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The Indexing ProcessThe Indexing Process
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The Query ProcessThe Query Process
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effectiveness and efficiency 
(primarily offline)



IndexesIndexes
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■ Indexes are data structures designed to make search faster

■ Text search has unique requirements, which leads to unique data 
structuresstructures

■ Most common data structure is inverted index

□ General name for a class of structures

◊ Specialized for different ranking function

□ “Inverted” because documents are associated with words, 
rather than words with documents

■ Components of search engine very dependent

□ Choice of query processing algorithm depends on retrieval □ Choice of query processing algorithm depends on retrieval 
model and dictates content of index.
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Indexes and RankingIndexes and Ranking
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■ Indexes are designed to support search

□ Faster response time

S t  d t□ Supports updates

■ Text search engines use a particular form of search: ranking

□ Documents are retrieved in sorted order according to a score □ Documents are retrieved in sorted order according to a score 
computing using

◊ document representation

◊ query

◊ ranking algorithm

h bl b d l f k ?■ What is a reasonable abstract model for ranking?

□ Enables discussion of indexes without details of retrieval 
model (Chapter 7)model (Chapter 7)

Felix Naumann | Search Engines | Sommer 2009



OverviewOverview
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■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing
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Abstract Model of RankingAbstract Model of Ranking
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Numerical values generated

by feature functions

High value predicts
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Typically ignores
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Final output: Documents
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Final output: Documents
sorted descending by

document score



More Concrete ModelMore Concrete Model
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Only few; O y e ;
others are zero

http://www.howard.k12.md.us
/res/aquariums/chichlids.html
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OverviewOverview
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■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009



Inverted IndexInverted Index
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■ Each index term is associated with an inverted 

list

□ Contains lists of documents, or lists of 
d  i  d t  d th  word occurrences in documents, and other 

information

□ Each entry is called a posting.

Th  t f th  ti  th t f  t   □ The part of the posting that refers to a 
specific document or location is called a 
pointer.

□ Each document in the collection is given a □ Each document in the collection is given a 
unique number.

□ Lists are usually document-ordered (sorted 
by document number).y )

◊ Intersect postings

■ Analogy: Book index

□ Inverted indexes usually not alphabetized□ Inverted indexes usually not alphabetized

□ Hash-table instead
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Alternative indexing approachesAlternative indexing approaches
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■ Signature files

□ Each document converted to signature (set of bits)

Q  l  t d t  t f bit□ Query also converted to set of bits

□ Query processing: Comparison of bit patterns

◊ All signatures must be scanned◊ All signatures must be scanned

◊ Comparison is noisy (to keep signature small)

□ Generalization for ranked search difficult

■ k-d trees

□ Each document encoded as point in high-dimensional space

□ Same with query 

□ Data structure helps find documents closest to query

B t  N t d i d f  t   di i□ But: Not designed for too many dimensions
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Example “Collection”Example Collection

12

■ Four sentences from the Wikipedia entry for tropical fish

S1  T i l fi h i l d  fi h f d i  t i l i t  ■ S1: Tropical fish include fish found in tropical environments 
around the world, including both freshwater and salt water 
species.

■ S2: Fishkeepers often use the term tropical fish to refer only those 
requiring fresh water, with saltwater tropical fish referred to as 
marine fishmarine fish.

■ S3: Tropical fish are popular aquarium fish, due to their often 
bright coloration.

■ S4: In freshwater fish, this coloration typically derives from 
iridescence, while salt water fish are generally pigmented.
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Simple Inverted 
IndexIndex
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■ Each box is a posting.

■ Does not record term 
frequency or occurrencefrequency or occurrence

□ Example: S1 and S2 are 
treated equally for term 
“tropical”.

