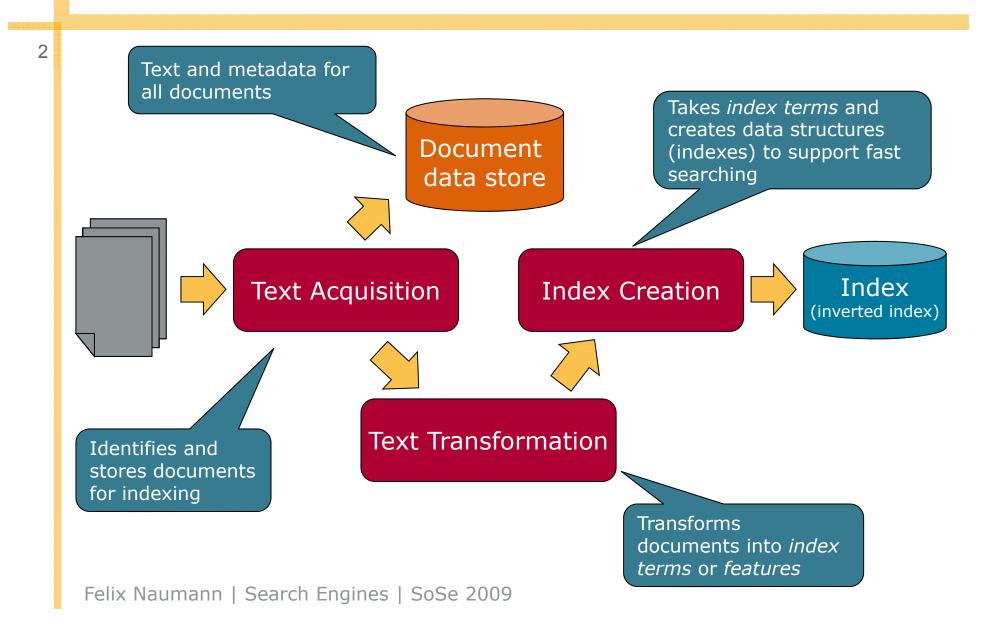


IT Systems Engineering | Universität Potsdam

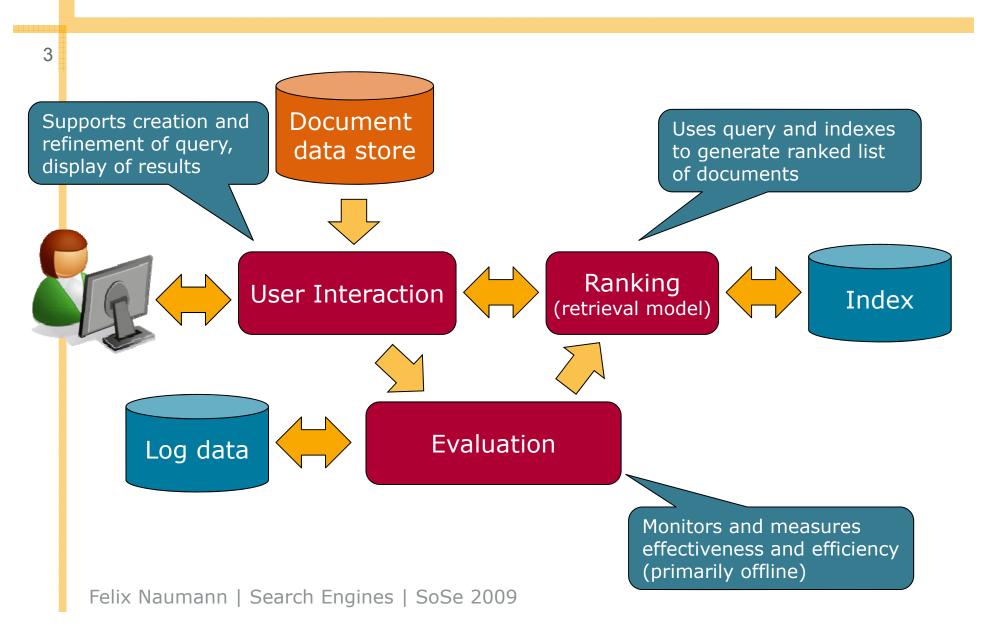
Search Engines Chapter 7 – Retrieval Models

