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The Indexing ProcessThe Indexing Process
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Text and metadata for 

Document

Takes index terms and 
creates data structures 
(indexes) to support fast 

Text and metadata for 
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Transforms 
documents into index 
terms or features



The Query ProcessThe Query Process

3

Document
data store

Supports creation and 
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di l  f lt

Uses query and indexes 
to generate ranked list 

display of results of documents

User Interaction Ranking
(retrieval model) Index

EvaluationLog data

M it  d  
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Monitors and measures 
effectiveness and efficiency 
(primarily offline)



Abstract Model of RankingAbstract Model of Ranking
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Numerical values generated 

by feature functions

High value predicts 
good match

Typically ignores 
very many features

Final output: Documents 
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Final output: Documents 
sorted descending by 

document score
Plus context features



More Concrete ModelMore Concrete Model
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Only few; O y e ;
others are zero

http://www.howard.k12.md.us
/res/aquariums/chichlids.html
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Retrieval ModelsRetrieval Models
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■ Provide a mathematical framework for defining the search process

□ Formalize human process of making decisions about 
relevancerelevance.

◊ Framework should at least correlate well.

□ Includes explanation of assumptionsp p

□ Basis of many ranking algorithms

□ Can be implicit

■ Progress in retrieval models has corresponded with improvements 
in effectiveness.

□ Improvement of 100% in 90s (TREC)□ Improvement of 100% in 90s (TREC)

■ Mostly: Theories about relevance
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RelevanceRelevance
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■ Complex concept that has been studied for some time

□ Many factors to consider 

□ People often disagree when making relevance judgments□ People often disagree when making relevance judgments.

◊ Inter-annotator disagreement

■ Retrieval models make various assumptions about relevance to 
simplify problem.

□ Topical vs. user relevance

◊ Topical relevance: Document is of same topic◊ Topical relevance: Document is of same topic

◊ User relevance: All other factors
● Some are used in some retrieval models

□ Binary vs. multi-valued relevance

◊ Relevant vs. non-relevant

◊ Relevant vs  unsure vs  non-relevant◊ Relevant vs. unsure vs. non relevant

◊ Retrieval models usually are more detailed (probability)
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OverviewOverview
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■ Older models

□ Boolean retrieval

V t  S  d l□ Vector Space model

■ Probabilistic models

■ Language models■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Boolean RetrievalBoolean Retrieval
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■ Two possible outcomes for query processing

□ TRUE or FALSE

“E t t h” ti□ “Exact-match” semantics

□ Simplest form of ranking

◊ All matching documents are considered equally relevant◊ All matching documents are considered equally relevant.

■ Query usually specified using Boolean operators

□ AND, OR, NOT

□ Proximity operators also used
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Boolean RetrievalBoolean Retrieval
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■ Advantages

□ Results are predictable and relatively easy to explain.

M  diff t f t   b  i t d□ Many different features can be incorporated

◊ Date, document type, …

□ Efficient processing since many documents can be eliminated □ Efficient processing since many documents can be eliminated 
from search

■ Disadvantages

□ Effectiveness depends entirely on user.

◊ Presentation order not based on relevance

B t bit il   d t  i  t● But arbitrarily on date, size, etc.

□ Simple queries usually don’t work well.

□ Complex queries are difficult to write.□ Complex queries are difficult to write.

◊ Search intermediaries (e.g. in legal offices)
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“Searching by Numbers”Searching by Numbers
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■ Sequence of queries driven by number of retrieved documents

□ Search of news articles for President Lincoln
1. lincoln

◊ Result: cars, places, people
2. president AND lincoln

◊ Result: “Ford Motor Company today announced that Darryl Hazel will 
succeed Brian Kelley as president of Lincoln Mercury ”succeed Brian Kelley as president of Lincoln Mercury.”

3. president AND lincoln AND NOT (automobile OR car)
◊ Not in result: “President Lincoln’s body departs Washington in a nine-

car funeral train.”car funeral train.
4. president AND lincoln AND biography AND life AND birthplace AND 

gettysburg AND NOT (automobile OR car)
◊ Result: Ø

5. president AND lincoln AND (biography OR life OR birthplace OR 
gettysburg) AND NOT (automobile OR car)
◊ Top result might be: “President’s Day - Holiday activities - crafts, 

mazes  word searches   `The Life of Washington´ Read the entire mazes, word searches, ... The Life of Washington Read the entire 
book online! Abraham Lincoln Research Site ...”
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Vector Space ModelVector Space Model
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■ Very popular model, even today

□ Simple, intuitive

U f l f  i hti  ki  d l  f db k□ Useful for weighting, ranking, and relevance feedback

■ Documents and query represented by a vector of term weights

□ t is number of index terms (i e  very large)□ t is number of index terms (i.e., very large)

■ Collection represented by a matrix of term weights
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Vector Space Model – ExampleVector Space Model – Example
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■ D1: Tropical Freshwater Aquarium Fish.

■ D2: Tropical Fish, Aquarium Care, Tank Setup.

D  K i  T i l Fi h d G ldfi h i  A i  d Fi h ■ D3: Keeping Tropical Fish and Goldfish in Aquariums, and Fish 
Bowls.

