
Search Engines
Chapter 5 – Ranking with Indexes

26.5.2009
Felix Naumann

The Indexing ProcessThe Indexing Process

2
Text and metadata for

Document

Takes index terms and
creates data structures
(indexes) to support fast

Text and metadata for
all documents

data store
(de es) to suppo t ast
searching

Text Acquisition Index Creation Index
(inverted index)

Text TransformationIdentifies and
stores documents
for indexing

T f

Felix Naumann | Search Engines | SoSe 2009

Transforms
documents into index
terms or features

The Query ProcessThe Query Process

3

Document
data store

Supports creation and
refinement of query,
di l f lt

Uses query and indexes
to generate ranked list

display of results of documents

User Interaction Ranking
(retrieval model) Index

EvaluationLog data

M it d

Felix Naumann | Search Engines | SoSe 2009

Monitors and measures
effectiveness and efficiency
(primarily offline)

IndexesIndexes

4

■ Indexes are data structures designed to make search faster

■ Text search has unique requirements, which leads to unique data
structuresstructures

■ Most common data structure is inverted index

□ General name for a class of structures

◊ Specialized for different ranking function

□ “Inverted” because documents are associated with words,
rather than words with documents

■ Components of search engine very dependent

□ Choice of query processing algorithm depends on retrieval □ Choice of query processing algorithm depends on retrieval
model and dictates content of index.

Felix Naumann | Search Engines | Sommer 2009

Indexes and RankingIndexes and Ranking

5

■ Indexes are designed to support search

□ Faster response time

S t d t□ Supports updates

■ Text search engines use a particular form of search: ranking

□ Documents are retrieved in sorted order according to a score □ Documents are retrieved in sorted order according to a score
computing using

◊ document representation

◊ query

◊ ranking algorithm

h bl b d l f k ?■ What is a reasonable abstract model for ranking?

□ Enables discussion of indexes without details of retrieval
model (Chapter 7)model (Chapter 7)

Felix Naumann | Search Engines | Sommer 2009

OverviewOverview

6

■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009

Abstract Model of RankingAbstract Model of Ranking

7
Numerical values generated

by feature functions

High value predicts
good match

Typically ignores
very many features

Final output: Documents

Felix Naumann | Search Engines | Sommer 2009

Final output: Documents
sorted descending by

document score

More Concrete ModelMore Concrete Model

8

Only few; O y e ;
others are zero

http://www.howard.k12.md.us
/res/aquariums/chichlids.html

Felix Naumann | Search Engines | Sommer 2009

OverviewOverview

9

■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009

Inverted IndexInverted Index

10
■ Each index term is associated with an inverted

list

□ Contains lists of documents, or lists of
d i d t d th word occurrences in documents, and other

information

□ Each entry is called a posting.

Th t f th ti th t f t □ The part of the posting that refers to a
specific document or location is called a
pointer.

□ Each document in the collection is given a □ Each document in the collection is given a
unique number.

□ Lists are usually document-ordered (sorted
by document number).y)

◊ Intersect postings

■ Analogy: Book index

□ Inverted indexes usually not alphabetized□ Inverted indexes usually not alphabetized

□ Hash-table instead

Felix Naumann | Search Engines | Sommer 2009

Alternative indexing approachesAlternative indexing approaches

11

■ Signature files

□ Each document converted to signature (set of bits)

Q l t d t t f bit□ Query also converted to set of bits

□ Query processing: Comparison of bit patterns

◊ All signatures must be scanned◊ All signatures must be scanned

◊ Comparison is noisy (to keep signature small)

□ Generalization for ranked search difficult

■ k-d trees

□ Each document encoded as point in high-dimensional space

□ Same with query

□ Data structure helps find documents closest to query

B t N t d i d f t di i□ But: Not designed for too many dimensions

Felix Naumann | Search Engines | Sommer 2009

Example “Collection”Example Collection

12

■ Four sentences from the Wikipedia entry for tropical fish

S1 T i l fi h i l d fi h f d i t i l i t ■ S1: Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

■ S2: Fishkeepers often use the term tropical fish to refer only those
requiring fresh water, with saltwater tropical fish referred to as
marine fishmarine fish.