16.6.2009 Felix Naumann

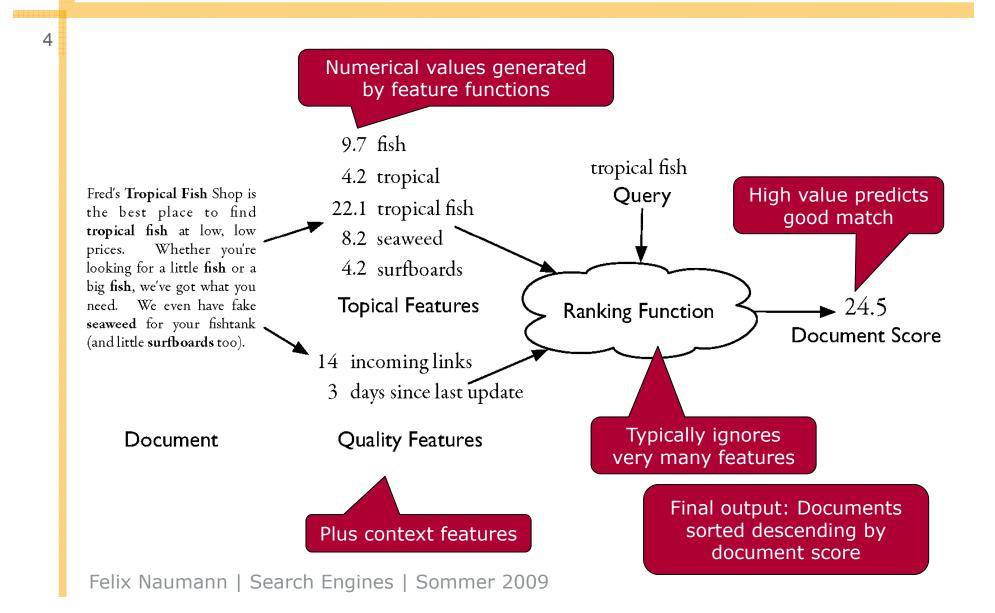
The Indexing Process



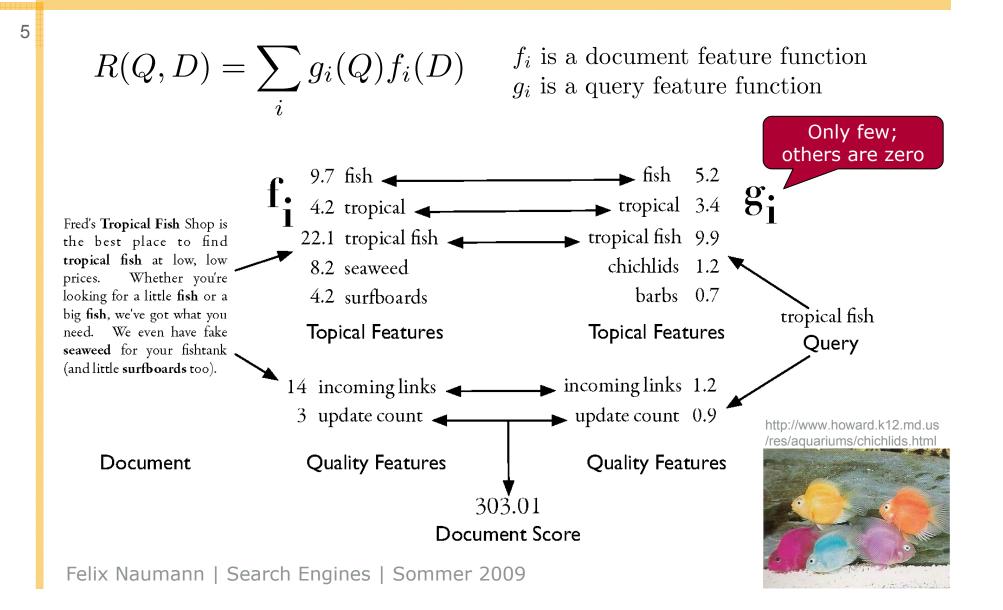
The Query Process



Abstract Model of Ranking



More Concrete Model



6

Provide a mathematical framework for defining the search process

- Formalize human process of making decisions about relevance.
 - ♦ Framework should at least correlate well.
- Includes explanation of assumptions
- Basis of many ranking algorithms
- Can be implicit
- Progress in retrieval models has corresponded with improvements in effectiveness.
 - □ Improvement of 100% in 90s (TREC)
- Mostly: Theories about relevance

Relevance

7

Complex concept that has been studied for some time

- Many factors to consider
- People often disagree when making relevance judgments.
 - ♦ Inter-annotator disagreement
- Retrieval models make various assumptions about relevance to simplify problem.

□ *Topical* vs. *user* relevance

- Topical relevance: Document is of same topic
- ♦ User relevance: All other factors
 - Some are used in some retrieval models
- □ *Binary* vs. *multi-valued* relevance
 - ♦ Relevant vs. non-relevant
 - ♦ Relevant vs. unsure vs. non-relevant
 - Retrieval models usually are more detailed (probability)

Overview

8

Older models

- Boolean retrieval
- Vector Space model
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Boolean Retrieval

Two possible outcomes for query processing

□ TRUE or FALSE

"Exact-match" semantics

Simplest form of ranking

All matching documents are considered equally relevant.

Query usually specified using Boolean operators

□ AND, OR, NOT

Proximity operators also used

Advantages

10

□ Results are predictable and relatively easy to explain.

Many different features can be incorporated

♦ Date, document type, ...

 Efficient processing since many documents can be eliminated from search

Disadvantages

Effectiveness depends entirely on user.

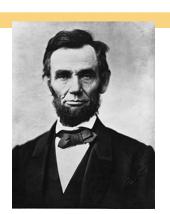
Presentation order not based on relevance

- But arbitrarily on date, size, etc.
- □ Simple queries usually don't work well.
- Complex queries are difficult to write.
 - Search intermediaries (e.g. in legal offices)

"Searching by Numbers"

11

- Sequence of queries driven by number of retrieved documents
 - □ Search of news articles for *President Lincoln*
 - 1. lincoln
 - ♦ Result: cars, places, people
 - 2. president AND lincoln
 - Result: "Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as <u>president</u> of <u>Lincoln</u> Mercury."
 - *3. president* AND *lincoln* AND NOT (*automobile* OR *car*)
 - Not in result: "<u>President Lincoln's</u> body departs Washington in a nine-<u>car</u> funeral train."
 - 4. president AND lincoln AND biography AND life AND birthplace AND gettysburg AND NOT (automobile OR car)
 - ♦ Result: Ø
 - 5. president AND lincoln AND (biography OR life OR birthplace OR gettysburg) AND NOT (automobile OR car)
 - Top result might be: "<u>President's</u> Day Holiday activities crafts, mazes, word searches, ... `The <u>Life</u> of Washington' Read the entire book online! Abraham <u>Lincoln</u> Research Site ..."

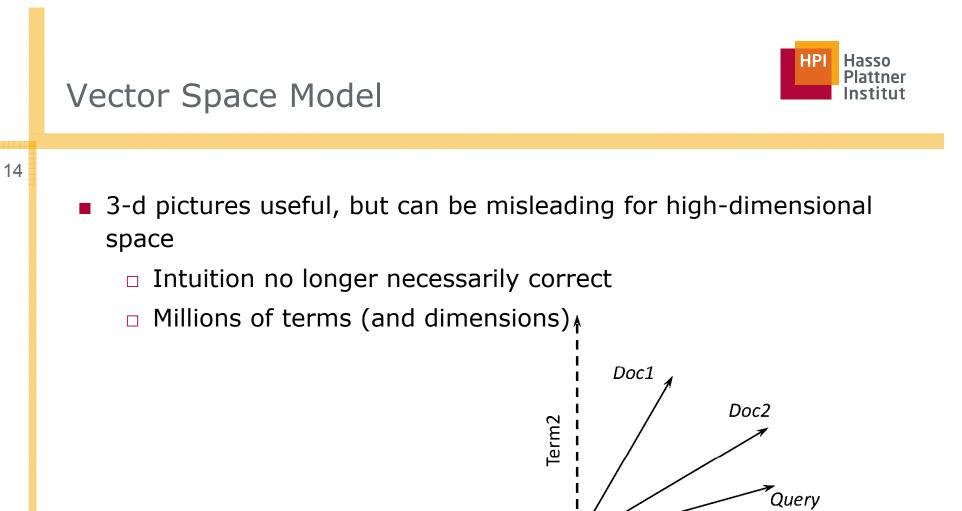


Vector Space Model

12 Very popular model, even today □ Simple, intuitive Useful for weighting, ranking, and relevance feedback Documents and query represented by a vector of term weights \Box *t* is number of index terms (i.e., very large) $D_i = (d_{i1}, d_{i2}, \dots, d_{it})$ $Q = (q_1, q_2, \dots, q_t)$ Collection represented by a matrix of term weights $Term_1$ $Term_2$... $Term_t$ $Doc_1 \quad d_{11} \quad d_{12} \quad \dots \quad d_{1t}$ $Doc_2 \quad d_{21} \quad d_{22} \quad \dots \quad d_{2t}$ $Doc_n \quad d_{n1} \quad d_{n2} \quad \dots \quad d_{nt}$

- 13
- D₁: Tropical Freshwater Aquarium Fish.
- D₂: Tropical Fish, Aquarium Care, Tank Setup.
- D₃: Keeping Tropical Fish and Goldfish in Aquariums, and Fish Bowls.
- D₄: The Tropical Tank Homepage Tropical Fish and Aquariums.