■ D4: The Tropical Tank Homepage - Tropical Fish and Aquariums.4 p p g p q

Rotatedotated

Stopwords 
are removed

Weights are 
term counts
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Query for „tropical fish“
(0 0 0 1 0 0 0 0 0 0 1)



Vector Space ModelVector Space Model
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■ 3-d pictures useful, but can be misleading for high-dimensional 
space

□ Intuition no longer necessarily correct□ Intuition no longer necessarily correct

□ Millions of terms (and dimensions)

Felix Naumann | Search Engines | Sommer 2009



Vector Space ModelVector Space Model
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■ Each document ranked by distance between points representing 
query and document

□ Similarity measure more common than a distance or □ Similarity measure more common than a distance or 
dissimilarity measure

□ Popular: Cosine correlation

◊ Cosine of angle between document and query vectors

◊ Normalized dot-product

■ As retrieval model: No explicit definition of relevance■ As retrieval model: No explicit definition of relevance

□ Implicit: Closer documents are more relevant.
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http://www.euclideanspace.com/math
s/geometry/trig/derived/index.htm



Similarity Calculation – ExampleSimilarity Calculation – Example
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■ Consider two documents D1, D2 and a query Q

□ D1 = (0.5, 0.8, 0.3), D2 = (0.9, 0.4, 0.2), D3 = (0, 0.9, 0.1)

Q  (1 5  1 0  0)□ Q = (1.5, 1.0, 0)

■ Vector space model reflects term weights and number of matching 
terms (in contrast to Boolean retrieval)( )

Cosine(D3,Q) = 0.55

■ But: How to assign term weights?
Felix Naumann | Search Engines | Sommer 2009

( 3,Q)



Term WeightsTerm Weights
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■ tf.idf weight

□ Term frequency weight measures importance in document i:

◊ Long documents have many words with only one 
occurrence but also many with hundreds of occurrences

◊ log(fik) to reduce this impact of frequent words

□ Inverse document frequency measures importance in □ Inverse document frequency measures importance in 
collection:

◊ Reflects “amount of information” carried by term

□ tfidf by multiplying tf and idf with some heuristic modifications

+1 to ensure
non-zero weight
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Normalization
usually done by
cosine similarity



Relevance Feedback – Rocchio
algorithmalgorithm

■ Determine Optimal query 18

□ Maximizes the difference between the average vector representing 
the relevant documents and the average vector representing the 
non-relevant documents

■ Usually only limited feedback (i.e., not for all documents): Only 
modify query

■ Modifies query according to

□ qj is initial term weightj

□ Rel is set of relevant documents
□ Nonrel is set of non-relevant documents

◊ Approximate as “all unseen documents”◊ Approximate as all unseen documents
□ α, β, and γ are parameters

◊ Typical values 8, 16, 4
■ New terms may be added (usually restricted to 50)■ New terms may be added (usually restricted to 50).
■ Terms may accrue negative weight: Drop!
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Vector Space ModelVector Space Model
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■ Advantages

□ Simple computational framework for ranking

A  i il it    t  i hti  h  ld b  □ Any similarity measure or term weighting scheme could be 
used

◊ Thus able to incorporate relevance feedbackp

■ Disadvantages

□ Assumption of term independence

□ No predictions about techniques for effective ranking
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OverviewOverview
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■ Older models

■ Probabilistic models

L  d l■ Language models

■ Combining evidence

■ Web search■ Web search

■ Learning to Rank
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Probability Ranking PrincipleProbability Ranking Principle
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■ Robertson (1977)

□ “If a reference retrieval system’s response to each request is a 
ranking of the documents in the collection in order of ranking of the documents in the collection in order of 
decreasing probability of relevance to the user who submitted 
the request, 

□ where the probabilities are estimated as accurately as possible □ where the probabilities are estimated as accurately as possible 
on the basis of whatever data have been made available to 
the system for this purpose, 

th  ll ff ti  f th  t  t  it   ill b  th  □ the overall effectiveness of the system to its user will be the 
best that is obtainable on the basis of those data.”

■ Probability theory is a strong foundation for representing and 
manipulating the inherent uncertainty

■ Problem: How to estimate probability of relevance

□ Each model has different suggestion□ Each model has different suggestion
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IR as ClassificationIR as Classification
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Actually, we just need a ranking



Bayes ClassifierBayes Classifier
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■ Bayes Decision Rule

□ A document D is relevant if P(R|D) > P(NR|D).

E ti ti  b biliti■ Estimating probabilities

□ Use Bayes Rule

□ Determining P(D|R) should be easier: Given information about 
the relevant set (e.g. relevant words/query), determine how 
likely it is to see the same properties in D.

■ Example

□ Probability of “president” in relevant set is 0 02□ Probability of president  in relevant set is 0.02.

□ Probability of “lincoln” in relevant set is 0.03.

□ New document with “president” and “lincoln”. Probability of □ New document with president  and lincoln . Probability of 
observing that combination is 0.0006.
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Bayes ClassifierBayes Classifier
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■ Bayes rule

□ P(R) is apriori probability of relevance (how likely is any 
document to be relevant)document to be relevant)

□ P(D) is normalizing constant.

■ Before: D relevant if P(R|D) > P(NR|D).( | ) ( | )

■ Now: Classify a document as relevant if

□ lhs is likelihood ratio

Cl f d k d■ Classification needs to make decision.

■ Search engine only needs to rank.

□ Rank by likelihood ratio  ignore rhs□ Rank by likelihood ratio, ignore rhs

Felix Naumann | Search Engines | Sommer 2009



Estimating P(D|R)Estimating P(D|R)
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■ Binary independence model

□ Document represented as combinations of terms:

◊ Vector of binary features indicating term occurrence (or non-◊ Vector of binary features indicating term occurrence (or non
occurrence)

□ Represent R and NR as term-probabilities

◊ p is probability that term i occurs (i e  has value 1) in ◊ pi is probability that term i occurs (i.e., has value 1) in 
relevant document, si is probability of occurrence in non-
relevant document

A  i d d  (N ï  B ti )■ Assume independence (Naïve Bayes assumption)

□ Assumption is obviously incorrect, but successful

■ Example: 

□ Document D contains words 1, 4, and 5: (1,0,0,1,1)

Let p denote probability that term i is in relevant set □ Let pi denote probability that term i is in relevant set 

□ Relevance-probability of D is p1 x (1–p2) x (1–p3) x p4 x p5

Felix Naumann | Search Engines | Sommer 2009



Binary Independence ModelBinary Independence Model
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■ Let pi denote probability that term i occurs in relevant set 

■ Let si denote probability that term i occurs in non-relevant set 

R i d  Cl if  d t  l t if■ Reminder: Classify document as relevant if

□ Or rank according to lhs

Felix Naumann | Search Engines | Sommer 2009



Binary Independence ModelBinary Independence Model
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■ Second term is over all documents, thus ignore, g
■ To avoid accuracy problems, use log
■ Scoring function is

■ Query provides information about relevant documents.
□ Summation only over terms that appear in query and document

Simplification■ Simplification
□ If no further information about relevant set, assume pi constant 

(e.g., 0.5)
A i t  b  ti  ll ti  (b  b  f l t □ Approximate si by entire collection (because number of relevant 
documents is very small).

