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ABSTRACT

The Domain Name System (DNS) is a necessary component of the Internet that allows hosts on the
Internet to communicate with other hosts without needing to know their cryptic IP addresses. When this
protocol was first introduced it did not contain robust security features because scalability was an issue.
One of the useful features added to DNS was the DNS update mechanism that allowed other hosts to
dynamically change DNS entries. This feature, though, exposed new vulnerabilities to DNS servers which
necessitated the implementation of new security protocols. Some of the security protocols introduced
to address these issues were Transaction SIGnature (TSIG) and DNS Security Extension (DNSSEC).
Although, in IPv4, these mechanisms did resolve most of the security issues dealing with authentication
between a node and a DNS server, they are not viable in IPv6 networks. This is because the Neighbor
Discovery Protocol (NDP) introduced to organize the large IPv6 address space automatically does not
support DNS authentication or have an option for secure DNS updating. In this chapter, the authors
first explain the common approaches used in IPv4 to address these security issues. Then they explain the
differences between the use of these approaches in IPv4 and IPv6, where the focus is on new research
with regard to authentication mechanisms between hosts and DNS servers.
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INTRODUCTION

DNS (Mockapetris, 1987) establishes a naming
system for computers, or any other service or
device, connected to a network. Without the DNS
protocol, Web addresses would become long,
confusing, and difficult to remember. The impor-
tance of DNS lies in how it makes the Internet
and other networks easier to use. It does this by
translating domain names into IP addresses. For
example, the domain name www.example.com
might translate to the IP address 192.168.204.6.
Therefore, changing an IP address of a server, such
as Web or email, would have a profound effect on
alarge number of users and systems that make use
of the services on those servers on the Internet.
Even though DNS is a very critical element
of the Internet, it only supports basic security
mechanisms. Also, new DNS functions, such as
Dynamic DNS (DDNS), open up new security
issues concerning DNS, such as to how to prevent
attackers from changing DNS records—in other
words, how to authenticate the host’s desire to
change Resource Records (RRs) on DNS serv-
ers. To address this problem, two different pro-
tocols were introduced: Transaction SIGnature
(TSIG) (Vixie, Gudmundsson, Eastlake 3rd, &
Wellington, 2000) and DNS Security Extension
(DNSSEC) (Arends, Austein, Larson, Massey,
& Rose, 2005). The extensions to these security
protocols could thus resolve the authentication
problems in Internet Protocol version 4 (IPv4).
But the main problem that exists with the [Pv4
network is a lack of IP addresses. According to
the IANA exhaustion counter, the last blocks of
[Pv4 addresses have already been given to the local
Internet registries. It is for this reason that the next
generation of Internet Protocol, i.e. [IPv6 (Deering,
& Hinden, 1998) was proposed. The number of
unique IPv6 addresses is 2'* times greater than
those of IPv4. To organize this large address space,
two different mechanisms have been proposed:
Dynamic Host Configuration Protocol (DHCPv6)
(Droms, Bound, Volz, Lemon, Perkins, & Carney,
2003) and Neighbor Discovery Protocol (NDP)

(Narten, Nordmark, Simpson, & Soliman, 2007).
These two mechanisms, together, are known as
IPv6 Autoconfiguration. Unfortunately, security,
in the DNS update process, is also the main issue
with these two mechanisms. For example, when
using DHCPv6, no options have been added to
the DHCPv6 messages to handle host authentica-
tion of the DNS server. Another main problem,
with these mechanisms, is the changeable nature
of IPv6 addresses. Because of privacy reasons,
and in order to prevent attackers from tracking
a node in IPv6 networks, the IPv6 addresses are
valid only for a short period of time, which is
dependent on network policy. Moreover, in one
of these addressing mechanisms, i.e., NDP, there
is no control over the nodes that can join the IPv6
networks. These unmanageable and temporary
addresses create several issues for the updating
of DNS records. There is another issue which
concerns resolver authentication. Usually, the
DNS client (stubresolver) on the client’s computer
sends its queries to another recursive DNS server
in order to recursively query other DNS servers
and to translate a name to an IP address. It then
sends back the result to this client. The DNS client
often does not support any secure mechanisms,
like DNSSEC, and thus only relies on the source
IP address authentication process. An attacker is
thus able to spoof this IP address and then send
the wrong response to this client. The attacker
will then direct the victim to a computer of his
choice which, in fact, might be one of his own
servers. On many occasions, like checking a bank
account, it is important for users to ensure that
the query response received from the DNS server
was originated by the real recursive DNS server
and has not been spoofed by an attacker.

The main focus of this chapter will be on the
security mechanisms needed to ensure a securer
DNS update and on the proper authentication
process. Several books already discuss DNS imple-
mentation and configuration. We will therefore
just briefly mention this background information.
The remaining sections of this chapter are orga-
nized as follow:
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First—DNS concepts and functions are briefly
explained. Second —[Pv6 autoconfiguration mech-
anisms, threats, and the differences between DNS
in IPv4 and IPv6 are explained. Third — divides
DNS functions into two categories, introduces
DNS threats in each category, describes the current
security mechanism in place for [Pv6, introduces
the most recent research on DNS security for
IPv6, and explains future trends. The last section
summarizes this chapter.

DOMAIN NAME SYSTEM (DNS)
DNS and its Functions

DNS is a hierarchical database that stores data in
a particular format in what are called Resource
Records (RRs). These RRs are distinguished by
their types — MX, NS, AAAA, A, etc. Each RR
specifies information about a particular object.
The server uses these records to answer queries
from hosts in its zone (Mockapetris, 1987).

To provide a host with DNS functionality, it
is necessary to install software that implements
the DNS protocol. One of these implementations
is the Berkeley Internet Name Domain (BIND)
that was first introduced in the early 1980s at
the University of California at Berkeley. This
implementation is also viewed as the reference
implementation for the Internet’s DNS. The lat-
est versions (version 8+) of this implementation
support Dynamic Update which will be explained
in the next section.

A DNS-capable host is called a Name Server
(NS). Name Servers can be divided into two cat-
egories: Authoritative and Recursive.

e  Authoritative: An authoritative name
server provides the answers to DNS que-
ries. For example, it would respond to a
query about a mail server IP address or
Website IP address. It provides original,
first-hand, definitive answers (authorita-
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tive answers) to DNS queries. It does not
provide ‘just cached’ answers that were ob-
tained from another name server. Therefore
it only returns answers to queries about do-
main names that are installed in its system
configuration.

There are two types of Authoritative Name

Servers:

° Master Server (Primary Name
Server): A master server stores the
original master copies of all zone re-
cords. A host master is only allowed
to change the master server’s zone
records. Each slave server gets updat-
ed via a special automatic updating
mechanism within the DNS protocol.
All slave servers maintain identical
copies of the master records.

° Slave Server (Secondary Name
Server): A slave server is an exact
replica of the master server. It is used
to share the DNS server’s load and
to improve DNS zone availability in
cases where the master server fails. It
is recommended that there be at least
2 slave servers and one master server
for each domain name.

° Recursive (Something which Repeats or
Refers Back to Itself): A recursive name
server responds to queries where the query
does not contain an entry for the host in its
database. It first checks its own records and
cache for the answer to the query and then,
if it cannot find an answer there, it may re-
cursively query name servers higher up in
the hierarchy and then pass the response
back to the originator of the query. This
is known as a recursive query or recursive
lookup.