Terms		Documents			
	D ₁	D ₂	D_3	D_4	
aquarium	1	1	1	1	Rotated
bowl	0	0	1	0	Rotateu
care	0	1	0	0	Stopwords
fish	1	1	2	1	are removed
freshwater	1	0	0	0	
goldfish	0	0	1	0	Weights are
homepage	0	0	0	1	term counts
keep	0	0	1	0	
setup	0	1	0	0	
tank	0	1	0	1	Query for "tropical fish"
tropical	1	1	1	2	$(0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1)$
Felix Naumann S	Search Eng	gines	Somm	ner 20	009



Terms

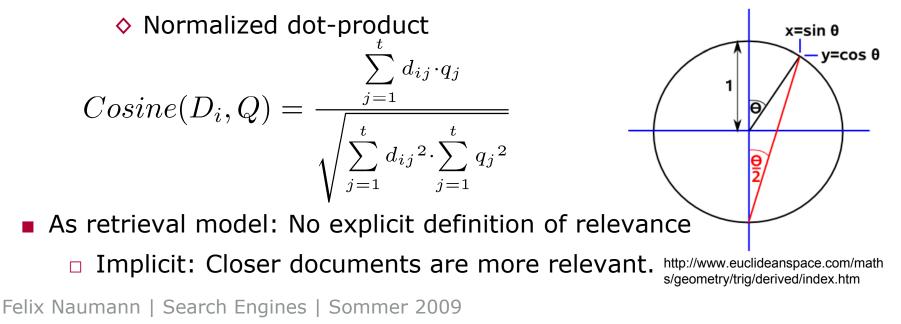
Term3

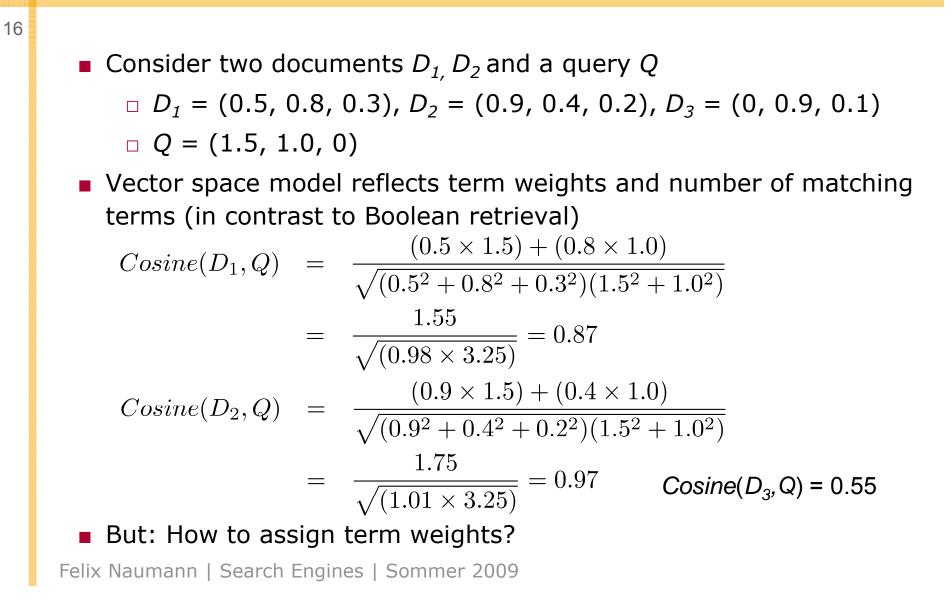
Vector Space Model

15

 Each document ranked by distance between points representing query and document

- Similarity measure more common than a distance or dissimilarity measure
- Popular: Cosine correlation
 - Cosine of angle between document and query vectors





Term Weights

17

tf.idf weight Term frequency weight measures importance in document i: $tf_{ik} = \frac{f_{ik}}{t}$ $\sum f_{ij}$ Long documents have many words with only one occurrence but also many with hundreds of occurrences $\diamond log(f_{ik})$ to reduce this impact of frequent words Inverse document frequency measures importance in collection: $idf_k = \log \frac{N}{n_k}$ Reflects "amount of information" carried by term *tfidf* by multiplying *tf* and *idf* with some heuristic modifications $d_{ik} = \frac{(\log(f_{ik}) + 1) \cdot \log(N/n_k)}{\sqrt{\sum_{k=1}^{t} [(\log(f_{ik}) + 1.0) \cdot \log(N/n_k)]^2}}$ +1 to ensure non-zero weight Normalization usually done by cosine similarity ch Engines | Sommer 2009

Relevance Feedback – Rocchio algorithm

Determine Optimal query

18

- Maximizes the difference between the average vector representing the relevant documents and the average vector representing the non-relevant documents
- Usually only limited feedback (i.e., not for <u>all</u> documents): Only modify query
- Modifies query according to

$$q'_j = \alpha \cdot q_j + \beta \cdot \frac{1}{|Rel|} \sum_{D_i \in Rel} d_{ij} - \gamma \cdot \frac{1}{|Nonrel|} \sum_{D_i \in Nonrel} d_{ij}$$

 \Box q_j is initial term weight

Rel is set of relevant documents

Nonrel is set of non-relevant documents

Approximate as "all unseen documents"

 \Box *a*, β , and γ are parameters

♦ Typical values 8, 16, 4

- New terms may be added (usually restricted to 50).
- Terms may accrue negative weight: Drop!