□ Get idf-like weight 
◊ N  tf t  ◊ No tf-component, 

because binary features
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Contingency TableContingency Table
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■ If we do have information about term occurrences in relevant and 
non relevant information (through relevance feedback or pseudo-
relevance feedback): Store in contingency tablerelevance feedback): Store in contingency table

□ ri is number of relevant documents containing term i.

□ R is number of relevant documents for query.

□ ni is number of documents containing term i.

□ N is total number of documents.

Term i is present:p
Term i is not present: ni
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Contingency Table
niContingency Table

29

■ Idea: Use table to estimate pi and si for scoring function 

Ob i  h i■ Obvious choices

□ pi = ri/R

□ si = (ni – ri)/(N – R)□ si = (ni ri)/(N R)

□ Problem if ri = 0

□ Solution: Add 0.5 to counts and 1 to totals

■ Gives scoring function:
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DiscussionDiscussion
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■ Uses only matching query terms

□ But: Relevance  feedback can be used to expand query

N t  d i  ti■ Not very good in practice

□ Missing tf component lowers effectiveness by 50%

□ I e  50% less relevant documents in top 10 compared to tfidf□ I.e., 50% less relevant documents in top 10 compared to tfidf
rankings

■ But: Basis for BM25

□ Best Match variant 25
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BM25BM25
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■ Popular and effective ranking algorithm based on binary independence model

□ Adds document and query term weights

■ Scoring function

□ Summation over all query termsq y

□ fi is frequency of term i in document

□ qfi is frequency of term i in query

□ k  k and K are parameters whose values are set empirically□ k1, k2 and K are parameters whose values are set empirically.

□ Reminders

◊ ri is number of relevant documents containing term i.
● Set to 0  if no relevance information● Set to 0, if no relevance information

◊ R is number of relevant documents for query.
● Set to 0, if no relevance information

◊ n is number of documents containing term i◊ ni is number of documents containing term i.

◊ N is total number of documents.

Felix Naumann | Search Engines | Sommer 2009



BM25 – InterpretationBM25 – Interpretation
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■ k1 determines how tf component of term weight changes as fi
increases
□ k1 = 0: term frequency ignored, only term presence
□ Typical: k1 = 1.2, thus first few occurrences have most impact

■ k2 same for query term frequency
2 52

□ Typical: 0 ≤ k2 ≤ 1000
□ Not sensitive, because low 

frequencies
1,5

2

2,5

■ K normalizes tf component by 
document length (dl).

0

0,5

1

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

□ b regulates length normalization
◊ b = 0: No normalization
◊ b = 1: Full normalization
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k1 = 1,2  K=1,1
◊ b  1: Full normalization
◊ Typical: b = 0.75
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BM25 ExampleBM25 Example
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■ Query with two terms, “president lincoln”, (qf = 1)

■ No relevance information: r = R = 0

N  500 000 d t■ N = 500,000 documents

■ “president” occurs in 40,000 documents (n1 = 40, 000)

■ “lincoln” occurs in 300 documents (n2 = 300)■ lincoln  occurs in 300 documents (n2 = 300)

■ “president” occurs 15 times in doc (f1 = 15)

■ “lincoln” occurs 25 times (f2 = 25)2

■ Document length is 90% of the average length (dl/avdl = 0.9) 

■ k1 = 1.2, b = 0.75, and k2 = 100

■ K = 1.2 · (0.25 + 0.75 · 0.9) = 1.11
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BM25 ExampleBM25 Example
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president

lincolnco

Without 
relevance, 
first factor is 
similar to idf: 
2.44 for 
president, 
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7,42 for 
lincoln.



BM25 ExampleBM25 Example
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■ Effect of term frequencies

■ Even one occurrence of lincoln makes for a large difference in 
score.

□ Occurrence of president less important

■ Document with very many occurrences of one word can be better 
than one with both wordsthan one with both words.

□ 15.66 > 12.74
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BM25 – Discussion
Contant
per term

Contant per 
query

BM25 – Discussion

36

■ Seems complicated, but

□ Calculation of term weights at index time

□ With no relevance info, just add weights for matching query 
termsterms

◊ Plus some additional calculation for multiple query terms 
(qf > 1)

■ Well tuneable to different applications
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OverviewOverview
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■ Older models

■ Probabilistic models

L  d l■ Language models

■ Combining evidence

■ Web search■ Web search

■ Learning to Rank
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Language ModelLanguage Model
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■ Language model applications
□ Speech recognition, machine translation, handwriting recognition
□ And information retrieval

■ Predicts which word is next in a sequence of words.
■ Unigram language model

□ Probability distribution over the words in a language□ Probability distribution over the words in a language
□ Generation of text consists of pulling words out of a “bucket” 

according to the probability distribution and replacing them.
□ Next word not dependent on previous word(s)□ Next word not dependent on previous word(s).
□ Example for language with 5 words: (.2, .1, .35, .25, .1)

■ N-gram language model
P di t  t d b d  i  1 d□ Predicts next word based on previous n-1 words.