In principle, authoritative name servers suffice
for the operation of the Internet. However, with
only authoritative name-servers operating, every
DNS query must start with recursive queries at
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the root zone of the Domain Name System and
each user system must implement resolver soft-
ware capable of a recursive operation. In fact, the
majority of DNS query responses are generated
from the cache of recursive servers, which are
responsible for obtaining the IP address of the
site or computer you are trying to reach. Many
of the security compromises and breaches that
occur today are the result of vulnerabilities in the
recursive or caching DNS server code.

For example, when a user types something
like “www.xxx.com’ into his browser, in order to
resolve this address, a request is sent to a Name
Server. The IP address of this local DNS server is
configured either via Dynamic Host Configura-
tion Protocol (DHCP - a network protocol that
is used to configure network devices so that they
can communicate on an IP network) or by other
mechanisms that were explained in the section
entitled “DNS for IPv6”. The Name Server re-
solves the address by the use of different types
of queries which can be either recursive queries
(the DNS server has to reply with the requested
information or with an error message because the
DNS server cannot provide a referral to a different
DNS server [Microsoft Library, 2013]) oriterative
queries (the DNS server provides the best answer
which can be the resolved name or a referral to a
different DNS server [Microsoft Library, 2013]).
It will then return that Website’s IP address. Itis at
this time that a connection will be established and
the content on that Website will become visible.

Mechanisms to Update DNS

DNS update (Wellington, 2000) is a mechanism
foradding, changing, orremovingaRR recordina
DNS zone file. There are two mechanisms used to
update DNS RRs: manual updating and Dynamic
DNS Update (DDNS) (Wellington, 2000). In
manual updating, an administrator needs to edit
the zone file in order to process the modifica-
tions. If the DNS service needs to restart in order
to apply the modifications, then this would have

an adverse effect on DNS performance. During
the restart process of a DNS service, the DNS
servers (name servers) will be unable to process
DNS queries that are asked of it by other hosts
on the Internet. To address this problem DDNS
was introduced. By the use of this mechanism it
is possible for the name server to change one or
several records, in one particular zone, with just
one DNS update request, while at the same time,
being able to respond to user queries. The clients,
or servers, can thus automatically send updates to
the authoritative name servers in order to modify
the records they want to modify. The authoritative
name server then checks to make sure that certain
prerequisites have been met. The prerequisites
contain a set of RRs that must exist on the primary
master server in the particular zone that needs to
process this update packet. DDNS can also be
used, in conjunction with DHCP, to update RR
records when a computer’s [P address is changed.
To do this, clients send update messages, which
should contain an additional DHCP option that
provides their Fully Qualified Domain Name
(FQDN) (Stapp & Volz,2006), along with instruc-
tions to the DHCP server as to how to process the
DNS dynamic updates. (For example, if the client
name is “hostx” and the parent domain name is
“mynetwork.com,” then the FQDN is “hostx.
mynetwork.com). An example of an application
needing DDNS would be a small business, where
a static IP address is not available for use by their
servers, or the IP addresses are set dynamically by
Neighbor Discovery Protocol (NDP) or DHCPv6.

DNS FOR IPV6
Internet Protocol Version 6 (IPv6)

Internet Protocol Version 6 (IPv6) (Deering, &
Hinden, 1998) represents the next generation of
Internet protocol. The main reason for its creation
was due to the exhaustion of IP addresses that cur-
rently exists in the current version of the Internet
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Protocol, Internet Protocol version 4 (IPv4). IPv4
allows for only about 4.2x10° unique addresses
worldwide while IPv6 allows for about 3.40 x10°*
addresses — a number unlikely ever to run out.
These IPv6 IP addresses are in a hexadecimal
format — such as (fe08:1a63:2001:50e9::). It is
because of this hexadecimal format that it is
difficult to memorize IPv6 addresses. Adminis-
trators do not want to have to manually set these
IP addresses for the hosts on their network and
thus look for other mechanisms for their manage-
ment. In order to organize such a large address
space, two IPv6 autoconfiguration mechanisms
were introduced: Dynamic Host Configuration
Protocol v6 (DHCPv6) and Neighbor Discovery
Protocol (NDP).

IPv6é Autoconfiguration

There are two different types of autoconfiguration
mechanisms used in [Pv6 — Stateful Autoconfigu-
ration and Stateless Autoconfiguration. Stateful
Autoconfiguration, DHCPV6, is the equivalent of
IPv4’s DHCP but for IPv6. It is used to pass out
addresses and service information in the same
manner that DHCP does it in IPv4. This is called
“stateful” because both the DHCP server and the
client must maintain state information in order
to keep addresses from conflicting, to handle
leases, and to renew addresses, over time. State-
less autoconfiguration allows a host to propose
an address which will probably be unique and to
offer it for use on the network. Because no server
has to approve the use of the address, or pass it
out, stateless autoconfiguration is simpler. This
is the default mode of operation for most IPv6
systems, which includes servers.

Dynamic Host Configuration
Protocol Version 6 (DHCPV6)

DHCPv6 (Droms et al., 2003) is a protocol that

can be used to allow a DHCP server to automati-
cally assign an IP address to a host from a defined
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range of IP addresses configured for that network.
DHCPv6 operates in many modes compared to
DHCPv4:

e  Stateless Mode: In combination with
stateless IP configuration, DHCPv6 deliv-
ers router advertisements to a host with
DNS server information along with other
information, like options for SIP phones
and other services.

e  Stateful Mode: A host can also config-
ure it’s IP address (as with DHCPv4) with
DHCPv6

e DHCPv6 Prefix Delegation (DHCPv6-
PD) (Troan, & Droms, 2003): This is an
extension to DHCPv6 that enables an [Pv6
host, running DHCPv6 protocol, to ask for
a network prefix from that DHCPv6 server.
This DHCPv6 server can be an Internet
Service Provider ISP).

When a device connects to the IP network, it
sends out a Router Solicitation (RS) message. The
responding message, a Router Advertisement (RA)
message, contains two flags. The O flag is set to
indicate the existence of “other” information on
the DHCPv6 servers. The M flag indicates the
use of managed mode. Managed mode is the ac-
tion where the client should ask DHCPv®6 for an
IP address and not configure one statelessly. The
big difference between DHCPv4 and DHCPv6 is
the way in which the device identifies itself if a
host wants to assign the addresses itself, instead
of selecting addresses dynamically from a pool.

Neighbor Discovery Protocol (NDP)

Neighbor Discovery (ND) (Narten et al., 2007)
enables hosts to discover their neighboring rout-
ers and hosts and presents a technique which
allows the host to obtain router information from
routers. It also enables all nodes on the network
to check for the reachability of other neighbor-
ing hosts and routers. ND and Stateless Address
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AutoConfiguration (SLAAC) (Thomson, Narten,
& Jinmei, 2007), together, comprise NDP. This
protocol defines five different Internet Control
Message Protocol version 6 (ICMPv6) message
types, which perform functions for IPv6 similar
to those of Address Resolution Protocol (ARP)
and Internet Control Message Protocol (ICMP),
Router Discovery, and Router Redirect protocols
for IPv4.

A NDP-enabled node can configure its IP
address automatically as soon as it is plugged
into a new network. This newly joined node first
generates its Interface Identifier (IID), which is
represented by the 64 rightmost 128 bits of the
IPv6 address. It concatenates the IID with the
local link layer prefix that starts with fe08, and
sets this on its network adapter. It then sends a
RS message to all neighboring routers requesting
router information. Routers respond to this mes-
sage with a RA message that contains routing
information and subnet prefixes (64 bits). The
subnet prefix consists of the 64 leftmost 128
bits of the IPv6 addresses. The node then sets its
global IP address (as a temporary address) with
the subnet prefix obtained from the RA message,
and sends a Neighbor Solicitation (NS) message
to all nodes on that network in order to prevent
the possibility of collisions with its IP address
(process Duplicate Address Detection [DAD]). If
it does not receive any Neighbor Advertisement
(NA) messages after a certain time, (a standard
of about 1 second) from any nodes claiming to
own its IP address, then it changes the status of
this IP address to permanent and starts using it.
Otherwise, it will generate a new IID and repeat
this process.