■ S3: Tropical fish are popular aquarium fish, due to their often
bright coloration.

■ S4: In freshwater fish, this coloration typically derives from
iridescence, while salt water fish are generally pigmented.

Felix Naumann | Search Engines | Sommer 2009

Simple Inverted
IndexIndex

13

■ Each box is a posting.

■ Does not record term
frequency or occurrencefrequency or occurrence

□ Example: S1 and S2 are
treated equally for term
“tropical”.

■ Intersection

Q “f h t □ Query: “freshwater
coloration”

□ {1,4}{3,4}{ , } { , }

□ Sorted lists:
O(max(m,n))

◊ Can be improved

Felix Naumann | Search Engines | Sommer 2009

Inverted Index
with countswith counts

14

■ Before: Binary
information

■ Now: Term frequencies■ Now: Term frequencies

■ Supports better
ranking algorithms

■ Query “tropical fish”

□ S1, S2, S3

□ S2 > S1

□ S2 > S3

■ Distinguish main topics ■ Distinguish main topics
and secondary topics
in documents

Felix Naumann | Search Engines | Sommer 2009

Inverted Index
with positionswith positions

15

■ Multiple
postings per
documentdocument

□ Each with
document
number
and word
position

■ Supports
proximity
matchesmatches

■ “tropical fish”
vs. “ ‘tropical
fish’ ”

Felix Naumann | Search Engines | Sommer 2009

Proximity MatchesProximity Matches

16

■ Matching phrases or words within a window

□ e.g., “tropical fish”, or “find tropical within 5 words of fish”

W d iti i i t d li t k th t f ■ Word positions in inverted lists make these types of query
features efficient.

Felix Naumann | Search Engines | Sommer 2009

Fields and ExtentsFields and Extents

17
■ Document structure is useful in search: document fields

□ Restrict search to certain fields
◊ e.g., date, from:, etc.

S fi ld i t t f l h□ Some fields more important, even for general search
◊ e.g., title, headings

■ Options
□ Separate inverted lists for each field type□ Separate inverted lists for each field type

◊ One index for titles, one for headings, one for regular text
◊ Problem: General search must read multiple indexes

□ Add information about fields to postings□ Add information about fields to postings
◊ Multiple fields need extensive representation

□ General problem
◊ <author>W. Bruce Croft</author>,

<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

◊ Search for author „Croft Donald“
● Both are author words; even appear next to each other; pp

■ Better: Extent lists

Felix Naumann | Search Engines | Sommer 2009

Extent ListsExtent Lists

18

■ An extent is a contiguous region of a document

□ Represent extents using word positions

I t d li t d ll t t f i fi ld t□ Inverted list records all extents for a given field type

■ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and/ ,
<author>Trevor Strohman</author>

□ (1,4)(4,6)(7,9)

■ Query: “fish” in title

extent list
Document 3
has no title

Title of document 2
d i fi h“

Titel of document 4

Felix Naumann | Search Engines | Sommer 2009

does not contain „fish“
te o docu e t
starts late and
contains „fish“

Other IssuesOther Issues

19

■ Precomputed scores in inverted list

□ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature
value for Document 1value for Document 1

□ Moves complexity from query processing (online) to indexing
(offline)

□ Improves speed but reduces flexibility

◊ Scoring mechanism cannot be changed

◊ Phrase information is lost here◊ Phrase information is lost here

● But different data structures are possible

■ Score-ordered lists (not document-ordered)

□ Only for indexes with precomputed scores

□ Query processing engine can focus only on the top part of each
inverted list where the highest-scoring documents are recordedinverted list, where the highest scoring documents are recorded

□ Very efficient for single-word queries

Felix Naumann | Search Engines | Sommer 2009

OverviewOverview

20

■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009

CompressionCompression

21

■ Inverted lists are very large

□ e.g., 25-50% of collection for TREC collections using Indri
search enginesearch engine