Vector Space Model

Advantages

- Simple computational framework for ranking
- Any similarity measure or term weighting scheme could be used
 - ♦ Thus able to incorporate relevance feedback
- Disadvantages
 - Assumption of term independence
 - No predictions about techniques for effective ranking

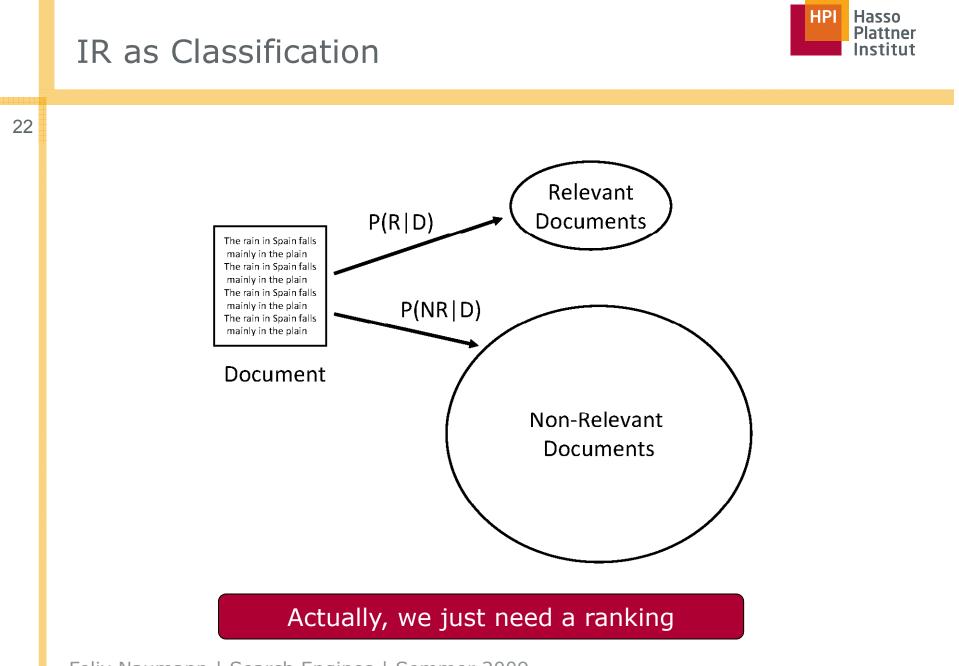
Overview

20

- Older models
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Robertson (1977)

- "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
- where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
- the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data."
- Probability theory is a strong foundation for representing and manipulating the inherent uncertainty
- Problem: How to estimate probability of relevance
 - Each model has different suggestion



Bayes Classifier

Bayes Decision Rule

23

- □ A document *D* is relevant if P(R|D) > P(NR|D).
- Estimating probabilities

• Use Bayes Rule
$$P(R|D) = \frac{P(D|R)P(R)}{P(D)}$$

- Determining P(D|R) should be easier: Given information about the relevant set (e.g. relevant words/query), determine how likely it is to see the same properties in D.
- Example
 - □ Probability of "*president"* in relevant set is 0.02.
 - □ Probability of "*lincoln*" in relevant set is 0.03.
 - New document with "president" and "lincoln". Probability of observing that combination is 0.0006.

Bayes Classifier

Bayes rule $P(R|D) = \frac{P(D|R)P(R)}{P(D)}$

 \square *P*(*R*) is apriori probability of relevance (how likely is any document to be relevant)

 \square *P*(*D*) is normalizing constant.

Before: D relevant if P(R|D) > P(NR|D).

Now: Classify a document as relevant if

 $\frac{P(D|R)}{P(D|NR)} > \frac{P(NR)}{P(R)}$

Ihs is likelihood ratio

- Classification needs to make decision.
- Search engine only needs to rank.

Rank by likelihood ratio, ignore rhs

HPI Hasso Plattner Institut

Estimating P(D|R)

25

- Binary independence model
 - Document represented as combinations of terms:
 - Vector of binary features indicating term occurrence (or nonoccurrence)

Represent R and NR as term-probabilities

- *p_i* is probability that term *i* occurs (i.e., has value 1) in relevant document, *s_i* is probability of occurrence in nonrelevant document
- Assume independence (Naïve Bayes assumption)

$$P(D|R) = \prod_{i=1}^{t} P(d_i|R)$$

Assumption is obviously incorrect, but successful

Example:

- Document D contains words 1, 4, and 5: (1,0,0,1,1)
- \Box Let p_i denote probability that term *i* is in relevant set
- □ Relevance-probability of *D* is $p_1 \ge (1-p_2) \ge (1-p_3) \ge p_4 \ge p_5$

HPI Hasso Plattner Institut

Binary Independence Model

• Let p_i denote probability that term *i* occurs in relevant set

- Let s_i denote probability that term *i* occurs in non-relevant set
- Reminder: Classify document as relevant if P(D|R) P(NR) P(R) Or rank according to lhs

$$\frac{P(D|R)}{P(D|NR)} = \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}
= \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot (\prod_{i:d_i=1} \frac{1-s_i}{1-p_i} \cdot \prod_{i:d_i=1} \frac{1-p_i}{1-s_i}) \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}
= \prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$$

Binary Independence Model

27

- $\prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$
- Second term is over all documents, thus ignore
- To avoid accuracy problems, use log
- Scoring function is $\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$
- Query provides information about relevant documents.

Summation only over terms that appear in query and document

- Simplification
 - □ If no further information about relevant set, assume p_i constant (e.g., 0.5)
 - □ Approximate s_i by entire collection (because number of relevant documents is very small).
 - □ Get *idf*-like weight
 - No *tf*-component, because binary features

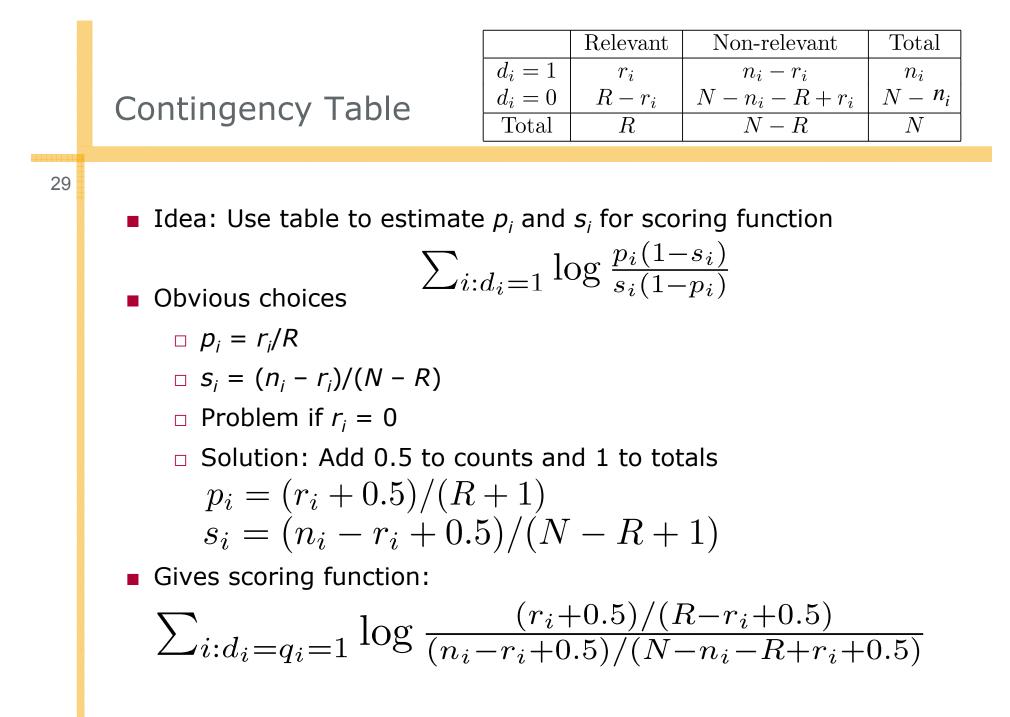
$$\log \frac{0.5(1 - \frac{n_i}{N})}{\frac{n_i}{N}(1 - 0.5)} = \log \frac{N - n_i}{n_i}$$

Contingency Table

28

- If we do have information about term occurrences in relevant and non relevant information (through relevance feedback or pseudorelevance feedback): Store in contingency table
 - \Box r_i is number of relevant documents containing term *i*.
 - \square *R* is number of relevant documents for query.
 - \square n_i is number of documents containing term *i*.
 - \square *N* is total number of documents.