The Differences between
DNS for IPv4 and IPv6

Even though DNS resides far above the Internet
Protocol in the TCP/IP protocol architecture
suite, it works intimately with IP addresses. For
this reason, changes are necessary to afford it the

ability to support the new IPv6. These changes
include the definition of a new IPv6 address RR
(AAAA) as a replacement for the A RR in IPv4.
When a node wants to know the IP address of a
sample domain, the response to this query will
be obtained by retrieving that IP address from the
AAAA RR record on the DNS server.

Another change occurs in Reverse mapping.
Reverse mapping maps a particular IP address to
aparticular host and allows nodes, on the Internet,
to look for a domain name associated with an IP
address. An IPv4 reverse map uses IN-ADDR.
ARPA Pointer Resource Records (PTR RRs) for
reverse mapping. For example, if the IP address
is 192.168.254.17, the reverse lookup domain
name is 17.254.168.192.IN-ADDR.ARPA. On
the other hand, IPv6 makes use of the [IP6.ARPA
domain PTR RRs for reverse mapping. Each
hexadecimal digit of the 32-digit IPv6 address
(zero compression and double-colon compres-
sion notation cannot be used) becomes a separate
level, in inverse order, in the reverse domain
hierarchy, when the namespace for reverse que-
ries is created. For example, the [Pv6 address is
2001:0db8:0000::/48 so the reverse lookup domain
name is 0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.

Because IPv4 and IPv6 coexist, and because
different formats are used for reverse mapping, the
reverse zone files need to be defined separately.

DNS SECURITY

DNS is an essential protocol used on the Internet.
When this protocol was first introduced it did
not contain robust security features because of
scalability issues (Scalability refers to the fact
that the database, which must be kept in sync, is
distributed over the entire Internet.). In today’s
environment, security has become a big issue
for DNS. Safeguarding the DNS operation is a
primary concern to everyone using the Internet
today. DNS critical functions can be divided into
two categories: reading data from a DNS server
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and writing data to a DNS server. There are some
security issues associated with each of these func-
tions. In the following sections these issues, and
the current solution for them, will be described.

Reading Data from a DNS Server

Any host on the Internet can query DNS servers.
No authentication is needed to do this. The host
needs only to support a client DNS application
called a resolver. When a host, such as a client or
a mail server, wants to resolve the domain name
or IP address of another host on the network, it
sends its query to a resolver. The resolver can be
a server, located in an Internet Service Provider’s
(ISP) network, which gives the host access to
the Internet. The task of the resolver is to query,
recursively, the root DNS server, and other DNS
servers, to find the authoritative DNS server. The
resolver then sends a query to that name server
in order to read the content of RRs on that DNS
server. The authoritative DNS server then responds
to the query with the relevant content contained
in the RRs. After receiving the response from the
authoritative DNS server, the resolver forwards
this response to the host that initiated the query.
Figure 1 shows the process of querying name
servers to find a sample domain (example.com).
Some hosts do support the DNS resolving pro-
cess themselves, while others rely on a resolver
to resolve the query.

DNS Read Threats

DNS queries are exchanged in plain text. Attackers
can easily sniff these messages, manipulate them
for their own purposes and, then, forward them on
to the resolvers. Resolvers have no way of verify-
ing this data. They forward these DNS responses
to the query initiator without authenticating them
or ensuring their integrity.

Another problem exists for clients initiating
these queries. The basic authentication mechanism
uses the source IP address. If the source IP address
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of the query response is the same as that of the
resolver, then the clients’ computer will accept
that response. The clients thus have no way of
ensuring that the query responses were originated
by the real resolver and not as the result of having
been spoofed by an attacker. The DNS queries are
thus vulnerable to several types of attack, which
are explained below.

Man in the Middle (MITM) Attack

When a nameserver and a resolver initiate a DNS
request and response, an attacker might intercept
both, and then attempt to spoof the messages ex-
changed between the name server and resolver.
The attacker reroutes communication between a
nameserver and a resolver through the attacker’s
computer. The nameserver and resolver have no
idea that the attack is being perpetrated. The at-
tacker is thus able to monitor and read the traffic
before sending it on to the intended recipient.
This attack is possible because the DNS queries

Figure 1. Reading data from DNS server

Mail.example.com

/example.com DNS
©

",
Recursive DNS \'#
{Resolver)

Root DNS



Challenges and Solutions for DNS Security in IPv6

are only authenticated based on the source IP ad-
dress. The attacker can thus spoof this IP address
and initiate his attack. Other types of attack that
are included in this category are packet sniffing
and cache poisoning.

DNS Cache Poisoning Attacks

DNS cache poisoning is another form of MITM
attack. Cache is a very important component of the
DNS infrastructure. Many components within the
DNS hierarchy maintain their own cache to avoid
the necessity of accessing an external server’s
cache. A resolver nameserver receives a response
and cachesit fora certain period of time (dependent
on network policy) so that further queries for the
matching domain can be resolved using data from
its cache. Not only does this reduce the amount of
DNS traffic, but it makes the resolution process
more efficient. An attacker might also respond to
arequestor’s DNS query with spoofed messages.
Whenever a nameserver sends out a query to an-
other nameserver, it verifies the response through
the execution of the following steps:

e  Ensure that the Query ID (16 bit identifier
for the request) in the response matches the
one contained in the request.

e  Ensure that the response arrives on the
same User Datagram Protocol (UDP) port
that was used for sending the request.

e  Ensure that the question section in the re-
sponse matches that of the question con-
tained in the query.

e  Ensure that additional information con-
tained in the response belongs to the same
domain as that which was queried.

When the verification process is successful,
the response is accepted and the cache is updated.
An attacker can try to guess this data by sending a
query for the domain name that it wants to hijack
to the nameserver it wants to poison. Knowing
that the nameserver will soon reach out to exter-

nal nameservers for resolution, the attacker starts
flooding the nameserver with forged responses.
Nameservers are designed to accept the first valid
response — the rest of the responses are ignored.
The chance of the attacker’s valid looking response
reaching the nameserver is high if the attacker is
able to generate responses that reach the resolver
before a valid response does. This process redi-
rects other user’s queries, of that domain, to the
attacker’s computer.

Packet Sniffing

This attack occurs when DNS sends an entire
query or response in a single, unsigned, unen-
crypted UDP packet. Messages sent this way make
spoofing easy. An attacker can capture DNS query
packets, generate wrong responses, and then send
them quickly to the resolver, before the correct
response is received from the name server. As no
source authentication or data integrity checks are
supported, this will not be detected by the resolver.