□ Some applications use bigram and trigram language models 
where probabilities depend on previous words.

Bi d t i  i  i  d l  ffi  f  h ■ Bi- and tri-grams expensive – unigram models suffice for search 
applications.
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Language ModelLanguage Model
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■ A topic in a document can be represented as a language model

□ i.e., as a distribution over words.

□ Words that tend to occur often when discussing a topic will have □ Words that tend to occur often when discussing a topic will have 
high probabilities in the corresponding language model

□ In general: Distribution over all words, but most (unimportant 
words) will have default probabilitywords) will have default probability.

■ Multinomial distribution over words

□ Text is modeled as a finite sequence of words, where there are t 
ibl  d  t h i t i  th  possible words at each point in the sequence.

□ Commonly used, but not only possibility

□ Does not model burstiness

◊ Occurrence of a word makes repeated occurrence more likely

□ Not here…

The topic of a query can also be represented as language model■ The topic of a query can also be represented as language model.
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LMs for RetrievalLMs for Retrieval
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■ Three possibilities to use language models for retrieval:

1. Probability of generating the query text from a document 
language modellanguage model

2. Probability of generating the document text from a query 
language model

3. Comparing the language models representing the query and 
document topics

M d l  f t i l l■ Models of topical relevance

□ Query-Likelihood Model

□ Relevance model / document-likelihood model□ Relevance model / document likelihood model

Felix Naumann | Search Engines | Sommer 2009



Query-Likelihood ModelQuery-Likelihood Model
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■ Rank documents by the probability that the query could be 
generated by the document model 

□ Probability that we could pull the query words from the bucket □ Probability that we could pull the query words from the bucket 
of document words

□ i.e., same topic

■ Given query, start with P(D|Q)

■ Using Bayes’ Rule, ignoring normalizing constant P(Q) 

■ Assuming prior is uniform  unigram model■ Assuming prior is uniform, unigram model

□ Possible non-uniform prior: Use date or document length
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Estimating ProbabilitiesEstimating Probabilities
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■ Obvious estimate for unigram probabilities is 

■ Maximum likelihood estimate

□ makes the observed value of fqi;D most likely□ makes the observed value of fqi;D most likely

■ Problems: 

□ If 1 query word out of 6 is missing from document, score will 
be zero

□ Missing 1 out of 6 query words same as missing 5 out of 6

W d  i t d ith t i  h ld h   b bilit  □ Words associated with topic should have some probability, 
even if they do not appear in document.

◊ Assign at least some small probabilityg p y

■ Thus: Smoothing
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SmoothingSmoothing
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■ Document texts are a sample from the language model

□ Missing words should not have zero probability of occurring

S thi i   t h i  f  ti ti  b biliti  f  i i  ■ Smoothing is a technique for estimating probabilities for missing 
(or unseen) words.

□ Lower (or discount) the probability estimates for words that ( ) p y
are seen in the document text.

□ Assign that “left-over” probability to the estimates for the 
d  th t  t  i  th  t twords that are not seen in the text.

◊ Usually based on frequency of words in entire collection of 
documents
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Estimating ProbabilitiesEstimating Probabilities

■ Estimate for unseen words is αDP(qi|C)44

□ P(qi|C) is the probability for query word i in the collection
language model for collection C (background probability)

□ αD is a parameter between 0 and 1
■ Estimate for words that occur is (1 − αD) P(qi|D) + αD P(qi|C)

□ To ensure summation to 1
■ Different forms of estimation come from different αDD

■ Example: Only three words in collection w1, w2, w3

□ P(w1|C) = 0.3 P(w2|C) = 0.5 P(w3|C) = 0.2
□ P(w |D) = 0 5 P(w |D) = 0 5 P(w |D) = 0□ P(w1|D) = 0.5 P(w2|D) = 0.5 P(w3|D) = 0
□ Smoothing

◊ P(w1|D) = (1 − αD) P(w1|D) + αD P(w1|C)
= (1 − α ) 0 5 + α 0 3= (1 − αD) 0.5 + αD 0.3

◊ P(w2|D) = (1 − αD) 0.5 + αD 0.5
◊ P(w3|D) = (1 − αD) 0.0 + αD 0.2    ( = αD 0.2 > 0 !)

T t  P( |D)  P( |D)  P( |D)  1◊ Test: P(w1|D) + P(w2|D) + P(w3|D) = 1
■ Variations based on different choices for αD

Felix Naumann | Search Engines | Sommer 2009



Jelinek-Mercer SmoothingJelinek-Mercer Smoothing

■ Simple choice: αD is a constant, αD = λ45 p D , D

■ Gives estimate of

R ki  ■ Ranking score

■ Use logs for convenience

□ Due to accuracy problems when multiplying many small numbers

■ Small λ result in less smoothing, closer to Boolean AND

□ λ = 0.1 successful for short queries

■ For high λ relative weighting less important, closer to Boolean OR

□ Coordination level match: Ranks by number of matching query 
termsterms

□ λ = 0.7 successful for very long queries
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Where is tf idf-like weight?Where is tf.idf-like weight?

46

Split into words 
that occur and 
those that do not

Add and subtract

Same for all docu-
ments: Ignore

proportional to the inversely proportional to 

Felix Naumann | Search Engines | Sommer 2009

p p
term frequency

y p p
the collection frequency



Dirichlet SmoothingDirichlet Smoothing
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■ More effective choice: let αD depend on document length:

■ Substituted in (1 − αD) P(qi|D) + αD P(qi|C) gives probability 
estimation

■ and document score■ and document score

■ Small values for μ give more importance to relative term weights.

■ Large values favor number of matching terms.