		Relevant	Non-relevant	Total
Term <i>i</i> is present:	$d_i = 1$	r_i	$n_i - r_i$	n_i
Term <i>i</i> is not present:	$d_i = 0$	$R - r_i$	$N - n_i - R + r_i$	$N - n_i$
	Total	R	N-R	N



Discussion

30

$$\sum_{i:d_i=q_i=1} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

Uses only matching query terms

□ But: Relevance feedback can be used to expand query

- Not very good in practice
 - □ Missing *tf* component lowers effectiveness by 50%
 - I.e., 50% less relevant documents in top 10 compared to *tfidf* rankings
- But: Basis for BM25
 - Best Match variant 25

BM25

31

- Popular and effective ranking algorithm based on binary independence model
 - Adds document and query term weights
- Scoring function

 $\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$

- Summation over all query terms
- \Box f_i is frequency of term *i* in document
- \Box *qf_i* is frequency of term *i* in query
- \square k_1 , k_2 and K are parameters whose values are set empirically.
- Reminders
 - \diamond r_i is number of relevant documents containing term *i*.
 - Set to 0, if no relevance information
 - ♦ *R* is number of relevant documents for query.
 - Set to 0, if no relevance information
 - \diamond n_i is number of documents containing term *i*.
 - ♦ *N* is total number of documents.

BM25 – Interpretation

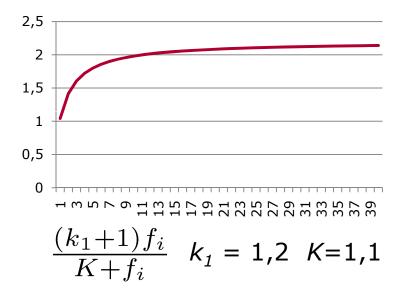
32

 $\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$

- k₁ determines how tf component of term weight changes as f_i increases
 - \square $k_1 = 0$: term frequency ignored, only term presence
 - □ Typical: $k_1 = 1.2$, thus first few occurrences have most impact
- k_2 same for query term frequency
 - □ Typical: $0 \le k_2 \le 1000$
 - Not sensitive, because low frequencies
- K normalizes tf component by document length (dl).

$$K = k_1((1-b) + b \cdot \frac{dl}{avdl})$$

- □ *b* regulates length normalization
 - \diamond b = 0: No normalization
 - \diamond *b* = 1: Full normalization
 - ♦ Typical: *b* = 0.75



BM25 Example

33

Query with two terms, "president lincoln", (qf = 1)

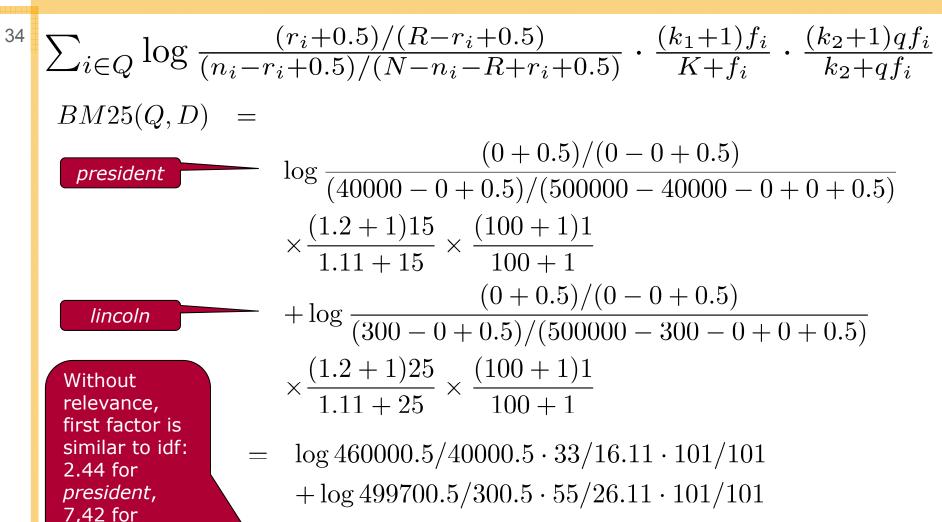
- No relevance information: r = R = 0
- *N* = 500,000 documents
- "president" occurs in 40,000 documents ($n_1 = 40,000$)
- "*lincoln*" occurs in 300 documents ($n_2 = 300$)
- "president" occurs 15 times in doc ($f_1 = 15$)
- "*lincoln*" occurs 25 times ($f_2 = 25$)
- Document length is 90% of the average length (dl/avdl = 0.9)
- $k_1 = 1.2, b = 0.75, and k_2 = 100$
- $K = 1.2 \cdot (0.25 + 0.75 \cdot 0.9) = 1.11$

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

BM25 Example

lincoln.