Transaction ID Guessing

A transaction ID is a 16-bit field which identifies
a specific DNS transaction. The transaction ID is
created by the DNS request initiator and is copied
to the DNS response by a DNS query responder.
Using the transaction ID, the DNS client can
match responses to its requests. It is not hard to
guess, from the DNS request, without having to
intercept packets on the LAN, the transaction ID
of a DNS response. In practice, the client UDP
port and the Transaction ID can be predicted
from previous DNS requests/responses (DNS
queries). It is common for the client port to be a
known fixed value, due to firewall restrictions, or
the port number will increase incrementally due
to resolver library behavior. The DNS transac-
tion ID generated by a client usually increases
incrementally. This reduces the search space for
an attacker (Atkins & Austein, 2004).
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Distributed Denial of
Service (DDoS) Attack

A DDoS attack is an attempt to make a DNS
server unavailable in the network. Over the past
several months a series of Distributed Denial of
Service (DDoS) attacks have victimized DNS
root and Top Level Domain (TLD) name server
operators. Suppose an attacker targets nameserver
A on the Internet. The attacker initiates several
DNS request messages, using nameserver A as
the source IP address of these messages, for the
purpose of initiating a DDoS attack on nameserver
A.These messages are sent fromdifferent infected
computers, called botnets, around the Internet. If
the resolvers cannot find a response to that query
in their cache, they issue a DNS request message
of their own, to the compromised name servers, in
order to retrieve the response. The compromised
name servers return the DNS responses to the
resolvers. The resolvers then send these DNS
response messages to the spoofed IP address, i.e.,
nameserver A. Nameserver A is thus bombarded
with many DNS response queries which prevents
it from answering new DNS queries. The nam-
eserver A’s services would thus not be available
to real users.

Secure DNS Read

There are some mechanisms that can be used to
secure DNS queries. Two of these are the DNS
Security Extension (DSNSEC) (Arends et al.,
2005) and the Internet Protocol Security (IPsec)
(Kent & Seo, 2005).

DNS Security Extension (DNSSEC)

DNSSEC (Arends et al., 2005) was introduced
by the Internet Engineering Task Force (IETF) as
an extension to the DNS used in validating DNS
query operations. It verifies the authenticity and
integrity of query results from a signed zone. In
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other words, if DNSSEC is available from the
requestor client to the resolver/caching name
server to the authoritative name servers, then
the client has a level of assurance that the DNS
query response is signed and trustworthy, starting
from the root and chaining all the way down to
the domain and sub domains. It uses asymmetri-
cal cryptography. This means that separate keys
are used to encrypt and decrypt data in order to
provide security for certain name servers with
their respective administrators. When DNSSEC
is used, all answers include a digital signature.
This will prevent DNS spoofing attacks because
the attacker does not have the same private key
as the server and thus will be unable to sign his
own response and send it to the victim. But the
problem with DNSSEC is that the signatures are
not created on-the-fly because DNS itself does
not have access to the keys needed to sign its own
responses. Thus, the administrator of that zone
should sign each domain and sub domain manu-
ally, ahead of time, and then store those signatures
in the SIG RRs of the DNS server. Moreover, the
zone private key should be stored offline. This is
the reason that it cannot fully support the Dynamic
Update process. It cannot generate the signature,
on-the-fly, in order to respond to real-time queries.
Also using DNSSEC cannot guarantee the data’s
confidentiality because it does not encrypt the
data but just signs it.

Internet Protocol Security (IPsec)

The Internet Engineering Task Force (IETF) (Kent
& Seo, 2005) proposed the use of IPsec in order
to provide access control, data authentication,
integrity, and confidentiality for the data that is
sent between communication nodes across IP
networks. IPsec insures data security at the IP
packet level (IP datagram). A packet is a unit
of data that is assembled and routed across the
network, including a header and payload. Other
protocols that assist IPsec in securing packets are:
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¢  Encapsulating Security Payload (ESP):
A session protocol for data protection that
provides confidentiality, authentication,
and integrity.

e  Authentication Header (AH): Provides
authentication and integrity.

@ Internet Key Exchange (IKE): Provides
session key negotiation, key manage-
ment, and Security Association (SA)
management.

IPsec can be configured to operate in either
of two modes: tunnel and transport mode. When
the tunnel mode, the default IPsec mode, is used
the entire original IP packet is protected by IPsec.
This means that IPsec encapsulates the original
packet, encrypts it, adds a new IP header to it and
then sends it to the other side. In other words,
the entire packet is the payload and this packet is
then processed using IPsec. Tunnel mode is most
commonly used to encrypt traffic between secure
[Psec gateways —such as, between the Cisco router
and PIX Firewall, or an end-station to a gateway,
where the gateway acts as a proxy for the hosts
behind it. Transport mode is used for end-to-end
communications — such as, for a host to host IPsec
SA. Only the original packet’s payload is encrypted
and protected using this mode. The IP header is
not protected, so an attacker might eavesdrop to
find the source and destination of this packet. A
secure Telnet or secure Remote Desktop session,
from a client to a server, are representative of the
IPsec transport mode.

Even though IPsec is a good approach for
securing data at the packet level, in practice, be-
cause of the complexities involved, it is not easy
to configure or to implement. For example, public
key authentication used in IKE requires the use,
and hence understanding, of X.509 certificates
(Cooper, Santesson, Farrell, Boeyen, Housley, &
Polk, 2008). Moreover, the secret key distribution
mechanism requires an infrastructure whereby
the traditional methods for authentication are

Pre-Shared Keys and Digital Signatures. The use
of a Pre-Shared Key is only feasible when the
number of communicating hosts is small. This is
why, in practice, IPsec is not used to secure DNS
messages. On the contrary, [Psec benefits from
the use of DNSSEC records for authentication
in IKE processing (Merino, Martinez, Organero,
& Kloos, 2006), but this method is beyond the
scope of this chapter.

Can Existing Secure DNS Read
Mechanisms be used in IPv6?

Two DNS secure read mechanisms were intro-
duced in the prior section. Unfortunately, the
human intervention required to apply the configu-
rations needed by these mechanisms makes them
difficult to use in both IPv6 and IPv4 networks.
Forexample, pre-configuring all DNSKEYs used
in DNSSEC mechanisms, for every root island of
security, is not practical because of scalability and
key management, in each resolver, are major issues
intoday’s fast-growing Internet. In other words, the
currentresolver (stub-resolvers) installed on most
of the world’s computers would need to be replaced
with ones that could handle DNSSEC messages.
The fact that replies to DNS requests exceeding
512 bytes (due to the use of older preconfigured
equipment) are blocked, poses a second problem.
Typically, DNSSEC replies are four times larger.
The third reason is that zones whose parents do
not deploy DNSSEC cannot use a DNSSEC ap-
proach. Thus, the communication between a non
DNSSEC enabled zone with a DNSSEC enabled
zone is not protected and is prone to read attacks
as mentioned in the previous sections.

Writing Data to DNS Server

Writing data to a DNS server is the process of
adding, changing, or removing a RR record in a
zone’s master file. This is called a DNS Update.
This process can be for the transfer of the entire
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zone from a master to slave, or updating just
a few RRs in the master name server. The old
mechanism used to process updates consisted of
amanual update process. But this manual process
had anegative impact on the performance of DNS
servers because of the need for human intervention.
Human intervention also opened the door for an
increase in DNS attacks that were the result of hu-
man error. For example, a long delay could result
when an update is needed and the administrator is
not available. Another problem, with some imple-
mentations of DNS, is that the DNS service will
need to be restarted before the changes will take
effect. During a restart, DNS servers are unable
to process DNS queries. To address these issues
the Dynamic DNS update (DDNS) (Wellington,
2000) was introduced. DDNS enables real-time,
dynamic updates to entries in the DNS database.
By using this mechanism, it is possible for the
name server to change one or several records in
one particular zone with the use of only one DNS
update request, while at the same time, responding
to user queries. The clients or servers can thus
automatically send updates to the authoritative
name servers in order to modify the records they
want modified.