□ Much higher if n-grams are indexed

■ Compression of indexes saves disk and/or memory space

□ Typically have to decompress lists to use them

□ Best compression techniques have good compression ratios
and are easy to decompressy p

□ Allows data to move up the memory hierarchy

□ Resuces seek time on disk

■ Disadvantage: Decompression time

■ Here: Lossless compression – no information lost

□ Lossy compression for images audio video with very high □ Lossy compression for images, audio, video with very high
compression ratios

Felix Naumann | Search Engines | Sommer 2009

Compression savingsCompression savings

22

■ Processor can process p inverted list postings per second

■ Memory system can supply processor with m postings per second

■ Number of postings processed each second: min(m p) ■ Number of postings processed each second: min(m, p).

□ If p > m, the processor will spend some of its time waiting for
postings to arrive from memory.

□ If m > p, the memory system will sometimes be idle.

■ Compression ratio r, decompression factor d

□ Memory supplies rm postings per second□ Memory supplies rm postings per second

□ Processor processes dp postings per second

□ Number of postings processed each second: min(rm, dp).

■ No compression: r = d = 1

■ Reasonable: r > 1 and d < 1

□ Compression useful only if p > m□ Compression useful only if p > m

□ Ideal: rm = dp
Felix Naumann | Search Engines | Sommer 2009

CompressionCompression

23

■ Basic idea: Common data elements use short codes while
uncommon data elements use longer codes

■ Inverted lists are lists of numbers■ Inverted lists are lists of numbers

□ Example: coding numbers

◊ Number sequence: 0, 1, 0, 3, 0, 2, 0q , , , , , ,

◊ Possible encoding (2 bits): 00 01 00 10 00 11 00

◊ Encode 0 using a single 0: 0 01 0 10 0 11 0

◊ Only 10 bits, but looks like: 0 01 01 0 0 11 0

◊ which encodes: 0, 1, 1, 0, 0, 2, 0

O● Ooops

◊ Better: Unambiguous code

● 0 101 0 111 0 110 0

Number Code

0 0

1 1010 101 0 111 0 110 0
● 2-bit encoding was also unambiguous

Felix Naumann | Search Engines | Sommer 2009

2 110

3 111

Delta EncodingDelta Encoding

24

■ Entropy measures predictability of input

■ Word count data is good candidate for compression

 ll b d f l b□ many small numbers and few larger numbers

□ encode small numbers with small codes

■ Document numbers are less predictable■ Document numbers are less predictable

□ Larger documents occur more often in index

□ Not large effect

■ Idea: Differences between numbers in an ordered list are smaller
and more predictable

l d d d ff b d b■ Delta encoding: Encode differences between document numbers
(d-gaps)

Felix Naumann | Search Engines | Sommer 2009

Delta EncodingDelta Encoding

25

■ Inverted list (without counts)

□ 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

Diff b t dj t b (d)■ Differences between adjacent numbers (d-gaps)

□ 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

□ Advantage: Ordered list of (large) numbers turns into list of □ Advantage: Ordered list of (large) numbers turns into list of
small numbers

■ Differences for a high-frequency word are easier to compress:

□ 1, 1, 2, 1, 5, 1, 4, 1, 1, 3, ...

■ Differences for a low-frequency word are large:

09 3 66 3 86 992□ 109, 3766, 453, 1867, 992, ...

□ Bad: Large numbers

□ Nice: List is short□ Nice: List is short

Felix Naumann | Search Engines | Sommer 2009

Bit-Aligned CodesBit-Aligned Codes

26

■ Breaks between encoded numbers can occur after any bit position

□ Byte-aligned are more favorable to certain operating sytems

G l S ll b i ll d l■ Goal: Small numbers receive small code values

■ Unary code

□ Encode k by k 1s followed by 0□ Encode k by k 1s followed by 0

□ 0 at end makes code unambiguous

■ Others: Elias-γ and Elias-δ
Felix Naumann | Search Engines | Sommer 2009

Unary and Binary CodesUnary and Binary Codes

27

■ Unary is very efficient for small numbers such as 0 and 1, but
quickly becomes very expensive

