soft
u oftware . i _d _____ . . v] ¢ _d _____ |
’_> i>i Context i—_yiL £ T N u =E Context E— %

Adaptation to compensate threats (self-healing, self-configuring):

m Absolute position: adaptation must guarantee that all threats are properly handled
(this CANNOT be achieved)

m Relative position: adaptation must guarantee that all relevant threats are properly
handled (relevant = likelihood+ severity + ...; CAN ONLY be achieved in rare cases)

Problem: Usually not all threats are known!

m Practice: adaptation must guarantee that all known and relevant threats are
properly handled (relevant = likelihood+ severity + ...)

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Known and Unkown .
Plattner
Threats ﬂ Institut
dependabilit .
P y security
safety
Developer:
System: Known threats Known knowns
anticipated < In principle Known
known threats unknowns
~ 7
unanticipated — unknown threats unknown unknowns

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Self-Adaptive Critical -
Systems: Pros & Cons ﬂ it

Pros (cliché):

m Self-adaptive systems can handle unanticipated threats which
classical system design do not cover

Cons (cliché):

m For self-adaptive systems no guarantees can be given as they can
change their behavior

Resulting Open Questions (Contradiction or Panacea?):

What kind of additional threats can self-adaptive systems cover?

Can we establish the required guarantees for self-adaptive systems?

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Hasso

Adaptation & Models el
P Institut
Adapt “without” models:
m Still implicit design-time models are _
. . — Adaptation | —
used to establish guarantees offline
m Limitation: covers only threats 1
included in one model of the software’ ' ld
- - - u o r—-—————"—————— |
+ context (potentially including some — cofware LY o Context 1Y%
parameters that can be observed) B L]
Adapt with runtime models:
m Explicit runtime models are used to Model of
tablish t li —»- MIBE SR »| Adaptation Software’ + [4—
estaplisn guarantees online Reference Context
m Limitation: covers only threats <
captured by the runtime models /
(multiple!); assume correct learning U I i A .
of them from the observations | sofware A Context Y

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Adaptation &

Hasso
Guarantees Plattner
Institut
Adaptation Model of
P gé?gi:; » - Planning [«— Software’ + (<
- Execution Context
i _ €
Bottom line: Self-adaptive systems must /
simply be “better” and not “worse” ! o l A
p »
~| Software’ u =E Context Y
b
Cases that must be covered offline:

(1) Execution of the adaptation: consistent update; timing, ...
Additional cases that must be covered offline for runtime models:
(2) Adapting the model of the software’: consistent; fast enough; ...
(3) Adapting the model of the context: consistent; fast enough; accurate enough, ...

(4) Model as reference: correct reference, complete, ...

Cases that must be covered offline and/or online:
(5) Planning of the adaptation: does it really ensure the required guarantees?

Open Question: are the required guarantees possible/feasible? Some examples ...

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Example for (1) Execution of Hasso
; Plattner
the adaptation Institut

Operator-Controller Module (OCM) for
self-optimizing mechatronic systems

m Cognitive operator (CO): decoupled from the
hard real-time processing (flexible)

m Reflective operator (RO): Real-time
coordination and reconfiguration (pre-planned)

m Controller (C): Control via sensors and actuators
in hard real-time

shuttle OCM J _______
Modular formal verification (‘RO part™): p—— g [{
. . RO+C | 7
m Formal interface covers possible Bl 2l
pre-planned configuration steps — LL --------- |
- - . mation control OCM - | _ | _ energy subsystem OCM L] A
m Consistent configuration across R [. -
- - - - mation - P | control energy system
complex hierarchies: correct timing canvo) RIS | ©© | | || subostem f’”g > B |
| | |
Holger Giese, Sven Burmester, Wilhelm Schéafer, and Oliver Oberschelp, 'Modular Design and 1 : ; v
Verification of Component-Based Mechatronic Systems with Online-Reconfiguration', in Proc. of -
12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach, USA, [> -'=_'-\1, "\“)
pp. 179--188, ACM Press, November 2004. "%_‘ N “
suspension tilt OCM linear drive OCM | track control OCM |

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

10

I—I\MIIIPI\.’ I\1 _I_/

Execution of the
adaptation (cont.)