DNS Write Threats

DDNS uses a basic protection mechanismin order
to prevent other nodes from making unauthorized
updates. This is done by checking whether or not
the source IP address is the same as that on the list
of authorized updaters. But there is a flaw here
because attackers can spoof this IP address and
update DNS RRs and then redirect all traffic to
their desired hosts rather than the intended hosts.
The attackers can also execute other attacks—such
as, phishing attacks, infection of other computers,
Distributed Denial of Service (DDoS) attacks, etc.
They can also redirect traffic to the victim’s host
which will inundate that server with messages
and render its service unavailable (DoS). The list
of DNS write threats include the vulnerabilities
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of the Operating System (unauthorized access to
zone file), zone file configuration vulnerabilities
(human mistakes), Source IP spoofing, DNS up-
date spoofed messages, and Zone file corruption
(accidentally).

Vulnerabilities of the Operating System

The bugs (bug — an error or mistake in software
code that does not allow the software to perform
its task correctly) in a server Operating System
(OS) might give attackers access to computers
on its network, especially when they are always
connected to the Internet and the servers’ service
is accessible via the Internet. For example, un-
necessary open ports in an OS could allow remote
code execution.

When an attacker gains access to the OS, he
might access critical data, such as a DNS zone
file, and update RRs for his own advantage.
Overflowing the code execution buffer is another
type of attack against the OS. This attack calls a
subroutine that returns to a point in the main pro-
gram defined by the attacker. This is one of many,
similar types of OS level attacks, which exploit
OS vulnerabilities on which the DNS service is
running (Rooney, 2011).

Zone File Configuration Vulnerabilities

When an administrator configures the DNS ser-
vice, any misconfiguration might allow for the
extraction of critical data from a zone file to the
attacker’s computer or might lead to an improperly
configured server.

Source IP Spoofing

If a host wants to update a RR record residing in
a zone file on the DNS server, the DNS server
checks to see that the source IP address, of the
DNS requestor, is the same as that stored in the
DNS configuration file. If it is the same, the DNS
server will process the update request. An attacker
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can listen to DNS traffic, intercept an [P address,
and then, illegally update a RR in a DNS server.
He can then redirect the traffic to the computer
of his choice.

Spoofed Message Attack

This type of attack is usually classified as a source
IP spoofing attack. In this attack, the attacker
listens to the DNS traffic, and when a legitimate
host wants to update a RR in a zone file on the
DNS server, the attacker intercedes and changes
the content of the DNS update and resends it to
the DNS server. Since the source IP address is
now actually the same as the legitimate host IP
address, the update request will be processed by
the DNS server.

Zone File Corruption

When the hard disk, where the zone file is stored,
encounters a physical problem, which causes a part
of datatobelost, acorrupted zone file is the result.

Secure DNS Write

Some security mechanisms and protocols were
introduced to address the problems mentioned
in earlier sections. TSIG (Vixie et al., 2000) is
one such protocol that can be used to secure a
Dynamic Update. The remainder of this section
will explain the TSIG RR format and the messages
exchanged between a client and a server when the
DNS update is initialized.

Transaction SIGnature (TSIG)

TSIG is a protocol which provides endpoint au-
thentication and data integrity by the use of one-
way hashing and shared secret keys to establish
a trust relationship between two hosts that can be
either a client and a server or two servers. The
TSIGkeys are manually exchanged between these
two hosts and must be kept in a secure place. This

protocol can be used to secure a Dynamic Update
or to give assurance to the slave name server that
the zone transfer is from the original master name
server and that it has not been spoofed by hack-
ers. It does this by verifying the signature with a
cryptographic key shared with that of the receiver.

The TSIG Resource Record (RR) has the same
format as other records used in a DDNS update
request. Some of the fields of this TSIG RR are:
Name, Class, Type, Time To Live Resource Data
(TTL RDATA), etc. For example, an RDATA
field would specify the type of algorithm that
would be used in a one-way hashing function.
It could be a Hash-Based Message Authentica-
tion Code-Message-Digest algorithm (HMAC-
MD5.SIG-ALG.REG.INT [HMAC-MDSJ]), a
Generic Security Service Algorithm for Secret
Key Transaction (GSS-TSIG), a Hash-Based
Message Authentication Code-Secure Hash
Algorithm (HMAC-SHA1), HMAC-SHA224,
HMAC-SHA256, HMAC-SHA384 or HMAC-
SHAS12. These algorithms are defined by the
Internet Assigned Numbers Authority (IANA).
New algorithms should first be registered with
IANA prior to their use. Some of the other fields
residing in RDATA are; the time the datais signed,
the Message Authentication Code (MAC) that
contains a hash of the message being signed, and
the Original ID which is the ID number of the
original message.

Can Existing Secure DNS Write
Mechanisms be used in IPv6?

As explained in prior sections, the new [Pv6 ad-
dressing mechanism, NDP, creates a problem as
to how to authenticate a DNS server during the
DNS Update process without, or with minimal,
human intervention, while staying within the
goals of this protocol. The main reason NDP was
proposed was to ease the management of the large
address space in IPv6 networks and to reduce
the need for human intervention in address con-
figuration. This eliminates the need to memorize
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complex hexadecimal addresses. A node might
join an IPv6 network and have its IP address
automatically configured by the use of the NDP
mechanism, which needs no further administrator
intervention. Moreover, privacy is an important
issue in [IPv6 when nodes on the network need
to frequently change their IP address in order to
prevent being tracked by attackers. This makes it
difficult to authenticate who the update requestor
of the DNS RRs is, based solely on the source
IP address. Other security mechanism, such as
TSIG, need a manual key exchange or signature
generation before starting the secure authentica-
tion process between the DNS server and a host.
In IPv6 networks it becomes harder to apply this
authentication mechanism. Although, in IPv6,
the manual update process is a major concern,
in IPv4 it is an acceptable procedure for the fol-
lowing reasons:

e  Using Active Directory (AD) to simplify
the authentication process
° Advantage: Nodes are already au-
thenticated so that they can update
their DNS records

° Disadvantages: The administrator
manually adds the new node to this
network.

e  The addressing mechanism in IPv4 is not a
completely automatic process — it is either
totally manual or requires network admin-
istrator intervention for DHCPv4 server
configuration. These administrators thus
exchange the keys required for TSIG, or
other current DNS update security mech-
anisms, between the DNS server and the
DNS update requestor.

Two solutions for node authentication, when
Secure Neighbor Discovery (SEND) is used with
a DNS server, are Modified TSIG and Modified
SEND. In Modified TSIG there are two different
scenarios in play. One pertains to the authentication
of a node, with a DNS server, in order to update
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the DNS records. The other pertains to the authen-
tication of two DNS servers, such as a slave and
a master. SEND can also be used to authenticate
other DNS servers on the Internet. The solution
offered in this chapter focuses primarily on the
first scenario, but it can also be used to resolve the
issues stated in the second scenario. To address
the stated problem, the addition of an extension to
the current TSIG protocol is proposed in order to
automate the DNS Update authentication process
when SEND is used.

In the second solution, modified SEND, there
are again two different scenarios in play here —one
where all the hosts are in the same local link with
the DNS server and one where the DNS server is
located outside the bounds of the local link.

In the following section we will explain the
steps necessary to create and verify Update Mes-
sages.

Modified TSIG

The TSIG RR can be created by employing the
same data used to generate a new IP address in a
node — that is, from the key pairs (public/private
keys), the output value of CGA generation func-
tion (Interface ID), and other required parameters.
These values must be cached in the node’s memory
for later use.

The proposed solution to the Update Request
vulnerability issue is presented by the following
steps. As a node needs to change its IP address
frequently in order to maintain privacy, key pairs
and CGA parameters must be cached during the
generation of the IP address when using SEND.
The following steps show how to generate an IP
address.