□ 1023 can be represented in 10 binary bits but requires 1024 □ 1023 can be represented in 10 binary bits, but requires 1024
bits in unary

■ Binary is more efficient for large numbers, but it may be
ambiguous

□ Not useful to encode
small numberssmall numbers

Felix Naumann | Search Engines | Sommer 2009

Elias-γ CodeElias-γ Code

28

■ To encode a number k, compute

k i b f bi di it
 kkd 2log k

r kk 2log2
□ kd is number of binary digits

□ kr is k after removing the leftmost 1 of its binary encoding

■ Idea: Encode kd as unary and k as binary (in kd binary digits)■ Idea: Encode kd as unary and kr as binary (in kd binary digits)

□ Unary part tells us how many binary digits to expect

Felix Naumann | Search Engines | Sommer 2009

Elias-δ CodeElias-δ Code

29

■ Elias-γ code uses no more bits than unary, many fewer for k > 2

□ 1023 takes 19 bits instead of 1024 bits using unary

I l t k 2 l k 1 bit■ In general, takes 2 log2k +1 bits

□ log2k +1 for unary part

□ log2k for binary part□ log2k for binary part

■ To improve coding of large numbers, use Elias-δ code

□ Instead of encoding kd in unary, we encode kd + 1 d d

using Elias-γ

□ Takes approximately 2 log2 log2 k + log2 k bits

Felix Naumann | Search Engines | Sommer 2009

Elias-δ CodeElias-δ Code

30

)1(l k■ Split kd into:

□ encode kdd in unary, kdr in binary, and kr in binary

)1(log2 ddd kk)1(log22 dk
ddr kk

■ Sacrifices efficiency for low numbers for smaller encodings of large
numbers

□ Numbers larger than 16 require same space as Elias-γ□ Numbers larger than 16 require same space as Elias-γ

□ Number larger than 32 require less space
Felix Naumann | Search Engines | Sommer 2009

Byte-Aligned CodesByte-Aligned Codes

31

■ Variable-length bit encodings can be a problem on processors that
process bytes

■ v byte is a popular byte aligned code■ v-byte is a popular byte-aligned code

□ Similar to Unicode UTF-8

■ Short codes for small numbers

□ Shortest v-byte code is 1 byte

◊ 8 times longer than Elias-γ for number 1

■ Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0
otherwise

■ Byte aligned codes compress and decompress faster■ Byte-aligned codes compress and decompress faster

Felix Naumann | Search Engines | Sommer 2009

V-Byte EncodingV-Byte Encoding

32

Felix Naumann | Search Engines | Sommer 2009

High bit of
last byte

Compression ExampleCompression Example

33

■ Original inverted list with positions (docID, position)

□ (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)

G iti f h d t (d ID t [iti])■ Group positions for each document (docID, count, [positions]):

□ (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])

□ Count makes list decipherable even without brackets□ Count makes list decipherable even without brackets

◊ 1001,2,1,7,1002,3,6,17,197,1003,1,1

■ Delta encode document numbers and positions to make numbers
even smaller:

□ (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])

C b d l d d□ Count cannot be delta-encoded.

■ Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:

□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81

□ 13 Bytes for entire list
Felix Naumann | Search Engines | Sommer 2009

Skipping Skipping

34

■ Search involves comparison of inverted lists of different lengths
(intersection)

■ Can be very inefficient (for 2-word queries)■ Can be very inefficient (for 2 word queries)

□ Like merge join algorithm (two cursors)

□ Reads almost entire lists of both keywords

◊ Many millions

■ Example: “animal jaguar”

□ animal: 300 million pages; jaguar 1 million pages□ animal: 300 million pages; jaguar 1 million pages

□ 99% of the time spent processing the 299 million pages that
contain animal but not jaguar.