Fe



 $= 2.44 \cdot 2.05 \cdot 1 + 7.42 \cdot 2.11 \cdot 1$

= 5.00 + 15.66 = 20.66

BM25 Example

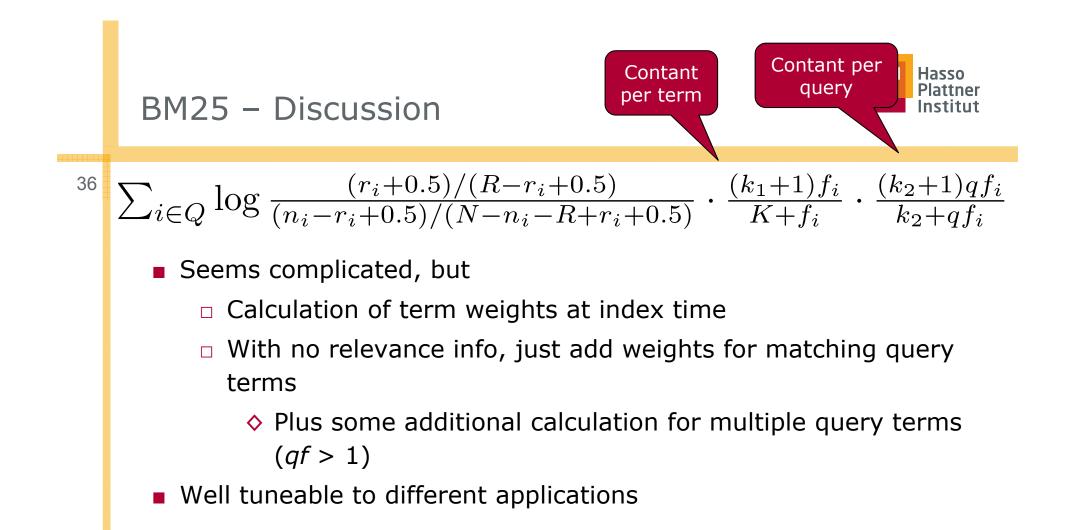
35

Effect of term frequencies

Frequency of	Frequency of	BM25	
"president"	"lincoln"	score	
15	25	20.66	
15	1	12.74	
15	0	5.00	
1	25	18.2	
0	25	15.66	

- Even one occurrence of *lincoln* makes for a large difference in score.
 - Occurrence of president less important
- Document with very many occurrences of one word can be better than one with both words.

□ 15.66 > 12.74



Overview

37

- Older models
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Language Model

38

- Language model applications
 - □ Speech recognition, machine translation, handwriting recognition
 - And information retrieval
- Predicts which word is next in a sequence of words.
- Unigram language model
 - Probability distribution over the words in a language
 - Generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them.
 - Next word not dependent on previous word(s).
 - □ Example for language with 5 words: (.2, .1, .35, .25, .1)
- N-gram language model
 - □ Predicts next word based on previous n-1 words.
 - Some applications use bigram and trigram language models where probabilities depend on previous words.
- Bi- and tri-grams expensive unigram models suffice for search applications.

Language Model

• A *topic* in a document can be represented as a language model

- □ i.e., as a distribution over words.
- Words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model
- In general: Distribution over all words, but most (unimportant words) will have default probability.
- Multinomial distribution over words
 - Text is modeled as a finite sequence of words, where there are t possible words at each point in the sequence.
 - □ Commonly used, but not only possibility
 - Does not model *burstiness*
 - Occurrence of a word makes repeated occurrence more likely
 - □ Not here...
- The topic of a query can also be represented as language model.

40

Three possibilities to use language models for retrieval:

- Probability of generating the query text from a document language model
- 2. Probability of generating the document text from a query language model
- **3.** Comparing the language models representing the query and document topics
- Models of topical relevance
 - Query-Likelihood Model
 - Relevance model / document-likelihood model

Rank documents by the probability that the query could be generated by the document model

- Probability that we could pull the query words from the bucket of document words
- □ i.e., same topic
- Given query, start with P(D|Q)
- Using Bayes' Rule, ignoring normalizing constant P(Q)

 $p(D|Q) \stackrel{rank}{=} P(Q|D)P(D)$

• Assuming prior is uniform, unigram model $P(Q|D) = \prod_{i=1}^{n} P(q_i|D)$

Possible non-uniform prior: Use date or document length

Estimating Probabilities

Obvious estimate for unigram probabilities is

$$P(q_i|D) = \frac{f_{q_i,D}}{|D|}$$

Maximum likelihood estimate

 \square makes the observed value of $f_{q;D}$ most likely

Problems:

42

 If 1 query word out of 6 is missing from document, score will be zero

□ Missing 1 out of 6 query words same as missing 5 out of 6

- Words associated with topic should have some probability, even if they do not appear in document.
 - ♦ Assign at least some small probability
- Thus: Smoothing

- Document texts are a sample from the language model
 - Missing words should not have zero probability of occurring
- Smoothing is a technique for estimating probabilities for missing (or unseen) words.
 - Lower (or *discount*) the probability estimates for words that are seen in the document text.
 - Assign that "left-over" probability to the estimates for the words that are not seen in the text.
 - Usually based on frequency of words in entire collection of documents

Estimating Probabilities

44

• Estimate for unseen words is $a_D P(q_i | C)$

- □ $P(q_i|C)$ is the probability for query word *i* in the *collection* language model for collection *C* (background probability)
- \Box a_D is a parameter between 0 and 1
- Estimate for words that occur is $(1 a_D) P(q_i|D) + a_D P(q_i|C)$
 - To ensure summation to 1
- Different forms of estimation come from different a_D
- Example: Only three words in collection w_1 , w_2 , w_3

$$P(w_1|C) = 0.3$$
 $P(w_2|C) = 0.5$ $P(w_3|C) = 0.2$

$$P(w_1|D) = 0.5 \quad P(w_2|D) = 0.5 \quad P(w_3|D) = 0$$

□ Smoothing

♦
$$P(w_1|D) = (1 - a_D) P(w_1|D) + a_D P(w_1|C)$$

= $(1 - a_D) 0.5 + a_D 0.3$

- $\diamond P(w_2|D) = (1 a_D) \ 0.5 + a_D \ 0.5$
- ♦ $P(w_3|D) = (1 a_D) 0.0 + a_D 0.2$ (= $a_D 0.2 > 0$!)
- ♦ Test: $P(w_1|D) + P(w_2|D) + P(w_3|D) = 1$
- Variations based on different choices for a_D

Jelinek-Mercer Smoothing

45

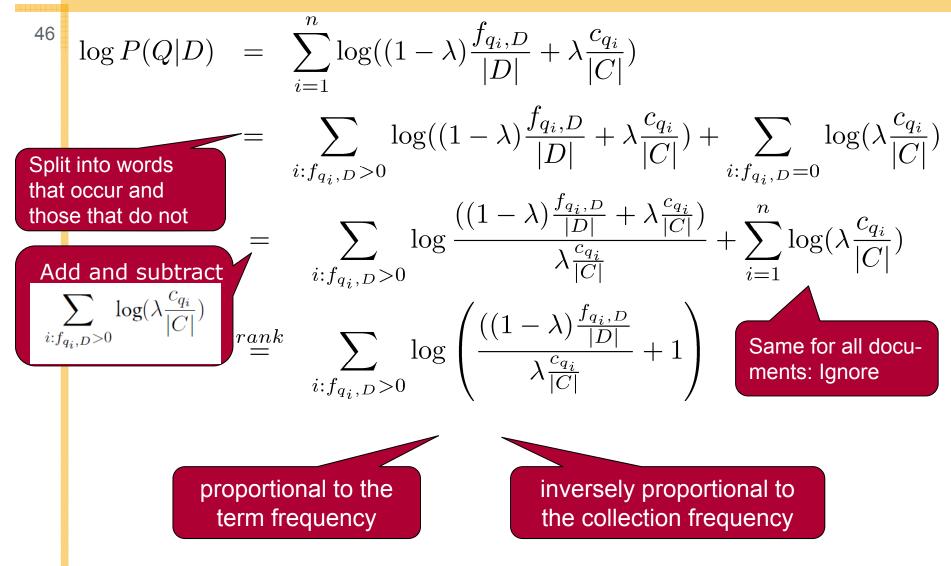
- Simple choice: a_D is a constant, $a_D = \lambda$
- Gives estimate of $p(q_i|D) = (1-\lambda) rac{f_{q_i,D}}{|D|} + \lambda rac{c_{q_i}}{|C|}$
- Ranking score $P(Q|D) = \prod_{i=1}^{n} ((1-\lambda) \frac{f_{q_i,D}}{|D|} + \lambda \frac{c_{q_i}}{|C|})$
- Use logs for convenience
 - Due to accuracy problems when multiplying many small numbers