1. Use a RSA algorithm or other CGA sup-
ported algorithms in order to generate key
pairs (public/private keys).

The shared secrets generated in TSIG may be
equivalent to key pair generation in the CGA
process. When somebody wants to generate
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TSIG secrets, he uses the dnssec-keygen
comment (in Linux) which then generates

which is a part of the CGA-TSIG Data field
in the other Data section of TSIG RDATA.

CGA Parameters

a set of .key and .private files in the current 2. Call the CGA generation function in order
working directory. Then, from the content to generate an IP address.

of the .private file, the base-64 string of data A newly joined node generates its IP address
is obtained (starting from the word “key”) by calling the CGA generation function.
and thisis called the shared secret. However, The steps used for the generation of the
this shared secret is only shared between CGA algorithm are, as depicted in Figure
two hosts, a client and a DNS server, and 2, as follows:

for each pair of hosts this process should The node

be repeated. The DNS server must also be a.  Generates a random modifier
configured in order to know what key to use b.  Concatenates a modifier consisting of
for which host. This means that every time a zero value for the prefix (64 bits), a
a host changes its IP address this process zero value for the collision count (1
must again be repeated. But when using the bit) and a RSA public key

modified TSIG, the same key pairs used in c. Executes a Secure Hash Algorithm
the initial IP address generation are used in (SHAL) on the output of step 2 and
the modified TSIG process. These keys can takes the 112 bits of the resulting digest
be generated on the fly, for first time IP ad- and names it Hash2

dress generation, using the RSA algorithm d. Compares the 16xSec leftmost bits
or other types of algorithms, such as ECC of Hash2 to zero. If the condition is
(Brian, 2009). This way of using CGA is not met, increments the modifier and
called the CGA-TSIG algorithm, which repeats steps 2 thru 4. If the condition
will be added as an algorithm type to TSIG is met, then execute the next step.
RDARA. The algorithm which is used in the e. Concatenates the modifier using the
signed message, and key generation process, prefix, collision count, and public key.
can be added to the algorithm type field, It then executes another SHA1 on that

output and calls it Hash1. It takes the
Figure 2. CGA algorithm
16*Sec leftmost & Hash2 Ye Final Subnet | Collision Public Ke
Hash2 bits (112 bits) Modifier Prefix count (v riable)y
A (128 bits) | (64 bits) | (8 bits)
No
SHA1 SHA1
Increment
Modifier
4 bits
odtar | ‘ran | couet | PURMCkey %@;ﬁ;ﬂ
(128 bits) (64 bits) | (8 bits)
"X |nterface ID

Subnet Prefix | Sec | [ug] |
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first 64 bits from the Hash1 output and
calls this the Interface ID (IID). It then
sets the first 3 left-most bits to the Sec
value. It also sets bits 7 and 8 to one
(called u and g).

f.  Concatenates the subnet prefix with the
IID and executes Duplicate Address
Detection (DAD) in order to avoid
address collision on the network. It
sends all CGA parameters (modifier,
subnet prefix, collision count, public
key), along with the messages, so that
other nodes will be able to verify its
address ownership.

The steps necessary for the generation of the
modified TSIG (CGA-TSIG) are as follows:
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Obtain Required Parameters from Cache:
The CGA-TSIG algorithm obtains the old
IP address, modifier, subnet prefix, public
key from the cache. It concatenates the old
IP address with the CGA parameters, i.e.,
modifier, subnet prefix, public key and colli-
sion count (the order of the CGA parameters
are shown in step 2 in the prior paragraph
describing the IP address generation) and
adds them to the initial part of the CGA-
TSIG data.
In the case of multiple DNS servers (au-
thentication of two DNS servers) there are
three possible scenarios with regard to the
authentication process, which differs from
that of the authentication of a node (client)
with one DNS server, because of the need
for human intervention.
a.  Addthe DNS Servers’ IP Address to
a Slave Configuration File:
A DNS server administrator will need
to manually add the IP address of the
master DNS server to the configuration
file of the slave DNS server. When the
DNS update message is processed, the
slave DNS server can authenticate the
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master DNS server based on the source
IP address, and prove the ownership of
this address by the use of CGA. The
disadvantage to the use of this approach
occurs when the IP address of one of
these DNS servers is changed. Then
it becomes necessary to update the IP
address in the DNS configuration file.
Another possible solution for auto-
mating this process entails saving the
public key, of the sender of the DNS
Update message, on the other DNS
server, after the source IP has been
successfully verified for the first time.
In this case, when the sender generates
anew [P address by executing the CGA
algorithm using the same public key,
the other DNS server can still verify it
and add its new IP address to the DNS
configuration file automatically.
Manually Exchange the Public/
Private Keys:

A DNS server administrator will need
to manually save the public/private
keys, of a master DNS server, in the
slave DNS server. This approach does
not have the disadvantage of the first
approach because any time any DNS
server wants to change its IP address it
will use the public/private keys which
will be readily available for authentica-
tion purposes.

Retrieve Public/Private Keys from a
Third Party Trusted Authority (TA):
The message exchange option of
SEND can be used for the retrieval
of the certificate. This may be done
automatically, from the TA, by using
the Certificate Path Solicitation and
the Certificate Path Advertisement
messages. However, in practice, it is
still not clear just how the hierarchical
certificate will be processed. A second
option has a DNS server administrator



Challenges and Solutions for DNS Security in IPv6

retrieving the certificate from a TA
manually. Then, like in scenario 2,
saving the certificate to the DNS server
for use in the generation of its address,
or in the DNS Update process. In this
case, whenever any of these servers
wants to generate a new [P address,
the DNS update process can still be
accomplished automatically, without
the need for human intervention.
2. Generate Signature:
Before a node starts exchanging a shared
secret, it first sends the DNS Transaction
Key (TKEY) (Eastlake, 2000) query to the
server in order to ask for the establishment
of a shared secret session. In order to reduce
the number of message exchanges needed
betweena DNS server and a host, amodified
CGA signature is added to the first message
sent by a host (a client). This will contain
the required information needed forthe DNS
Update Request.
For the generation of this signature, all CGA
parameters (modifier, public key, collision
count and subnet prefix), that are concat-
enated with the IP tag, the DNS update

Figure 3. Modified TSIG signature content

CGA Parameters

message, and the Time Signed field, are
then signed by using a RSA algorithm, or
other algorithms that depend on what has
been chosen for the CGA generation, and
the private key, which was generated in the
initial step of IP address generation and was
cached for use in this step. This signature
can be added as an extended option to the
TSIG RDATA field. Figure 3 shows the
format of the data in this signature. Time
Signed is the same timestamp as that used in
RDATA. This value is the UTC date and time
value obtained from the signature generator.
This approach will prevent replay attacks by
changing the content of the signature each
time a node wants to send a DNS Update
Request. The Update Message contains the
entire DNS update message, with the exclu-
sionof the TSIG RR. A DNS update message
consists of a header, a zone, a prerequisite,
an update and additional data. The header
contains the control information, the zone
identifies the zones to which this update
should be applied (Mockapetris, 1987b), the
prerequisite prescribes the RRs that must be
inthe DNS database, the update contains the

Final Subnet | Collision
Modifier Prefix count
(128 bits) (64 bits) | (8 bits)
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RR that needs to be modified or added, and
the additional data is the data that is not a
part of the DNS update, but is necessary in
order to process this update.
3. Generate Old Signature:

If the nodes generated new key pairs, then
they need to add the old public key and
message, signed by the old private key, to
the CGA-TSIG Data. A node will retrieve
the timestamp from Time Signed, will use
the old private key to sign it, and then will
add the content of this signature to the old
signature field of the CGA-TSIG DATA.
This step will be skipped when the node does
not generate new key pairs. In this case, the
length of the old signature field is set to zero.