■ Intersection

Q  “f h t  □ Query: “freshwater 
coloration”

□ {1,4}{3,4}{ , } { , }

□ Sorted lists: 
O(max(m,n))

◊ Can be improved
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Inverted Index
with countswith counts
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■ Before: Binary 
information

■ Now: Term frequencies■ Now: Term frequencies

■ Supports better 
ranking algorithms

■ Query “tropical fish”

□ S1, S2, S3

□ S2 > S1

□ S2 > S3

■ Distinguish main topics ■ Distinguish main topics 
and secondary topics 
in documents
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Inverted Index
with positionswith positions
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■ Multiple 
postings per 
documentdocument

□ Each with 
document 
number 
and word 
position

■ Supports 
proximity 
matchesmatches

■ “tropical fish” 
vs. “ ‘tropical 
fish’ ”
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Proximity MatchesProximity Matches
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■ Matching phrases or words within a window

□ e.g., “tropical fish”, or “find tropical within 5 words of fish”

W d iti  i  i t d li t  k  th  t  f  ■ Word positions in inverted lists make these types of query 
features efficient.
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Fields and ExtentsFields and Extents
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■ Document structure is useful in search: document fields

□ Restrict search to certain fields
◊ e.g., date, from:, etc.

S  fi ld   i t t   f  l h□ Some fields more important, even for general search
◊ e.g., title, headings

■ Options
□ Separate inverted lists for each field type□ Separate inverted lists for each field type

◊ One index for titles, one for headings, one for regular text
◊ Problem: General search must read multiple indexes

□ Add information about fields to postings□ Add information about fields to postings
◊ Multiple fields need extensive representation

□ General problem
◊ <author>W. Bruce Croft</author>,

<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

◊ Search for author „Croft Donald“
● Both are author words; even appear next to each other; pp

■ Better: Extent lists
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Extent ListsExtent Lists
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■ An extent is a contiguous region of a document

□ Represent extents using word positions

I t d li t d  ll t t  f   i  fi ld t□ Inverted list records all extents for a given field type

■ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and/ ,
<author>Trevor Strohman</author>

□ (1,4)(4,6)(7,9)

■ Query: “fish” in title

extent list
Document 3
has no title

Title of document 2
d  i fi h“

Titel of document 4
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does not contain „fish“
te o docu e t
starts late and
contains „fish“



Other IssuesOther Issues
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■ Precomputed scores in inverted list

□ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature 
value for Document 1value for Document 1

□ Moves complexity from query processing (online) to indexing 
(offline)

□ Improves speed but reduces flexibility

◊ Scoring mechanism cannot be changed

◊ Phrase information is lost here◊ Phrase information is lost here

● But different data structures are possible

■ Score-ordered lists (not document-ordered)

□ Only for indexes with precomputed scores

□ Query processing engine can focus only on the top part of each 
inverted list  where the highest-scoring documents are recordedinverted list, where the highest scoring documents are recorded

□ Very efficient for single-word queries
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OverviewOverview
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■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing
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CompressionCompression
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■ Inverted lists are very large

□ e.g., 25-50% of collection for TREC collections using Indri 
search enginesearch engine

□ Much higher if n-grams are indexed

■ Compression of indexes saves disk and/or memory space

□ Typically have to decompress lists to use them

□ Best compression techniques have good compression ratios
and are easy to decompressy p

□ Allows data to move up the memory hierarchy

□ Resuces seek time on disk

■ Disadvantage: Decompression time

■ Here: Lossless compression – no information lost

□ Lossy compression for images  audio  video with very high □ Lossy compression for images, audio, video with very high 
compression ratios
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Compression savingsCompression savings
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■ Processor can process p inverted list postings per second

■ Memory system can supply processor with m postings per second

■ Number of postings processed each second: min(m  p)  ■ Number of postings processed each second: min(m, p). 

□ If p > m, the processor will spend some of its time waiting for 
postings to arrive from memory. 

□ If m > p, the memory system will sometimes be idle.

■ Compression ratio r, decompression factor d

□ Memory supplies rm postings per second□ Memory supplies rm postings per second

□ Processor processes dp postings per second

□ Number of postings processed each second: min(rm, dp). 