$$\log P(Q|D) = \sum_{i=1}^{n} \log((1-\lambda)\frac{f_{q_i,D}}{|D|} + \lambda \frac{c_{q_i}}{|C|})$$

- Small λ result in less smoothing, closer to Boolean AND
 - \Box $\lambda = 0.1$ successful for short queries
- For high λ relative weighting less important, closer to Boolean OR
 - Coordination level match: Ranks by number of matching query terms
 - \Box λ = 0.7 successful for very long queries

$$\log_a \prod_{i=1}^n x_i = \sum_{i=1}^n \log_a x_i.$$

Where is *tf.idf*-like weight?



Dirichlet Smoothing

• More effective choice: let a_D depend on document length:

$$\alpha_D = \frac{\mu}{|D| + \mu}$$

Substituted in $(1 - a_D) P(q_i|D) + a_D P(q_i|C)$ gives probability estimation

$$p(q_i|D) = \frac{f_{q_i,D} + \mu \frac{q_i}{|C|}}{|D| + \mu}$$

and document score

$$\log P(Q|D) = \sum_{i=1}^{n} \log \frac{f_{q_i, D} + \mu \frac{c_{q_i}}{|C|}}{|D| + \mu}$$

- Small values for μ give more importance to relative term weights.
- Large values favor number of matching terms.
- Typical: $1,000 \le \mu \le 2,000$

Query Likelihood Example

48

For the term "president"

$$f_{qi,D} = 15, c_{qi} = 160,000$$

For the term "lincoln"

$$\Box f_{qi,D} = 25, c_{qi} = 2,400$$

- Number of word occurrences in the document |d| is assumed to be 1,800.
- Number of word occurrences in the collection is 10⁹.
 - □ 500,000 documents times an average of 2,000 words

$$QL(Q, D) = \log \frac{15 + 2000 \times (1.6 \times 10^5/10^9)}{1800 + 2000}$$

• Negative number
because summing logs
of small numbers
• Only ranking is
relevant

$$= \log(15.32/3800) + \log(25.005/3800)$$

$$= -5.51 + -5.02 = -10.53$$

Query Likelihood Example

	Frequency of	Frequency of	QL
QL:	"president"	"lincoln"	score
	15	25	-10.53
	15	1	-13.75
	15	0	-19.05
	1	25	-12.99
	0	25	-14.40
	Frequency of	Frequency of	BM25
BM25:	"president"	"lincoln"	score
	15	25	20.66
	15	1	12.74
	15	0	5.00
	1	25	18.2
	0	25	15.66

Query Likelihood Discussion

50

- Simple probabilistic retrieval model
- Uses probability estimations as term weights
- QL with Dirichlet smoothing similar to BM25
- QL with advanced smoothing consistently better than BM25
 - Advanced smoothing: Use only similar documents instead of entire collection. Later...

Disadvantages

- Difficult to incorporate information about relevant documents into ranking
- Difficult to represent the fact that a query is just one of many possible queries to describe a particular need

_

51

- Represent topic of query as language model
 - Call this the *relevance model* language model representing information need
 - Query: Very small sample generated from this model
 - Relevant documents: Larger samples from same model
- P(D|R) probability of generating the text in a document given a relevance model
 - Document likelihood model
 - Less effective than query likelihood due to
 - Large and extremely variable number of words
 - Difficulties comparing across documents of different lengths
 - $|D_a| = 5; |D_b| = 500$
 - $P(D_a|R)$ and $P(D_b|R)$ vs. $P(Q|D_a)$ and $P(Q|D_b)$
 - Difficult to obtain relevance model (examples for relevant documents)

Pseudo-Relevance Feedback

52

Idea:

- 1. Estimate relevance model from query and top-ranked documents.
- 2. Rank documents by similarity of document model to relevance model
 - Kullback-Leibler divergence (KL-divergence) is a wellknown measure of the difference between two probability distributions

KL-Divergence

53

 Given the true probability distribution P and another distribution Q that is an approximation to P,

$$KL(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Divergence: Large values mean large difference, mean low similarity.

 $\Box KL(P||Q) \geq 0$

□ Not symmetric: $KL(P||Q) \neq KL(Q||P)$

Choice of "true" distribution is important.

Use negative KL-divergence for ranking, and assume relevance model R is the true distribution:

 $\sum_{w \in V} P(w|R) \log P(w|D) - \sum_{w \in V} P(w|R) \log P(w|R)$

Summation over all words in vocabulary

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

KL-Divergence

54

 $\sum_{w \in V} P(w|R) \log P(w|D) - \sum_{w \in V} P(w|R) \log P(w|R)$

Second term same for each document: Ignore for ranking

Given a simple maximum likelihood estimate for P(w|R), based on the frequency in the query text, ranking score is

$$\sum_{w \in V} \frac{f_{w,Q}}{|Q|} \log P(w|D)$$

This is rank-equivalent to query likelihood score.

Non-query words are iterated but contribute zero.

□ Query words with frequency k contribute k times log P(w|D).

 Query likelihood model is a special case of retrieval based on relevance model

More general model allows more sophisticated estimation based on other query words. Now...