As explained earlier, the TSIG RR contains
fields such as Name, Class, etc. The TSIG RDA-
TA field is extended to accommodate the addition
of a CGA-TSIG Len and CGA-TSIG Data, as
shown in Figure 4. The algorithm name is the
same algorithm as that used for generating an IP

Figure 4. Modified TSIG RR format

NAME = domain

Type =TSIG

Class

TTL

RDLength

RDATA
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address in IPv6 networks, i.e., the CGA algorithm
which is referred to as CGA-TSIG. The Other Len
field contains the overall length of the Other Data
field, which will contain the CGA-TSIG Len, the
CGA-TSIG Data and other options. CGA-TSIG
Data contains the IP tag, the tag used to identify
the node’s old IP address, the Type used as the
name of the algorithm used in SEND, i.e., CGA,
the algorithm type used to generate key pairs and
sign the message which, by default, would be the
RSA, the signature (the format of this signature
was explained in step 2 for the CGA-TSIG gen-
eration), the old public key, the old signature, and
the length of each of them. The length of the CGA
parameters will be variable and is dependent on
the size of public key.

A client’s public key can be associated with
several IP addresses on a server. A DNS server
keeps a client’s public key and IP addresses in a
data field formatted as shown in figure 4. This
allows the client to update his own RRs using
multiple IP addresses, while at the same time,
allowing him to change IP addresses. If a client

| Algorithm Name = CGA-TSIG |
| Time Signed |

Other Len
{ CGA-TSIG Len ™

\
Otxpr Data

G TSIG\

! Type = CGA
Algorithm Type = RSA/ECC
IP tag (16 bytes)
CGA Param. Len (1 byte)
CGA Parameters
signature Len
Signature
old public key Len
old public key
old signature Len

old signature ot
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wants to add RRs to the server by using a new IP
address, then the IP tag field will be set to binary
zeroes and the server will add the new IP address
being passed to it to the CGATSIGIPs table in
the database. If the client wants to replace an
existing IP address in the CGATSIGIPs table (see
Figure 5) on the server with a new one, then the
IP tag field will be populated with the IP address
which is to be replaced. The server will then look
for the IP address referenced by the IP tag in the
CGATSIGIPs Table (or file) and replace that IP
address with the new one.

When a host sends a DNS Update message to
a DNS server for the first time, the DNS server
must save the public key for this client in CGAT-
SIGkeys.

All DNS update requests/responses sent to
the DNS server, or vice versa, should contain the
modified TSIG RR in order to give other commu-
nicating nodes the ability to validate the sender.
These update requests/responses will contain all
the required information needed to process the
DNS Update Request. Whenever a client, or a
DNS server, generates a DNS update request, and
uses either TCP or UDP as the transport layer to

Figure 5. CGA-TSIG tables on MySQL backend
database

create table cgatsigkeys (

id INT auto_increment,
pubkey VARCHAR(300),
primary key(id)

%

create table cgatsigips {

id INT auto_increment,
idkey INT,
P VARCHAR(20),

FOREIGN KEY (idkey) REFERENCES cgatsigkeys(id)
primary key(id)
)

send this Update Request message to one DNS
server, the DNS server should verify this message
and, according to the verification result, discard
it without further action or process the message.
When the process is successful, the DNS server
will send a DNS response message back to the
sender informing the sender that the update process
was completed successfully.

The query response sent back to the client from
aresolver should also contain the modified TSIG
RR. But the clients’ query requests do not need to
contain this option because a resolver responds
to anonymous queries sent from any host. This
enables a client to authenticate the resolver and to
discard the responses that contain spoofed source
IP addresses.

Modified TSIG Verification

To prevent attackers from making an unauthorized
DNS update modification, authentication of the
sender is very important. The verification process
is as follows:

1.  Execute the CGA Verification:

In order to verify CGA a node needs to

process the following steps:

a.  Check the Subnet Prefix:
The 64 leftmost bits of IPv6 addresses
constitute the subnet prefix. The re-
ceiver obtains the subnet prefix from
the source IP address of the sender’s
message. Then the subnet prefix is ob-
tained from the CGA parameters in the
CGA-TSIG Data field of the received
message. A comparison is then made
between these two subnet prefixes. If
the subnet prefixes match, then execute
step 2. If there is not a match, then the
node will be considered an attacker and
the message will be discarded without
further action.

b. Compare Hashl to the Interface ID:
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The receiver will obtain all of the CGA
parameters from the CGA-TSIG Data
field. Then Hashl will be calculated
by executing SHA 1 against these CGA
parameters in order to obtain the 64
leftmost bits from the result. Hashl is
then compared to the 64 rightmost bits
of the sender’s IP address known as the
Interface ID (IID). It will ignore any
difference in the first three leftmost bits
of the IID (Sec value) and the u and
the g bits (see Figure 1). u and g are
bits 7 and 8§ of the first leftmost byte
of the IID. If there is a match, execute
step 3. If they do not match, then the
source will be considered a spoofed
source IP address and the message will
be discarded without further action.

c. Evaluate Hash2 with CGA

Parameters:
The receiver obtains the CGA param-
eters. It sets the collision count and the
subnet prefix to zero, and then execute
SHA1, on theresulting data, in order to
obtain aresult. The 112 leftmost bits of
the result is called Hash2. The 16xsec
leftmost bits of Hash2 are compared to
zero. If the condition is met, execute
the next step in the CGA-TSIG verifi-
cation process. If the condition is not
met, then the CGA parameters will be
consider as spoofed CGA parameters
and the message will be discarded
without further action.
Check the Time Signed:
The Time Signed value is obtained from
the CGA-TSIG Data field and is called tl.
The current system time is then obtained
and converted to UTC time, and is called
t2. If tl is in the range of t2 and t2 minus
X minutes (see formula 1: X minutes may
vary according to the transmission lag time),
execute step 3. If t1 is not in the range of t2,
then the source will be considered a spoofed
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message, and the message will be discarded
without further action. The range of x min-
utes is used because the update message may
experience a delay during the transmission
over TCP or UDP. Both times will use UTC
time in order to avoid differences based on
geographical location.

t2-x<t1<t2 (1)

Verify the Signature:

The signature, contained in the CGA-TSIG
Data field of the DNS message, should be
verified. This can be done by retrieving
the public key from the CGA-TSIG Data
field and using it to verify the signature. If
the verification process is successful, and
the node does not want to update another
node’s RR, then the Update Message will
be processed. If the signature verification
is successful and the node wants to update
another node’s RR(s), then the process will
execute step 4. If the verification was not
successful, the message will be discarded
without further action.

Verify the Source IP address:

If a node wants to update a/many RR(s)
on another DNS server, like a master DNS
server wanting to update RRs on the slave
DNS server, the requester’s source IP ad-
dress must be checked against the one in the
DNS configuration file. If it is the same, the
Update Message will be processed. If it is
not the same, then step 5 will be executed.
Verify the Public Key:

The DNS server checks whether or not the
public key retrieved from the CGA-TSIG
Data field is the same as what was saved
manually by the administrator or is in stor-
age where the public keys and IP addresses
are saved automatically after the first DNS
update. If it is the same, then the Update
Message will be processed. If it is not the
same, then the message will be discarded
without further action.
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6.  Verify the Old Public Key:
If the old public key length is zero, then skip
this step and discard the DNS update mes-
sage without further action. If the old public
key length is not zero, then the DNS server
will retrieve the old public key from the
CGA-TSIG DATA and will check whether
or not it is the same as what was saved in
the DNS server’s storage where the public
keys and IP addresses are saved. If it is the
same, then step 7 will be executed. If they
are not the same, then the message should
be discarded without further action.
7. Verify the Old Signature:

The old signature contained in the CGA-
TSIG DATA should be verified. This can be
done by retrieving the old public key and old
signature from the CGA-TSIG DATA and
using this old public key to verify the old sig-
nature. If the verification is successful, then
the update message should be processed and
the new public key should be replaced with
the old public key in the DNS server. If the
verification process fails, then the message
should be discarded without further action.