■ If da < dj: Repeatedly skip ahead k documents for animal
until da ≥ dj

□ Then search linearlyy

■ Determine k using sample queries (100 byte is typical)

Felix Naumann | Search Engines | Sommer 2009

Skip PointersSkip Pointers

35

■ Compression makes skipping difficult

□ Variable size, only d-gaps stored

Ski i t dditi l d t t t t t ki i■ Skip pointers are additional data structure to support skipping

■ A skip pointer (d, p) contains a document number d and a byte (or
bit) position p) p p

□ Means there is an inverted list posting that starts at position
p, and the posting before it was for document d

Felix Naumann | Search Engines | Sommer 2009

skip pointers
Inverted list

Skip Pointers - ExampleSkip Pointers - Example

36
■ Inverted list

□ 5, 11, 17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104,
119

■ D-gaps

□ 5, 6, 6, 4, 5, 9, 2, 1, 8, 3, 3, 1, 5, 23, 9, 2, 3, 7, 3, 15

■ Skip pointers

□ (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)

■ Decode using skip pointer (34,6)

□ Move to position 6 in d-gaps list (number 2)p g p ()

□ Add 34 to 2 = document number 36

■ Find document number 80

□ Move along skip pointers until (89 15) because 52 > 80 > 89□ Move along skip pointers until (89,15), because 52 > 80 > 89

□ Start decoding at position 12:

◊ 52 + 5 = 57

◊ 57 + 23 80◊ 57 + 23 = 80

■ Exercise: Find document 85

Felix Naumann | Search Engines | Sommer 2009

Auxiliary StructuresAuxiliary Structures

37

■ Inverted lists usually stored together in a single file for efficiency.

□ Inverted file

Si l fil i d t i i ffi i t□ Single file per index term is space inefficient.

■ Vocabulary or lexicon

□ Contains a lookup table from index terms to the byte offset of □ Contains a lookup table from index terms to the byte offset of
the inverted list in the inverted file

□ Either hash table in memory or B-tree for larger vocabularies

■ Term statistics stored at start of inverted lists

■ Collection statistics stored in separate file

S d l■ Separate system to convert document IDs to URLs, titles,
snippets, etc.

□ E.g. BigTable□ E.g. BigTable

Felix Naumann | Search Engines | Sommer 2009

OverviewOverview

38

■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009

Index ConstructionIndex Construction

39

■ Simple in-memory indexer for simple inverted list

□ No positional information, no count information

t

Two problems
• RAM-based
• Sequential execution

t

Felix Naumann | Search Engines | Sommer 2009

MergingMerging

40

■ Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.

2 Th it th ti l i d t di k t t ki 2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial
indexes, which are merged., g

■ Partial lists must be designed so they can be easily merged in
small pieces

□ By definition, no two partial indexes can be in memory
simultaneously.

□ Solution: Store in alphabetical order□ Solution: Store in alphabetical order

Felix Naumann | Search Engines | Sommer 2009

MergingMerging

41

■ Can be generalized to merge many partial lists at once

■ Documents may have to be renumbered.

■ Minimum space requirement:
two words, one posting, some file pointerstwo words, one posting, some file pointers

□ In practice: Large chunks in memory

Felix Naumann | Search Engines | Sommer 2009

Distributed IndexingDistributed Indexing

42

■ Distributed processing driven by need to index and analyze huge
amounts of data (i.e., the Web)
□ Fast and increasing growth of Web
□ Not just search engines but also applications that analyze the

Web.
■ Large numbers of inexpensive servers used rather than larger, more

expensive machines
□ Smaller machines are sold more often
□ Large machines do not develop economy of scale
□ Disadvantages

◊ Small servers fail more often
◊ Among many servers, the likelihood that one fails increases.◊ Among many servers, the likelihood that one fails increases.
◊ Difficult to program: Programmers trained for single-threaded

applications, not for multi-threaded, multiprocessor,
networked applications.
● Some help: RPC, CORBA, Java RMI, SOAP, Hadoop