■ No compression: r = d = 1

■ Reasonable: r > 1 and d < 1

□ Compression useful only if p > m□ Compression useful only if p > m

□ Ideal: rm = dp
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CompressionCompression
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■ Basic idea: Common data elements use short codes while 
uncommon data elements use longer codes

■ Inverted lists are lists of numbers■ Inverted lists are lists of numbers

□ Example: coding numbers

◊ Number sequence: 0, 1, 0, 3, 0, 2, 0q , , , , , ,

◊ Possible encoding (2 bits): 00 01 00 10 00 11 00

◊ Encode 0 using a single 0: 0 01 0 10 0 11 0

◊ Only 10 bits, but looks like: 0 01 01 0 0 11 0

◊ which encodes: 0, 1, 1, 0, 0, 2, 0

O● Ooops

◊ Better: Unambiguous code

● 0 101 0 111 0 110 0

Number Code

0 0

1 1010 101 0 111 0 110 0
● 2-bit encoding was also unambiguous
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Delta EncodingDelta Encoding
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■ Entropy measures predictability of input

■ Word count data is good candidate for compression

 ll b  d f  l  b□ many small numbers and few larger numbers

□ encode small numbers with small codes

■ Document numbers are less predictable■ Document numbers are less predictable

□ Larger documents occur more often in index

□ Not large effect

■ Idea: Differences between numbers in an ordered list are smaller 
and more predictable

l d d d ff b d b■ Delta encoding: Encode differences between document numbers 
(d-gaps)

Felix Naumann | Search Engines | Sommer 2009



Delta EncodingDelta Encoding
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■ Inverted list (without counts)

□ 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

Diff  b t  dj t b  (d )■ Differences between adjacent numbers (d-gaps)

□ 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

□ Advantage: Ordered list of (large) numbers turns into list of □ Advantage: Ordered list of (large) numbers turns into list of 
small numbers

■ Differences for a high-frequency word are easier to compress:

□ 1, 1, 2, 1, 5, 1, 4, 1, 1, 3, ... 

■ Differences for a low-frequency word are large:

09 3 66 3 86 992□ 109, 3766, 453, 1867, 992, ...

□ Bad: Large numbers

□ Nice: List is short□ Nice: List is short
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Bit-Aligned CodesBit-Aligned Codes
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■ Breaks between encoded numbers can occur after any bit position

□ Byte-aligned are more favorable to certain operating sytems

G l  S ll b  i  ll d  l■ Goal: Small numbers receive small code values

■ Unary code

□ Encode k by k 1s followed by 0□ Encode k by k 1s followed by 0

□ 0 at end makes code unambiguous

■ Others: Elias-γ and Elias-δ
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Unary and Binary CodesUnary and Binary Codes
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■ Unary is very efficient for small numbers such as 0 and 1, but 
quickly becomes very expensive

□ 1023 can be represented in 10 binary bits  but requires 1024 □ 1023 can be represented in 10 binary bits, but requires 1024 
bits in unary

■ Binary is more efficient for large numbers, but it may be 
ambiguous

□ Not useful to encode 
small numberssmall numbers
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Elias-γ CodeElias-γ Code
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■ To encode a number k, compute

k i  b  f bi  di it
 kkd 2log  k

r kk 2log2
□ kd is number of binary digits

□ kr is k after removing the leftmost 1 of its binary encoding

■ Idea: Encode kd as unary and k as binary (in kd binary digits)■ Idea: Encode kd as unary and kr as binary (in kd binary digits)

□ Unary part tells us how many binary digits to expect
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Elias-δ CodeElias-δ Code
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■ Elias-γ code uses no more bits than unary, many fewer for k > 2

□ 1023 takes 19 bits instead of 1024 bits using unary

I  l  t k  2 l k 1 bit■ In general, takes 2 log2k +1 bits

□ log2k +1 for unary part

□ log2k for binary part□ log2k for binary part

■ To improve coding of large numbers, use Elias-δ code

□ Instead of encoding kd in unary, we encode kd + 1 d d

using Elias-γ

□ Takes approximately 2 log2 log2 k + log2 k bits
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Elias-δ CodeElias-δ Code
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   )1(l k■ Split kd into:

□ encode kdd in unary, kdr in binary, and kr in binary

 )1(log2  ddd kk  )1(log22  dk
ddr kk

■ Sacrifices efficiency for low numbers for smaller encodings of large 
numbers

□ Numbers larger than 16 require same space as Elias-γ□ Numbers larger than 16 require same space as Elias-γ

□ Number larger than 32 require less space
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Byte-Aligned CodesByte-Aligned Codes
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■ Variable-length bit encodings can be a problem on processors that 
process bytes

■ v byte is a popular byte aligned code■ v-byte is a popular byte-aligned code

□ Similar to Unicode UTF-8

■ Short codes for small numbers

□ Shortest v-byte code is 1 byte

◊ 8 times longer than Elias-γ for number 1

■ Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0 
otherwise

■ Byte aligned codes compress and decompress faster■ Byte-aligned codes compress and decompress faster
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V-Byte EncodingV-Byte Encoding
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High bit of
last byte



Compression ExampleCompression Example
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■ Original inverted list with positions (docID, position)

□ (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)

G  iti  f  h d t (d ID  t  [ iti ])■ Group positions for each document (docID, count, [positions]):

□ (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])

□ Count makes list decipherable even without brackets□ Count makes list decipherable even without brackets

◊ 1001,2,1,7,1002,3,6,17,197,1003,1,1

■ Delta encode document numbers and positions to make numbers 
even smaller:

□ (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])

C b d l d d□ Count cannot be delta-encoded.

■ Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:

□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81

□ 13 Bytes for entire list
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Skipping Skipping 
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■ Search involves comparison of inverted lists of different lengths 
(intersection)

■ Can be very inefficient (for 2-word queries)■ Can be very inefficient (for 2 word queries)

□ Like merge join algorithm (two cursors)

□ Reads almost entire lists of both keywords

◊ Many millions

■ Example: “animal jaguar”

□ animal: 300 million pages; jaguar 1 million pages□ animal: 300 million pages; jaguar 1 million pages

□ 99% of the time spent processing the 299 million pages that 
contain animal but not jaguar.

■ If da < dj: Repeatedly skip ahead k documents for animal
until da ≥ dj

□ Then search linearlyy

■ Determine k using sample queries (100 byte is typical)
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Skip PointersSkip Pointers

35

■ Compression makes skipping difficult

□ Variable size, only d-gaps stored

Ski  i t   dditi l d t  t t  t  t ki i■ Skip pointers are additional data structure to support skipping

■ A skip pointer (d, p) contains a document number d and a byte (or 
bit) position p) p p

□ Means there is an inverted list posting that starts at position 
p, and the posting before it was for document d

Felix Naumann | Search Engines | Sommer 2009

skip pointers
Inverted list



Skip Pointers - ExampleSkip Pointers - Example

36
■ Inverted list

□ 5, 11, 17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104, 
119

■ D-gaps

□ 5, 6, 6, 4, 5, 9, 2, 1, 8, 3, 3, 1, 5, 23, 9, 2, 3, 7, 3, 15

■ Skip pointers

□ (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)

■ Decode using skip pointer (34,6)

□ Move to position 6 in d-gaps list (number 2)p g p ( )

□ Add 34 to 2 = document number 36

■ Find document number 80

□ Move along skip pointers until (89 15)  because 52 > 80 > 89□ Move along skip pointers until (89,15), because 52 > 80 > 89

□ Start decoding at position 12: 

◊ 52 + 5 = 57

◊ 57 + 23  80◊ 57 + 23 = 80

■ Exercise: Find document 85
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Auxiliary StructuresAuxiliary Structures
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■ Inverted lists usually stored together in a single file for efficiency.

□ Inverted file

Si l  fil   i d  t  i   i ffi i t□ Single file per index term is space inefficient.

■ Vocabulary or lexicon

□ Contains a lookup table from index terms to the byte offset of □ Contains a lookup table from index terms to the byte offset of 
the inverted list in the inverted file

□ Either hash table in memory or B-tree for larger vocabularies

■ Term statistics stored at start of inverted lists

■ Collection statistics stored in separate file

S d l■ Separate system to convert document IDs to URLs, titles, 
snippets, etc.