■ Typical: 1,000 ≤ μ ≤ 2,000
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Query Likelihood ExampleQuery Likelihood Example

■ For the term “president”48 p
□ fqi,D = 15, cqi = 160,000

■ For the term “lincoln”
□ f = 25  c = 2 400□ fqi,D = 25, cqi = 2,400

■ Number of word occurrences in the document |d| is assumed to be 
1,800.

■ Number of word occurrences in the collection is 109■ Number of word occurrences in the collection is 109.
□ 500,000 documents times an average of 2,000 words

■ μ = 2,000

• Negative number 
because summing logs 
of small numbers
• Only ranking is 

Felix Naumann | Search Engines | Sommer 2009
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Query Likelihood ExampleQuery Likelihood Example
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QL:

BM25:
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Query Likelihood DiscussionQuery Likelihood Discussion
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■ Simple probabilistic retrieval model

■ Uses probability estimations as term weights

QL ith Di i hl t thi  i il  t  BM25■ QL with Dirichlet smoothing similar to BM25

■ QL with advanced smoothing consistently better than BM25

□ Advanced smoothing: Use only similar documents instead of □ Advanced smoothing: Use only similar documents instead of 
entire collection. Later…

■ Disadvantages

□ Difficult to incorporate information about relevant documents 
into rankinginto ranking

□ Difficult to represent the fact that a query is just one of many 
possible queries to describe a particular need
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Relevance ModelsRelevance Models
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■ Represent topic of query as language model

□ Call this the relevance model – language model representing 
information need

□ Query: Very small sample generated from this model

□ Relevant documents: Larger samples from same model

P(D|R) probability of generating the text in a document given a ■ P(D|R) - probability of generating the text in a document given a 
relevance model

□ Document likelihood model

□ Less effective than query likelihood due to 

◊ Large and extremely variable number of words

◊ Difficulties comparing across documents of different lengths◊ Difficulties comparing across documents of different lengths
● |Da| = 5; |Db| = 500
● P(Da|R) and P(Db|R) vs. P(Q|Da) and P(Q|Db)

◊ Difficult to obtain relevance model (examples for relevant ◊ Difficult to obtain relevance model (examples for relevant 
documents)
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■ Idea: 

1. Estimate relevance model from query and top-ranked 
documentsdocuments.

2. Rank documents by similarity of document model to 
relevance model

◊ Kullback-Leibler divergence (KL-divergence) is a well-
known measure of the difference between two probability 
distributionsdistributions
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■ Given the true probability distribution P and another distribution Q
that is an approximation to P,

□ Divergence: Large values mean large difference, mean low g g g ,
similarity.

□ KL(P||Q) ≥ 0

□ Not symmetric: KL(P||Q) ≠ KL(Q||P)

◊ Choice of “true” distribution is important.

■ Use negative KL divergence for ranking  and assume relevance ■ Use negative KL-divergence for ranking, and assume relevance 
model R is the true distribution:

□ Summation over all words in vocabulary
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■ Second term same for each document: Ignore for ranking

Gi   i l  i  lik lih d ti t  f  P( |R)  b d  ■ Given a simple maximum likelihood estimate for P(w|R), based on 
the frequency in the query text, ranking score is

■ This is rank-equivalent to query likelihood score.

□ Non-query words are iterated but contribute zero.

□ Query words with frequency k contribute k times log P(w|D).

Q l k l h d d l l f l b d■ Query likelihood model is a special case of retrieval based on 
relevance model

□ More general model allows more sophisticated estimation □ More general model allows more sophisticated estimation 
based on other query words. Now…
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■ Probability of pulling a word w out of the “bucket” representing 
the relevance model depends on the n query words we have just 
pulled outpulled out

■ By definition

■ P(q1, …, qn) is normalizing constant(q1, , qn) s o a g co sta t

■ Now: Estimate P(w,q1, …, qn)
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■ Given document set C represented by language models, joint 
probability is

■ Assume

■ Gives■ Gives
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57

■ P(D) usually assumed to be uniform: Ignore

■ is query likelihood score for D.

□ Thus, P(w, q1 . . . qn) is simply a weighted average of the 
l d l b bili i f i f dlanguage model probabilities for w in a set of documents, 
where the weights are the query likelihood scores for those 
documents.

■ We are adding words to query by smoothing relevance model 
using documents that are similar to query.

Thi  i  i l   f l d l f  d l  f db k■ This is precisely a formal model for pseudo-relevance feedback

□ Used as query expansion technique: Words with zero weight in 
relevance model will now have non-zero weightsg
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1 Rank documents using the query likelihood score for query Q
58

1. Rank documents using the query likelihood score for query Q.
□ Use Dirichlet-smoothing for P(w|D)

2. Select number of the top-ranked documents to be the set C.
U i  ti  ll ti  i l di  l k d d t  ld t □ Using entire collection including low-ranked documents would not 
be helpful. Also: Faster calculation

3. Calculate the relevance model 
probabilities P(w|R) usingprobabilities P(w|R) using

P(    ) i  d   li i  t t d i  l l t d  □ P(q1 . . . qn) is used as a normalizing constant and is calculated as 
before as

4 R k d  i  i  4. Rank documents again using 
the KL-divergence score:
□ Use Dirichlet-smoothing for P(w|D)

l h h b b l d f ff□ Iterate only over highest-probability words for efficiency
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Example from Top 10 Docs

Strong focus on source type (news)
This will reflect results of pseudo-
relevance feedbackExample from Top 10 Docs

59
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Example from Top 50 Docs
More general, because larger 
variety of topics in documentsExample from Top 50 Docs

60

a ety o top cs docu e ts
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■ Older models

■ Probabilistic models

L  d l■ Language models

■ Combining evidence

■ Web search■ Web search

■ Learning to Rank
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Combining EvidenceCombining Evidence

■ Effective retrieval requires the combination of many pieces of 62 q y p
evidence about a document’s potential relevance.
□ Until now: focus on simple word-based evidence
□ Many other types of evidencey yp