Felix Naumann | Search Engines | Sommer 2009

Data Placement – ExampleData Placement – Example

43

■ Key problem: Place data efficiently among multiple servers / disks
■ Given a large text file that contains data about credit card

transactions
□ Each line of the file contains a credit card number and an amount

of money.
□ Task: Determine the sum of transactions for each unique credit

card number.
■ Could use hash table – hash the credit card number

□ But: Memory problems
■ Same task, but file is sorted by credit card numbers

□ Aggregating is simple with sorted file
■ Similar with distributed approach■ Similar with distributed approach

□ Distribute small (random) batches – but how to combine?
□ Thus: Careful distribution, so that all transactions of one card end

up in same batch: Sortingup in same batch: Sorting
□ Sorting and placement are crucial

Felix Naumann | Search Engines | Sommer 2009

MapReduceMapReduce

44

■ MapReduce is a distributed programming
framework/paradigm/tool designed for indexing and analysis tasks

□ Focus on data placement and distribution□ Focus on data placement and distribution

■ Functional languages

□ Mapperpp

◊ Generally, transforms a list of items into another list of
items of the same length

□ Reducer

◊ Transforms a list of items into a single item

■ Definitions for MapReduce not so strict in terms of number of ■ Definitions for MapReduce not so strict in terms of number of
outputs

■ Many mapper and reducer tasks on a cluster of machines

Felix Naumann | Search Engines | Sommer 2009

MapReduce algorithms on HadoopMapReduce algorithms on Hadoop

45

■ http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html

Felix Naumann | Search Engines | Sommer 2009

MapReduceMapReduce

46

■ Basic process

□ Map stage which transforms data records into pairs

◊ h ith k d l◊ each with a key and a value

□ Shuffle uses a hash function so that all pairs with the same
key end up next to each other and on the same machiney p

◊ Not implemented by developer

□ Reduce stage processes records in batches, where all pairs
with the same key are processed at the same time

■ Idempotence of Mapper and Reducer provides fault tolerance

□ Multiple operations on same input gives same output□ Multiple operations on same input gives same output

□ In case of hardware failure, that set of tasks is performed
again (on a different machine)

■ Backup processes replicate results of slowest machines

Felix Naumann | Search Engines | Sommer 2009

MapReduceMapReduce

47

Felix Naumann | Search Engines | Sommer 2009

Credit Card ExampleCredit Card Example

48

Felix Naumann | Search Engines | Sommer 2009

Indexing ExampleIndexing Example

49

Chapter 4

e.g. compression

Felix Naumann | Search Engines | Sommer 2009

Updates: Result MergingUpdates: Result Merging

50

■ Collections of text grow and change

■ Index merging is a good strategy for handling updates when they
come in large batchescome in large batches

□ Inefficient for small updates: Entire index must be written to
disk each time.

R lt i f ll d t C t t i d f ■ Result merging for small updates: Create separate index for new
documents, merge results from both searches

□ Separate index in memory, thus fast to update and search

■ Deletions handled using delete list

□ Before showing result, search engine verifies that no result
element is on delete listelement is on delete list.

■ Modifications done by insert and delete

□ Put old version on delete list

□ Add new version to new documents index

Felix Naumann | Search Engines | Sommer 2009

OverviewOverview

51

■ Abstract model of ranking

■ Inverted indexes

C i■ Compression

■ Index construction

■ Query Processing■ Query Processing

Felix Naumann | Search Engines | Sommer 2009

Query ProcessingQuery Processing

52

■ Document-at-a-time

□ Calculates complete scores for documents by processing all
term lists one document at a timeterm lists, one document at a time

■ Term-at-a-time

□ Accumulates scores for documents by processing term lists y p g
one at a time

■ Both approaches have optimization techniques that significantly
d ti i d t t reduce time required to generate scores

Felix Naumann | Search Engines | Sommer 2009

Document-At-A-TimeDocument-At-A-Time

53

■ Query: salt water tropical

■ Inverted list with word counts

S S f d t■ Score: Sum of word counts

■ One step per document

St 1 St 2 St 3 St 4Step 1 Step 2 Step 3 Step 4

Felix Naumann | Search Engines | Sommer 2009

Document-At-A-TimeDocument-At-A-Time

54

Q Query
I IndexI Index
f, g sets of feature functions
k number of documents to retrieve