□ E.g. BigTable□ E.g. BigTable
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OverviewOverview
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■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing
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Index ConstructionIndex Construction
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■ Simple in-memory indexer for simple inverted list

□ No positional information, no count information

t

Two problems
• RAM-based
• Sequential execution

t
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MergingMerging
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■ Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.

2 Th it  th  ti l i d t  di k  t t ki    2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial 
indexes, which are merged., g

■ Partial lists must be designed so they can be easily merged in 
small pieces

□ By definition, no two partial indexes can be in memory 
simultaneously.

□ Solution: Store in alphabetical order□ Solution: Store in alphabetical order
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MergingMerging
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■ Can be generalized to merge many partial lists at once

■ Documents may have to be renumbered.

■ Minimum space requirement: 
two words, one posting, some file pointerstwo words, one posting, some file pointers

□ In practice: Large chunks in memory
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Distributed IndexingDistributed Indexing
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■ Distributed processing driven by need to index and analyze huge 
amounts of data (i.e., the Web)
□ Fast and increasing growth of Web
□ Not just search engines but also applications that analyze the 

Web.
■ Large numbers of inexpensive servers used rather than larger, more 

expensive machines
□ Smaller machines are sold more often
□ Large machines do not develop economy of scale
□ Disadvantages

◊ Small servers fail more often
◊ Among many servers, the likelihood that one fails increases.◊ Among many servers, the likelihood that one fails increases.
◊ Difficult to program: Programmers trained for single-threaded 

applications, not for multi-threaded, multiprocessor, 
networked applications.
● Some help: RPC, CORBA, Java RMI, SOAP, Hadoop
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Data Placement – ExampleData Placement – Example
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■ Key problem: Place data efficiently among multiple servers / disks
■ Given a large text file that contains data about credit card 

transactions
□ Each line of the file contains a credit card number and an amount 

of money.
□ Task: Determine the sum of transactions for each unique credit 

card number.
■ Could use hash table – hash the credit card number

□ But: Memory problems
■ Same task, but file is sorted by credit card numbers

□ Aggregating is simple with sorted file
■ Similar with distributed approach■ Similar with distributed approach

□ Distribute small (random) batches – but how to combine?
□ Thus: Careful distribution, so that all transactions of one card end 

up in same batch: Sortingup in same batch: Sorting
□ Sorting and placement are crucial
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MapReduceMapReduce
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■ MapReduce is a distributed programming 
framework/paradigm/tool designed for indexing and analysis tasks

□ Focus on data placement and distribution□ Focus on data placement and distribution

■ Functional languages

□ Mapperpp

◊ Generally, transforms a list of items into another list of 
items of the same length

□ Reducer

◊ Transforms a list of items into a single item

■ Definitions for MapReduce not so strict in terms of number of ■ Definitions for MapReduce not so strict in terms of number of 
outputs

■ Many mapper and reducer tasks on a cluster of machines
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MapReduce algorithms on HadoopMapReduce algorithms on Hadoop
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■ http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html
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MapReduceMapReduce

46

■ Basic process

□ Map stage which transforms data records into pairs

◊ h ith  k  d  l◊ each with a key and a value

□ Shuffle uses a hash function so that all pairs with the same 
key end up next to each other and on the same machiney p

◊ Not implemented by developer

□ Reduce stage processes records in batches, where all pairs 
with the same key are processed at the same time

■ Idempotence of Mapper and Reducer provides fault tolerance

□ Multiple operations on same input gives same output□ Multiple operations on same input gives same output

□ In case of hardware failure, that set of tasks is performed 
again (on a different machine)

■ Backup processes replicate results of slowest machines
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MapReduceMapReduce
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Credit Card ExampleCredit Card Example
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Indexing ExampleIndexing Example
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Chapter 4

e.g. compression
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Updates: Result MergingUpdates: Result Merging
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■ Collections of text grow and change

■ Index merging is a good strategy for handling updates when they 
come in large batchescome in large batches

□ Inefficient for small updates: Entire index must be written to 
disk each time.