Hasso
Plattner
Institut

Distributed Software Architecture +

Context: correct

_ _ _ system
m Supports system with flexibly changing graph

structure (real-time clocks, linear variables)

m Model all possible structural changes in
the system and its environment in form of o
extended graphs and graph transformations move @ :

Verification:

m Analyze whether structural changes can
lead from safe to unsafe situations
(inductive invariants; incremental check
for changed transformations)

t:Track

s,:Shuttle | | s,:Shuttle

T
\ 1

}&st ce

'\\Coopeﬁﬁation/)

S ——

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

illing, Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation, Proc. of the 28th International Conference on

Example for (5) Planning

Hasso
- Plattner
of the adaptation Institut
11 reference trajectory comfort measurement

/*\/\ ‘ RERES
section-
control

\ OCM

Shuttle _\ - — %’3

(n+2) T (n+3)

m Distributed learning of a model of the track (environment)
m Local learning of a model of the shuttle (system hardware)
m Planning an adaptation in form of an optimal trajectory

m Trajectory synthesis establishes required guarantees

Sven Burmester and Holger Giese and Eckehard Miinch and Oliver Oberschelp and Florian Klein and Peter Scheideler,. Tool Support for the Design of Self-Optimizing
Mechatronic Multi-Agent Systems, International Journal on Software Tools for Technology Transfer (STTT) 10 (3), 207-222, 2008.

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Example 2 for (5) Plan-
ning of the adaptation

12

Application: Monitoring
and repair of complex
architectures with
redundancy (self-repair)

Uses a model as reference
and to capture the state
of software’ + context

The model as reference

IS used to compute the
required repair (computed
solution ensures online
the required guarantees)

Trade-off: speed of
repair vs. quality of
structural adaptation

Hasso
Plattner
Institut
Model of
—p IQ/(IE cf)gg::e » Adaptation [« S%f:)V:]?;i:[+ —
€
e
Up o If ____________ |
g Software’ S >: Context — %
complete expansion reduction
time damage | time | damage | tume damage
1 | 13630 | 773 40 7 99.7% | 99.1%
2 | 14890 | 97 20 30 98.7% | 59%
31 13790 | 4 10 5 99.9% | -25%
4 | 13660 | 34 40 34 99.7% | 0%

Matthias Tichy and Holger Giese and Daniela Schilling and Wladimir Pauls,
Computing Optimal Self-Repair Actions: Damage Minimization versus Repair
Time, Proc. of the ICSE 2005 Workshop on Architecting Dependable Systems,
St. Louis, Missouri, USA, (Rog\'erio de Lemos and Alexander Romanovsky,
ed.), vol. , ACM Press, 2005, p. 1-6,

Covers: arbitrary changes within the model of software’ + context

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

Hasso
Plattner
Institut

Conclusions

13

Open Questions (Contradiction or Panacea?):

What kind of additional threats can self-adaptive systems cover?

m Self-adaptive systems allows in principle to cover more threats

o Without runtime models coverage is restricted to what is covered by the

design-time model
With runtime models coverage is restricted to what can be covered by the
different possible forms of the runtime model

Can we establish the required guarantees for self-adaptive systems?

m Some guarantees for self-adaptive solutions can be established offline

(1) Execution of the adaptation
(2) Adapting the model of the software

(3) Adapting the model of the context

(4) Model as reference

m Some guarantees for self-adaptive solutions can be established online/offline

(5) Planning of the adaptation: does it really ensure the required guarantees?

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

14

Hasso
Conclusions (Cont.) ﬂ Inetitut

m Self-adaptive solutions only help when
0 Adaptation itself is guaranteed to work,

0 Guarantees for the adaptation can be established
(offline or online) or

o When cases are covered that are otherwise not covered.
m Coverage not having a runtime model itself counts!

Critical Self-adaptive software systems are thus
m No contradiction but also
m No panacea as building them requires a lot of effort

= ease building self-adaptive systems is key

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

15

MDE for Runtime Models
In Self-Adaptive Systems

m Supports feedback loop for models using
“meta-models” and model transformation
techniques for an EJB application server

m Extract abstract runtime models for
different autonomic managers as requirec

m Synchronize runtime models
iIncrementally between the autonomic
manager and the managed element
(faster as manual implementations)

m Adapt managed subsystem incrementally
via model (just parameters yet)

Covers: arbitrary changes within the model
of software’ (not context)

Hasso
Plattner
Institut

Autonomic Manager O architectural element
T Analyze | Plan O o
w architectural
) - monitoring
Y Knowledge |7 — .
Monitor _ N .g‘ Execute " purameter adaptation
i | -+ defined by
I 4 [
Target Model }_—_;_- Meta Model
L
i | .Ill
- ——r——
Model Transformation Engine TGG Rules
i | :
'. Y
Source Model - Meta Model
1 |
Sensors Effectors

Managed Elemer

it

Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.:
Model-Driven Architectural Monitoring and Adaptation for
Autonomic Systems. In: Proc. of the 6th International
Conference on Autonomic Computing and Communications
(ICAC’09), Barcelona, Spain, ACM (15-19 June 2009) accepted

paper.

29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