Should be restricted to documents
that appear at least in one list

sD 0

Move cursor (lists are sorted
by document numbery

Should hold only
k documents

Felix Naumann | Search Engines | Sommer 2009

Term-At-A-TimeTerm-At-A-Time

55

■ Query: salt water tropical

■ Accumulators
accumulate accumulate
scores for each
document

Step 1

■ One step per query
term Step 2

Step 3

Felix Naumann | Search Engines | Sommer 2009

Term-At-A-TimeTerm-At-A-Time

56

New!e

High memory load

Felix Naumann | Search Engines | Sommer 2009

Advantage: Less disk seeking
(each list is read only once)

Optimization TechniquesOptimization Techniques

57

■ Term-at-a-time uses more memory for accumulators, but accesses
disk more efficiently.

■ Two classes of optimization■ Two classes of optimization

□ Read less data from inverted lists

◊ e.g., skip listsg , p

◊ Better for simple feature functions

□ Calculate scores for fewer documents

◊ e.g., conjunctive processing

◊ Better for complex feature functions

Felix Naumann | Search Engines | Sommer 2009

List skipping:
Read less data from inverted listsRead less data from inverted lists

58

I t d li t

■ n bytes in list, skip pointers after each c bytes, pointer are k long
■ Read entire list: O(n)

skip pointers
Inverted list

■ Read entire list: O(n)
■ Jumping through list: O(kn/c) = O(n)

□ But: If c = 100 and k = 4 we read just 2.5% of total data.
■ c should not be arbitrarily large: Need to find p postings■ c should not be arbitrarily large: Need to find p postings

□ n/c intervals; posting is halfway into interval: pc/2
□ Total: kn/c + pc/2

◊ Assuming p << n/c (otherwise multiple postings within interval)◊ Assuming p n/c (otherwise multiple postings within interval)
□ Find optimal c using previous queries

■ In reality c > 100.000 to observe any improvement
□ Disks perform poorly at jumping to arbitrary positionsp p y j p g y p

■ And: Skipping reduces decompression load

Felix Naumann | Search Engines | Sommer 2009

Conjunctive processing:
Calculate scores for fewer documentsCalculate scores for fewer documents

59

■ All query terms need to be present in result documents

□ Default for most search engines

N t f l f l i (l i i)□ Not usful for very long queries (plagiarism)

■ Optimizes performance and effectiveness

■ Especially helpful with query terms of different frequency■ Especially helpful with query terms of different frequency

C b d f t t ti d d t t ti■ Can be used for term-at-a-time and document-at-a-time

Felix Naumann | Search Engines | Sommer 2009

Conjunctive
Term-at-a-Time

60

Term-at-a-Time

Skip ahead using
accumulator table

Runs best if lists
are sorted by size

Felix Naumann | Search Engines | Sommer 2009

Conjunctive
Document-at-a-TimeDocument-at-a-Time

61

Get largest
document currently

pointed to.
N t t d t Not guaranteed to
contain all terms,

but good candidate

Try to skip each list
to that document to that document.
If fails, use next

largest document.

Runs best if lists

Felix Naumann | Search Engines | Sommer 2009

Runs best if lists
are sorted by size

Threshold MethodsThreshold Methods

62

■ Threshold methods use limit of top-ranked documents needed (k)
to optimize query processing

□ For most applications, k is small□ For most applications, k is small

■ For any query, there is a minimum score that each document
needs to reach before it can be shown to the user.

S f th kth hi h t i d t□ Score of the kth-highest scoring document

□ Gives threshold τ

□ But: Yet unknown

■ Optimization methods estimate τ′ to ignore documents

□ τ′ ≤ τ for safety

□ For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for τ′

□ For term-at-a-time, have to use kth-largest score in the , g
accumulator table

Felix Naumann | Search Engines | Sommer 2009

Threshold Methods – MaxScoreThreshold Methods – MaxScore

63

■ MaxScore method compares the maximum score that remaining
documents could have to τ′.