R lt i f  ll d t  C t  t  i d  f   ■ Result merging for small updates: Create separate index for new 
documents, merge results from both searches

□ Separate index in memory, thus fast to update and search

■ Deletions handled using delete list

□ Before showing result, search engine verifies that no result 
element is on delete listelement is on delete list.

■ Modifications done by insert and delete

□ Put old version on delete list

□ Add new version to new documents index
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OverviewOverview
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■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing
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Query ProcessingQuery Processing
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■ Document-at-a-time

□ Calculates complete scores for documents by processing all 
term lists  one document at a timeterm lists, one document at a time

■ Term-at-a-time

□ Accumulates scores for documents by processing term lists y p g
one at a time

■ Both approaches have optimization techniques that significantly 
d  ti  i d t  t  reduce time required to generate scores
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Document-At-A-TimeDocument-At-A-Time
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■ Query: salt water tropical

■ Inverted list with word counts

S  S  f d t■ Score: Sum of word counts

■ One step per document

St 1 St 2 St 3 St 4Step 1 Step 2 Step 3 Step 4
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Document-At-A-TimeDocument-At-A-Time
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Q Query
I IndexI Index
f, g sets of feature functions
k number of documents to retrieve

Should be restricted to documents 
that appear at least in one list

sD  0

Move cursor (lists are sorted 
by document numbery

Should hold only 
k documents
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Term-At-A-TimeTerm-At-A-Time
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■ Query: salt water tropical

■ Accumulators 
accumulate accumulate 
scores for each 
document

Step 1

■ One step per query
term Step 2

Step 3
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Term-At-A-TimeTerm-At-A-Time
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New!e

High memory load
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Advantage: Less disk seeking 
(each list is read only once)



Optimization TechniquesOptimization Techniques
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■ Term-at-a-time uses more memory for accumulators, but accesses 
disk more efficiently.

■ Two classes of optimization■ Two classes of optimization

□ Read less data from inverted lists

◊ e.g., skip listsg , p

◊ Better for simple feature functions

□ Calculate scores for fewer documents

◊ e.g., conjunctive processing

◊ Better for complex feature functions
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List skipping: 
Read less data from inverted listsRead less data from inverted lists
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I t d li t

■ n bytes in list, skip pointers after each c bytes, pointer are k long
■ Read entire list: O(n)

skip pointers
Inverted list

■ Read entire list: O(n)
■ Jumping through list: O(kn/c) = O(n)

□ But: If c = 100 and k = 4 we read just 2.5% of total data.
■ c should not be arbitrarily large: Need to find p postings■ c should not be arbitrarily large: Need to find p postings

□ n/c intervals; posting is halfway into interval: pc/2
□ Total: kn/c + pc/2

◊ Assuming p << n/c (otherwise multiple postings within interval)◊ Assuming p  n/c (otherwise multiple postings within interval)
□ Find optimal c using previous queries

■ In reality c > 100.000 to observe any improvement
□ Disks perform poorly at jumping to arbitrary positionsp p y j p g y p

■ And: Skipping reduces decompression load
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Conjunctive processing:
Calculate scores for fewer documentsCalculate scores for fewer documents
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■ All query terms need to be present in result documents

□ Default for most search engines

N t f l f   l  i  ( l i i )□ Not usful for very long queries (plagiarism)

■ Optimizes performance and effectiveness

■ Especially helpful with query terms of different frequency■ Especially helpful with query terms of different frequency

C  b  d f  t t ti  d d t t ti■ Can be used for term-at-a-time and document-at-a-time
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Conjunctive 
Term-at-a-Time
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Term-at-a-Time

Skip ahead using 
accumulator table

Runs best if lists 
are sorted by size
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Conjunctive 
Document-at-a-TimeDocument-at-a-Time

61

Get largest 
document currently 

pointed to.
N t t d t  Not guaranteed to 
contain all terms, 

but good candidate

Try to skip each list 
to that document  to that document. 
If fails, use next 

largest document.

Runs best if lists 
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Runs best if lists 
are sorted by size
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■ Threshold methods use limit of top-ranked documents needed (k) 
to optimize query processing

□ For most applications, k is small□ For most applications, k is small

■ For any query, there is a minimum score that each document 
needs to reach before it can be shown to the user.