◊ Words: Structure, proximity of word, relationships among 
words

◊ Metadata: PageRank, publication date, document type◊ Metadata: PageRank, publication date, document type
◊ Scores from different models

■ Variant 1: Adapt BM25 or Query Likelihood with additional factors
□ Difficult to maintain  understand and tune□ Difficult to maintain, understand and tune

■ Variant 2: Inference network model is one approach to combining 
evidence
□ Probabilistic model □ Probabilistic model 
□ Uses Bayesian network formalism
□ Mechanism to define and evaluate operators in a query language

O   if  id◊ Operators to specify evidence
◊ Operators to combine evidence
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■ Probabilistic model

■ Specifies set of events and dependencies between them

M d l d  DAG di t d li  h■ Modeled as DAG – directed acyclic graph

□ Nodes: Events

◊ Here: Observing a particular document or piece of ◊ Here: Observing a particular document or piece of 
evidence or some combination of evidences

◊ All binary

□ Arcs: probabilistic dependencies between events
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Inference NetworkInference Network

64 Document node

Evidence
about location

RepresentationRepresentation
nodes ri

Evidence about
document features
(terms, proximity) One language model for each

significant document structure
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■ Document node (D) corresponds to the event that a document is 
observed.

■ Representation nodes (r ) are document features (evidence)■ Representation nodes (ri) are document features (evidence)

□ Probabilities associated with those features are based on 
language models θ estimated using the parameters μ

□ One language model for each significant document structure

□ ri nodes can represent proximity features, or other types of 
id   d tevidence, e.g., date
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■ Query nodes (qi) are used to combine evidence from 
representation nodes and other query nodes

□ Represent the occurrence of more complex evidence and □ Represent the occurrence of more complex evidence and 
document features

□ A number of combination operators are available

◊ AND  OR  ◊ AND, OR, …

■ Information need node (I) is a special query node that combines 
all of the evidence from the other query nodes

□ In all, network computes 
P(I|D, μ)

□ = probability that an information □ = probability that an information 
need is met given the 
document and the parameters μ

U d t  k d t□ Used to rank documents
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■ Connections in inference network defined by query and by 
representation nodes

■ Probabilities for representation nodes estimated using language ■ Probabilities for representation nodes estimated using language 
model

□ Reflect probability that feature is characteristic of document

◊ Not probability of occurrence

□ Node for „lincoln“ represents binary event that document is 
b t th t t iabout that topic.

□ Language model used to calculate probability that that event 
is TRUE.

■ Document is represented by binary vector
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■ To calculate probabilities: 

S   b f  Di i hl t thi□ Same as before – Dirichlet smoothing

□ fi,D is number of times feature ri occurs in D

□ P(ri|C) is collection probability for feature ri□ P(ri|C) is collection probability for feature ri

□ μ is Dirichlet smoothing parameter

◊ Specific to the document structure of interest

■ Example: fi,D is number of times „lincoln“ appears in title

□ Collection probability calculated based on all collection titles

□ μ is title-specific
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■ Query nodes are basis for operators of query language

□ Restricted to combinations that can be efficiently calculated

C l l t  b bilit  f h t  (t   f l ) i  ll □ Calculate probability of each outcome (true or false) given all 
possible states of parent nodes

■ Example for Boolean AND:p

a and b are parent nodes for q

a b

a and b are parent nodes for q
q
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Example: AND CombinationExample: AND Combination
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■ Combination must consider all possible states of parents

■ Some combinations can be computed efficiently

L t d t  b bilit  th t i  TRUE i  t t  d f ■ Let pxy denote probability that q is TRUE given state x and y of 
parents.

□ pa is probability that a is TRUEpa p y

■ Calculate belief value (probability) from an AND combination:
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Inference Network Operators Unary Inference Network Operators
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Unary 
operator

■ Other operators can also be 
calculated efficiently.

■ Let q have n parents■ Let q have n parents,

□ each with probability pi

of being true.

wti is weight of 
parent to indicate 

relative importance
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Galago Query LanguageGalago Query Language

■ Given description of underlying model and combination operators, we can 72 p y g p
define a query language that can be used in a search engine to produce 
rankings based on complex combinations of evidence.

■ Example here: Galago (galagosearch.org, Developed by authors of textbook)
Query: pet therapy“ compiled to Galago query■ Query: „pet therapy“ compiled to Galago query

■ #weight(
0.1 #weight( 0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0 9 # bi (0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title) 

3 0 therapy (body) 1 0 therapy (heading)))3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1.0 #od1(pet therapy).(anchor) 
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body)3.0 #od1(pet therapy).(body) 
1.0 #od1(pet therapy).(heading))

0.1 #weight(
1.0 #uw8(pet therapy).(anchor) 
1.0 #uw8(pet therapy).(title)p py
3.0 #uw8(pet therapy).(body) 
1.0 #uw8(pet therapy).(heading))))
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Galago Query LanguageGalago Query Language

■ A document is viewed as a sequence of text that may contain 
73

■ A document is viewed as a sequence of text that may contain 
arbitrary tags.

□ HTML tags, XML tags

■ A single context is generated for each unique tag name T.

□ All text and tags that appear within tags of type T.

□ Examples: <body>, <title>, <h1>, …

□ Context may be nested

Terms can appear in multiple contexts□ Terms can appear in multiple contexts.

□ Tags used beyond mere structure: Entity / feature extraction

■ An extent is a sequence of text that appears within a single ■ An extent is a sequence of text that appears within a single 
begin/end tag pair of the same type as the context.
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Galago Query LanguageGalago Query Language

74 <html>
<head>
<title>Department Descriptions</title>
</head>
<body>y
The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...p /
<h1>Electrical Engineering</h1> ...
</body>
</html>

title context:
<title>Department Descriptions</title>

h1 context: body context:h1 context:
<h1>Agriculture</h1>
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1>

body context:
<body> The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1>
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■ Term is basic building block.