The verification process for the resolver in a
client also follows the same steps as above. With
the use of the approach proposed in this chapter,
the probability of the attacks, described earlier,
being successful will be greatly diminished. This
is because the DNS Update requestor’s source IP
address can be verified by the DNS server’s use
of the CGA algorithm. The CGA signature also
prevents the spoofing of DNS update messages.

Modified TSIG Evaluation

We evaluated different algorithms as part of our
proposed TSIG modification. For example, the
average time to generate a key pair with a RSA
key of 1024 bits using over 1000 samples on a

computer with a 2.6 GHz CPU processor and 2
GB of RAM was less than 27.8 milliseconds. This
value constitutes about 10% of the total CGA
generation process time. The main problem with
our proposed approach, thus, is the affect that the
CGA algorithm computational process time will
have on performance, i.e., the computational cost
involved in creating the CGA. This will adversely
impact both the address generator and the process
used by the attacker. For the attacker, the cost of
doing abrute force attack againsta (16xSec + 59)-
bit hash value would have an algorithm processing
time value estimated to be O(2'6%5«+5% But, in
spite of the sequential nature of CGA, it is pos-
sible to improve the CGA generation performance
with the application of parallelization techniques.
To evaluate this approach, we did several experi-
ments using two 64 bit VM operating systems. The
first VM was a quad core CPU and the second
was a single-core CPU. Both machines had 2
GB of RAM. All the measurements are done for
a RSA key size equal to 1024 bits and Sec value
of 1. The CGA creation process was called 1000
times to ensure sufficient sampling. The parallel
approach sped up the CGA computation time by
70.1%, when using 4 cores. These results show
that the CGA process does benefit by the use of
a multicore processor utilizing parallelization
techniques.

Moreover, when anode once generates a CGA,
it does not need to re-generate it in order to send
the DNS update message. As explained in prior
sections, it can cache that value and fetch it from
memory whenever it is needed. This means that,
onceitis generated, the CGA canthen be available
for differentuses until itis time for the generation of
another IP address. Another improvement results
from the reduction in network traffic. Generally,
to establish a secure DNS update, a minimum
of four messages are exchanged between a DNS
server and a client. With our approach, just two
messages are needed. One is the DNS update
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request, the other is the DNS update response,
both of which contain our proposed TSIG RR.
This therefore lends itself to speeding up the DNS
Update process.

Modified SEND

In this approach, the DNS update message is added
to the SEND Neighbor Advertisement (NA) mes-
sage (Rafieeetal.,2013) which means that the DNS
server process, using this SEND implementation,
will initiate the update process. The DNS service
no longer needs to listen to extra ports because,
with this implementation of SEND, after a suc-
cessful verification, another intermediate service
is called to add/modify/remove RRs on the DNS
database. The NA message is the message that is
sent by the node when the node generates its IP
address and wants to advertise it. In this case, the
node sets the S flag in the NA message to zero.
This simplifies the DNS update mechanism for
local networks and utilizes a secure authentication
mechanism, i.e., the SEND verification process.
The NA message format, with modified SEND
options, is depicted in Figure 6. As the figure
shows, the DNS update is a new message option.
This is also included in the RSA signature so that
the DNS server will be sure of the integrity of
this data. It will also assure the DNS server that
this node, with this IP address, actually owns this
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hostname. The checksum calculation for NA mes-
sages is also included in the DNS Update option.

When the DNS server is on another network,
for transparency, a Controller Node (CN) is used.
The task of the CN is to listen to NA messages
sent by nodes and, after successful verification,
generating DNS updates on behalf of these nodes.
In this case the administrator of that network only
needs to configure the CN node by using CGA-
TSIG or the other currently available mechanisms
instead of configuring all new nodes. In this ap-
proach, the CN node needs to maintain the public
key, IP address, and domain names, of the nodes,
in his database.

CONCLUSION

In this chapter DNS functions are classified into
DNS read functions and DNS write functions. At-
tacks that might be initiated against each of these
functions are then described. DNS Update is one
of the essential functions used by DNS servers.
It affords nodes the ability to update their DNS
records dynamically. Unfortunately, it also creates
new security issues for DNS servers as to how
to authenticate the nodes who’s RRs it wants to
update. Another problem with this update process
lies in maintaining data integrity and confidenti-
ality during DNS queries. There have been three
different protocols introduced for securing DNS

Figure 6. Modified NA message with DNS update option

Type Length Reserved
Type ! Code Checksum 1oy i Thste
ICMPv6 message Header Section
( type = 136) o I e 12 byte
Target Address ZOQe Section
Variable length
CGA Option Prerequisite Section
Variable length
Update Section
Pmestamp omn Variable length
Additional Data Section
ICMP options nonce Option Variable length
(Modified SEND Options)
DNS Update Option
RSA Signature Option
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Updates and queries: TSIG, DNSSEC and IPSEC.
But in IPv6, if StateLess Address AutoConfigu-
ration (SLAAC) is used, these secure protocols
will fail because, in SLAAC, there is no human
intervention used to control what nodes join a
network. Moreover, in TSIG or DNSSEC, not
all processing is done automatically, and a few
steps may need to be done offline. To address
this problem two solutions were proposed. An
extension to the TSIG protocol (CGA-TSIG) and
an extension to SEND, which takes advantage
of the use of CGA for the DNS authentication
process of a node within a DNS server. Both
approaches will also decrease the number of
messages needed to be exchanged between the
DNS server and the DNS client. This will result
in enhanced performance for the DNS update
process. These approaches might prevent several
types of attack such as DNS Update spoofing, etc.
These approaches also automate the authentication
process between the communicating nodes (a cli-
ent and a DNS server) since CGA does not need
a Public Key Infrastructure (PKI) framework for
the verification of the node’s address ownership.
CGA-TSIG can also be used for securing the DNS
read process. The CGA-TSIG data structure canbe
added, as an extension, to DNS query responses
sent by resolvers. This will thus prevent the types
of attacks described in earlier sections.
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KEY TERMS AND DEFINITIONS

CGA-TSIG: A combination of CGA with
TSIG. This modification of TSIG utilizes CGA
as a means of authenticating a node with a DNS
Server.

DHCPv6: A protocol that can be used to al-
low a DHCP server to automatically assign an
IP address to a host from a defined range of IP
addresses configured for that network.

DNS Update: DNS update is a process of
adding, removing, or modifying one or several
Resource Records (RRs) on DNS servers.

DNSSEC: Anextensionto DNS which secures
the DNS functions and verifies the authenticity
and integrity of query results from a signed zone.

IPsec: Provides access control, data authenti-
cation, integrity, and confidentiality for the data
that is sent between communication nodes across
IP networks.

IPv6 Autoconfiguration: A node generatesits
IP address as soon as it connects to the network
by using Stateless or Statefull mechanisms.

NDP: Neighbor Discovery (ND) and StateLess
Address Autoconfiguration (SLAAC) mechanism,
together, are called NDP. This mechanism allows
hosts to discover their neighboring routers and
hosts and obtain router information, and to gener-
ate and to set their IP address.

TSIG: TSIG is a protocol that provides end-
point authentication and data integrity by using
one-way hashing and shared secretkeys to establish
a trust relationship between two hosts.
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