S  f th  kth hi h t i  d t□ Score of the kth-highest scoring document

□ Gives threshold τ

□ But: Yet unknown

■ Optimization methods estimate τ′ to ignore documents

□ τ′ ≤ τ for safety

□ For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for τ′ 

□ For term-at-a-time, have to use kth-largest score in the , g
accumulator table
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Threshold Methods – MaxScoreThreshold Methods – MaxScore
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■ MaxScore method compares the maximum score that remaining 
documents could have to τ′.

□ τ′ is lower bound□ τ is lower bound.

□ Safe optimization: Ranking will be same without optimization

■ Indexer computes μtree

□ Maximum score for any document containing just “tree”

■ Assume k = 3, τ′ is lowest score after first three docs

k l h■ Likely that τ′ > μtree

□ τ′ is the score of a document that contains both query terms

■ Can safely skip over all gray postings■ Can safely skip over all gray postings

■ Works for non-conjunctive processing
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Early termination of query processingEarly termination of query processing

64

■ Term-at-a-time 

□ Ignore high-frequency word lists in

◊ Similar to stop word lists◊ Similar to stop word lists

□ Ignore all terms above some constant

◊ For queries with very many terms

◊ Later terms only change the ranking slightly

■ Document-at-a-time

Ignore documents at end of lists□ Ignore documents at end of lists

□ Works well only if documents are sorted by quality

■ In general, early termination is an unsafe optimizationg , y p

□ But: “To be or not to be” is immune to other optimizations, 
because it has very long index lists.

□ Thus: Early termination is only choice□ Thus: Early termination is only choice
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■ In general: Document IDs are assigned randomly to web pages

□ Best documents can be at end of lists

A i t i  d d  f f d□ Assignment is unused degree of freedom

■ Order inverted lists by quality metric (e.g., PageRank) or by 
partial scorep

□ Metric independent of query

□ Can compute upper bounds more easily

■ Order inverted lists by partial score

□ As for one-word queries

k ll f b d l l l l□ Works well for term-at-a-time, but read only partial lists until 
satisfied.

■ Makes unsafe (and fast) optimizations more likely to produce good ■ Makes unsafe (and fast) optimizations more likely to produce good 
documents
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Distributed EvaluationDistributed Evaluation
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■ Basic process

□ All queries sent to a director machine

Di t  th  d   t   i d  □ Director then sends messages to many index servers

□ Each index server does some portion of the query processing

□ Director organizes the results and returns them to the user□ Director organizes the results and returns them to the user

■ Two main approaches

□ Document distribution

◊ by far the most popular

□ Term distribution

◊ Much network traffic

Felix Naumann | Search Engines | Sommer 2009



Distributed EvaluationDistributed Evaluation
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■ Document distribution

□ Each index server acts as a search engine for a small fraction 
of the total collectionof the total collection

□ Director sends a copy of the query to each of the index 
servers, each of which returns the top-k results

□ Results are merged into a single ranked list by the director

■ Collection statistics should be shared for effective ranking
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Distributed EvaluationDistributed Evaluation
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■ Term distribution

□ Single index is built for the whole cluster of machines

E h i t d li t i  th t i d  i  th  i d t   i d  □ Each inverted list in that index is then assigned to one index 
server

◊ In most cases the data to process a query is not stored on p q y
a single machine

□ One of the index servers is chosen to process the query

◊ Usually the one holding the longest inverted list

□ Other index servers send information to that server

□ Final results sent to director□ Final results sent to director

■ Disk seek time for k terms and n index servers

□ Document distribution: O(kn)□ Document distribution: O(kn)

□ Term distribution: O(k)
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■ Insight: Query distributions similar to Zipf

□ About ½ of queries each day are unique, but some are very 
popularpopular

■ Caching can significantly improve effectiveness

□ Cache popular query resultsp p q y

□ Cache common inverted lists

■ Inverted list caching can help with unique queries

□ And not only one-word queries

■ Cache must be refreshed to prevent stale data
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