□ Corresponds to representation nodes in inference network

L  i t  f t  d fi d■ Large variety of terms defined

□ Simple, ordered phrase, synonym, …

■ Simple terms:

□ term

◊ term that will be normalized and stemmed.

□ "term“

◊ term is not normalized or stemmed.

□ Examples:

◊ id t◊ presidents

◊ "NASA"
Felix Naumann | Search Engines | Sommer 2009



Galago Query Language – Proximity 
TermsTerms
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■ #N( ... )

□ Ordered window – terms must appear ordered, with at most N-1 terms 
between each.

■ #od( ... )

□ Unlimited ordered window – all terms must appear ordered anywhere 
within current context.

■ #uwN( ... )

□ Unordered window – all terms must appear within a window of length N in 
any order.

■ #uw( ... )

□ Unlimited unordered window – all terms must appear within current 
context in any order.

■ Examples:

□ #1(white house) – matches “white house” as an exact phrase.

□ #2(white house) – matches “white * house” (where * is any word or 
ll)null).

□ #uw2(white house) – matches “white house” and “house white”.
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■ #syn( ... )

□ Treat all listed terms as synonyms

# ( )■ #wsyn( ... )

□ Treat all listed terms as synonyms

□ Allows assignment of  weights□ Allows assignment of  weights

■ Examples:

□ #syn(dog canine) – simple synonym based on two terms.

□ #syn( #1(united states) #1(united states of america)) 
– creates a synonym from two proximity terms.

h d□ #wsyn( 1.0 donald 0.8 don 0.5 donnie ) – weighted 
synonym indicating relative importance of terms.
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Galago Query Language – Anonymous 
TermsTerms

78

■ #any(.)

□ Used to match extent types

E l■ Examples:

□ #any(PERSON) – matches any occurrence of a person extent.

□ #1(lincoln died in #any(DATE)) – matches exact phrases □ #1(lincoln died in #any(DATE)) matches exact phrases 
of the form:“lincoln died in <date>…</date>”.
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Restriction and EvaluationRestriction and Evaluation
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■ expression.C1,...,CN

□ Matches when the expression appears in all contexts C1 through CN.

■ expression.(C1,...,CN)

□ Evaluates the expression using the language model defined by the 
concatenation of contexts C1...CN within the document.

■ Examples:

□ dog.title – matches the term “dog” appearing in a title extent.

□ #uw(smith jones).author – matches when the two names “smith” and 
“jones” appear in an author extent.

□ dog.(title) – evaluates the term based on the title language model for 
the document: Probability of occurence for dog based on number of times 
word occurs in title field, normalized for number of words in title. 
Smoothing using only title fields in collectionSmoothing using only title fields in collection

□ #1(abraham lincoln).person.(header) – builds a language model from 
all of the “header” text in the document and evaluates #1(abraham 
lincoln).person in that context (i.e. matches only the exact phrase lincoln).person in that context (i.e. matches only the exact phrase 
appearing within a person extent within the header context).
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■ Used to combine evidence

■ Weights can specify relative importance of evidence.

# ( )■ #combine(...)

□ Normalized version of the beland(q) operator in the inference 
network model.

■ #weight(...)

□ Normalized version of the belwand(q) operator.

■ #filter(...)

□ Similar to #combine, but with the difference that all terms 
(simple  proximity  synonym  etc ) are evaluated without (simple, proximity, synonym, etc.) are evaluated without 
smoothing. Document must contain at least one instance of 
the term.
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■ #combine( <dog canine> training )

□ Rank by two terms, one of which is a synonym.
■ #combine( biography <#1(president lincoln) #1(abrahamg p y p

lincoln)> )

□ Rank using two terms, one of which is a synonym of “president 
lincoln” and “abraham lincoln”.

■ #weight( 1.0 #1(civil war) 3.0 lincoln 2.0 speech )

□ Rank using three terms, and weight the term “lincoln” as most 
important, followed by “speech”, then “civil war”.

■ #filter( aquarium #combine(tropical fish) )

□ Consider only those documents containing the word “aquarium” 
and rank them according to the query #combine(tropical
fish).

■ #filter( #weight( 2.0 europe 1.0 travel) 
#1(john smith).author )

□ Rank documents about “europe” and “travel” that have “John 
Smith” in the author context.
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■ Older models

■ Probabilistic models

L  d l■ Language models

■ Combining evidence

■ Web search■ Web search

■ Learning to Rank
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■ Retrieval models in practice

□ Web search most important, but not only, search application

■ Major differences to TREC news■ Major differences to TREC news

□ Size of collection

◊ Billions

□ Connections between documents

◊ Links

Range of document types□ Range of document types

□ Importance of spam

□ Volume of queriesq

◊ Tens of millions per day

□ Range of query types

I f i l i i l  i l◊ Informational navigational, transactional
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■ Informational

□ Finding information about some topic which may be on one or 
more web pagesmore web pages

□ Topical search

■ Navigationalg

□ Finding a particular web page that the user has either seen 
before or is assumed to exist

□ Known-item search

■ Transactional

□ Finding a site where a task such as shopping or downloading □ Finding a site where a task such as shopping or downloading 
music can be performed
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85

■ For effective navigational and transactional search, need to 
combine features that reflect user relevance.