□ τ′ is lower bound□ τ is lower bound.

□ Safe optimization: Ranking will be same without optimization

■ Indexer computes μtree

□ Maximum score for any document containing just “tree”

■ Assume k = 3, τ′ is lowest score after first three docs

k l h■ Likely that τ′ > μtree

□ τ′ is the score of a document that contains both query terms

■ Can safely skip over all gray postings■ Can safely skip over all gray postings

■ Works for non-conjunctive processing
Felix Naumann | Search Engines | Sommer 2009

Early termination of query processingEarly termination of query processing

64

■ Term-at-a-time

□ Ignore high-frequency word lists in

◊ Similar to stop word lists◊ Similar to stop word lists

□ Ignore all terms above some constant

◊ For queries with very many terms

◊ Later terms only change the ranking slightly

■ Document-at-a-time

Ignore documents at end of lists□ Ignore documents at end of lists

□ Works well only if documents are sorted by quality

■ In general, early termination is an unsafe optimizationg , y p

□ But: “To be or not to be” is immune to other optimizations,
because it has very long index lists.

□ Thus: Early termination is only choice□ Thus: Early termination is only choice

Felix Naumann | Search Engines | Sommer 2009

List orderingList ordering

65

■ In general: Document IDs are assigned randomly to web pages

□ Best documents can be at end of lists

A i t i d d f f d□ Assignment is unused degree of freedom

■ Order inverted lists by quality metric (e.g., PageRank) or by
partial scorep

□ Metric independent of query

□ Can compute upper bounds more easily

■ Order inverted lists by partial score

□ As for one-word queries

k ll f b d l l l l□ Works well for term-at-a-time, but read only partial lists until
satisfied.

■ Makes unsafe (and fast) optimizations more likely to produce good ■ Makes unsafe (and fast) optimizations more likely to produce good
documents

Felix Naumann | Search Engines | Sommer 2009

Distributed EvaluationDistributed Evaluation

68

■ Basic process

□ All queries sent to a director machine

Di t th d t i d □ Director then sends messages to many index servers

□ Each index server does some portion of the query processing

□ Director organizes the results and returns them to the user□ Director organizes the results and returns them to the user

■ Two main approaches

□ Document distribution

◊ by far the most popular

□ Term distribution

◊ Much network traffic

Felix Naumann | Search Engines | Sommer 2009

Distributed EvaluationDistributed Evaluation

69

■ Document distribution

□ Each index server acts as a search engine for a small fraction
of the total collectionof the total collection

□ Director sends a copy of the query to each of the index
servers, each of which returns the top-k results

□ Results are merged into a single ranked list by the director

■ Collection statistics should be shared for effective ranking

Felix Naumann | Search Engines | Sommer 2009

Distributed EvaluationDistributed Evaluation

70

■ Term distribution

□ Single index is built for the whole cluster of machines

E h i t d li t i th t i d i th i d t i d □ Each inverted list in that index is then assigned to one index
server

◊ In most cases the data to process a query is not stored on p q y
a single machine

□ One of the index servers is chosen to process the query

◊ Usually the one holding the longest inverted list

□ Other index servers send information to that server

□ Final results sent to director□ Final results sent to director

■ Disk seek time for k terms and n index servers

□ Document distribution: O(kn)□ Document distribution: O(kn)

□ Term distribution: O(k)

Felix Naumann | Search Engines | Sommer 2009

CachingCaching

71

■ Insight: Query distributions similar to Zipf

□ About ½ of queries each day are unique, but some are very
popularpopular

■ Caching can significantly improve effectiveness

□ Cache popular query resultsp p q y

□ Cache common inverted lists

■ Inverted list caching can help with unique queries

□ And not only one-word queries

■ Cache must be refreshed to prevent stale data

Felix Naumann | Search Engines | Sommer 2009