■ Commercial web search engines combine evidence from hundreds■ Commercial web search engines combine evidence from hundreds
of features to generate a ranking score for a web page

□ Page content

□ Page metadata

◊ “age”, how often it is updated

◊ URL of the page

◊ Domain name of its site

◊ Amount of text content◊ Amount of text content

□ Anchor text

□ Links (e.g., PageRank)□ Links (e.g., PageRank)

□ User behavior (click logs)
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■ SEO: Understanding the relative importance of features used in 
search and how they can be manipulated to obtain better search 
rankings for a web pagerankings for a web page

□ Improve the text used in the title tag

□ Improve the text in heading tags

□ Make sure that the domain name and URL contain important 
keywords

I  th  h  t t d li k t t□ Improve the anchor text and link structure

■ Some of these techniques are regarded as not appropriate by 
search engine companiesg p
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■ In TREC evaluations, most effective features for navigational 
search are:

□ Text in the title, body, headings (h1, h2, h3, and h4)□ Text in the title, body, headings (h1, h2, h3, and h4)

□ Anchor text of all links pointing to the document

□ PageRank number and inlink count

■ Given size of Web, many pages will contain all query terms

□ Search engines can use AND semantics

◊ Dangerous for smaller collections◊ Dangerous for smaller collections
● Site search, news search, …
● TREC: Only 50% of relevant pages contain all search 

termsterms
□ Ranking algorithm focuses on discriminating between these 

pages

□ Word proximity is important
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■ Assumption: Query terms are likely to appear in close proximity within 
relevant documents

□ “Green party political views”p y p

■ Many models have been developed

□ N-grams are commonly used in commercial web search

Dependence model based on inference net has been effective in TREC ■ Dependence model based on inference net has been effective in TREC 
- e.g.

■ Let SQ be the set of all non-empty subsets of Q (power set)

□ Every s SQ that consists of contiguous query terms is likely to 
appear as an exact phrase in a relevant document 

◊ Represented using the #1 operator

□ Every s SQ such that |s| > 1 is likely to appear (ordered or 
unordered) within a reasonably sized window of text in a relevant 
document 

◊ Represented as #uw8 for |s| = 2 and #uw12 for |s| = 3

Felix Naumann | Search Engines | Sommer 2009



Term ProximityTerm Proximity
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■ Example query „embryonic stem cells“

■ Compiled to Galago query

# (□ #weight( 
0.8 #combine( embryonic stem cells )
0.1 #combine( #od1(stem cells) 

#od1(embryonic stem)
#od1(embryonic stem cells) )

0.1 #combine( #uw8(stem cells)0.1 #combine( #uw8(stem cells) 
#uw8(embryonic cells)
#uw8(embryonic stem) 
#uw12(embryonic stem cells) )#uw12(embryonic stem cells) )

)
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90 PageRank and 
■ Query: „pet therapy“
■ Compiled to Galago query
■ #weight(

0 1 # i ht( 0 6 # i ( k) 0 4 # i (i li k ))

inlinks calculated at 
index time

0.1 #weight( 0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3 0 t (b d ) 1 0 t (h di ))3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title) 

3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1 0 # d1( h ) ( h )1.0 #od1(pet therapy).(anchor) 
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body) 
1.0 #od1(pet therapy).(heading))

#
Proximity can be 

0.1 #weight(
1.0 #uw8(pet therapy).(anchor) 
1.0 #uw8(pet therapy).(title)
3.0 #uw8(pet therapy).(body) 

index, but increases 
index size

1.0 #uw8(pet therapy).(heading))))
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■ Insights gained from TREC 
experiments

■ Topical search: 

■ Other evidence is in general 
useful

□ User behavior: Clicked on ■ Topical search: 

□ Simple terms and 
proximity features suffice

□ User behavior: Clicked-on 
pages, dwell time, links 
followed

■ Navigational search: 

□ More evidence is helpful

■ But: How to weight and 
combine more and more 
evidence?

■ Pseudo-relevance feedback

□ Helps topical search

□ Is detrimental for 

evidence?

□ Idea: Machine learning

□ Is detrimental for 
navigational search

■ But: How can we determine 
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■ Older models

■ Probabilistic models

L  d l■ Language models

■ Combining evidence

■ Web search■ Web search

■ Learning to Rank
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Machine Learning and IRMachine Learning and IR
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■ Considerable interaction between these fields

□ Rocchio algorithm (60s) is a simple learning approach

80  90  l i  ki  l ith  b d   f db k□ 80s, 90s: learning ranking algorithms based on user feedback

□ 2000s: text categorization

■ Limited by amount of training data■ Limited by amount of training data

■ Web query logs have generated new wave of research

□ e.g., “Learning to Rank”
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Generative vs  DiscriminativeGenerative vs. Discriminative
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■ All of the probabilistic retrieval models presented so far fall into 
the category of generative models.

□ A generative model assumes that documents were generated □ A generative model assumes that documents were generated 
from some underlying model (in this case, usually a 
multinomial distribution) and uses training data to estimate 
the parameters of the model.

□ Probability of belonging to a class (i.e. the relevant documents 
for a query) is then estimated using Bayes’ Rule and the for a query) is then estimated using Bayes  Rule and the 
document model.
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Generative vs  DiscriminativeGenerative vs. Discriminative
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■ A discriminative model estimates the probability of belonging to a 
class directly from the observed features of the document based 
on the training data.on the training data.

■ Generative models perform well with low numbers of training 
examples.

■ Discriminative models usually have the advantage given enough 
training data.

□ Can also easily incorporate many features□ Can also easily incorporate many features

Felix Naumann | Search Engines | Sommer 2009



Discriminative Models for IRDiscriminative Models for IR
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■ Discriminative models can be trained using explicit relevance 
judgments or click data in query logs

□ Click data is much cheaper  more noisy□ Click data is much cheaper, more noisy

□ e.g. Ranking Support Vector Machine (SVM) takes as input 
partial rank information for queries

◊ Partial information about which documents should be 
ranked higher than others
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■ Best retrieval model depends on application and data available

■ Evaluation corpus (or test collection), training data, and user data 
are all critical resourcesare all critical resources.

■ Language resources (e.g., thesaurus) can make a big difference
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