Probability of pulling a word w out of the "bucket" representing the relevance model depends on the n query words we have just pulled out

 $P(w|R) \approx P(w|q_1 \dots q_n)$

By definition

$$P(w|R) \approx \frac{P(w,q_1...q_n)}{P(q_1...q_n)}$$

P(q₁, ..., q_n) is normalizing constant $P(q_1 \dots q_n) = \sum_{w \in V} P(w, q_1 \dots q_n)$ Now: Estimate P(w,q₁, ..., q_n)

 Given document set C represented by language models, joint probability is

$$P(w, q_1 \dots q_n) = \sum_{D \in \mathcal{C}} p(D) P(w, q_1 \dots q_n | D)$$

Assume

56

$$P(w, q_1 \dots q_n | D) = P(w | D) \prod_{i=1}^n P(q_i | D)$$

Gives

 $P(w, q_1 \dots q_n) = \sum_{D \in \mathcal{C}} P(D) P(w|D) \prod_{i=1}^n P(q_i|D)$

57

$P(w, q_1 \dots q_n) = \sum_{D \in \mathcal{C}} P(D) P(w|D) \prod_{i=1}^n P(q_i|D)$

- P(D) usually assumed to be uniform: Ignore
- $\prod_{i=1}^{n} P(q_i | D)$ is query likelihood score for *D*.
 - Thus, P(w, q₁...q_n) is simply a weighted average of the language model probabilities for w in a set of documents, where the weights are the query likelihood scores for those documents.
- We are adding words to query by smoothing relevance model using documents that are similar to query.
- This is precisely a formal model for pseudo-relevance feedback
 - Used as query expansion technique: Words with zero weight in relevance model will now have non-zero weights

Pseudo-Feedback Algorithm

58

- 1. Rank documents using the query likelihood score for query Q.
 - Use Dirichlet-smoothing for P(w|D)
- 2. Select number of the top-ranked documents to be the set C.
 - Using entire collection including low-ranked documents would not be helpful. Also: Faster calculation
- 3. Calculate the relevance model $D(w|P) \sim P(w,q_1...q_n)$ probabilities P(w|R) using

Use Dirichlet-smoothing for P(w|D)

$$I(w|n) \approx \overline{P(q_1...q_n)}$$

- $P(w, q_1 \dots q_n) = \sum_{D \in \mathcal{C}} P(D) P(w|D) \prod_{i=1}^n P(q_i|D)$
 - \square $P(q_1 \dots q_n)$ is used as a normalizing constant and is calculated as before as

$$P(q_1 \dots q_n) = \sum_{w \in V} P(w, q_1 \dots q_n)$$

4. Rank documents again using the KL-divergence score:

- $\sum P(w|R) \log P(w|D)$
- Iterate only over highest-probability words for efficiency П

Example from Top 10 Docs

Strong focus on source type (news) This will reflect results of pseudorelevance feedback

president lincoln	abraham lincoln	fishing	tropical fish		
lincoln	lincoln	fish	fish		
president	america	farm	tropic		
room	president	salmon	japan		
bedroom	faith	new	aquarium		
house	guest	wild	water		
white	abraham	water	species		
america	new	caught	aquatic		
guest	room	catch	fair		
serve	$\operatorname{christian}$	tag	china		
bed	history	time	coral		
washington	public	eat	source		
old	bedroom	raise	tank		
office	war	city	reef		
war	$\operatorname{politics}$	people	animal		
long	old	fishermen	tarpon		
abraham	national	boat	fishery		
16 highest-probability words from relevance model					

Example from Top 50 Docs

60

More general, because larger variety of topics in documents

			▼
president lincoln	abraham lincoln	fishing	tropical fish
lincoln	lincoln	fish	fish
president	$\operatorname{president}$	water	tropic
america	america	catch	water
new	abraham	reef	storm
national	war	fishermen	species
great	man	river	boat
white	civil	new	sea
war	new	year	river
washington	history	time	$\operatorname{country}$
clinton	two	bass	tuna
house	room	boat	world
history	booth	world	million
time	time	farm	state
center	$\operatorname{politics}$	angle	time
kennedy	public	fly	japan
room	guest	trout	mile
	lincoln president america new national great white war washington clinton house history time center kennedy	Ilincolnpresidentpresidentamericaamericaamericaamericanewabrahamnationalwargreatmanwhitecivilwarnewwashingtonhistoryclintontwohouseroomhistoryboothtimetimecenterpoliticskennedypublic	IIIlincolnlincolnfishpresidentpresidentwateramericaamericacatchnewabrahamreefnationalwarfishermengreatmanriverwhitecivilnewwarnewyearwashingtonhistorytimeclintontwobasshouseroomboathistoryboothworldtimetimefarmcenterpoliticsanglekennedypublicfly

16 highest-probability words from relevance model

Overview

61

- Older models
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Combining Evidence

62

 Effective retrieval requires the combination of many pieces of evidence about a document's potential relevance.

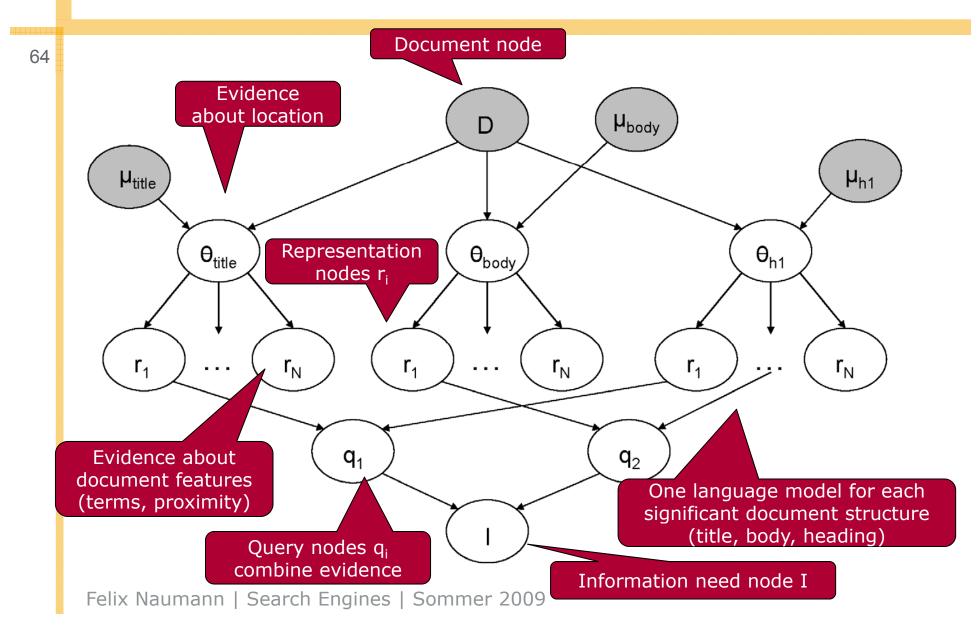
- Until now: focus on simple word-based evidence
- Many other types of evidence
 - Words: Structure, proximity of word, relationships among words
 - Metadata: PageRank, publication date, document type
 - Scores from different models
- Variant 1: Adapt BM25 or Query Likelihood with additional factors
 - Difficult to maintain, understand and tune
- Variant 2: Inference network model is one approach to combining evidence
 - Probabilistic model
 - Uses Bayesian network formalism
 - Mechanism to define and evaluate operators in a query language
 - Operators to specify evidence
 - ♦ Operators to combine evidence

Bayesian Networks

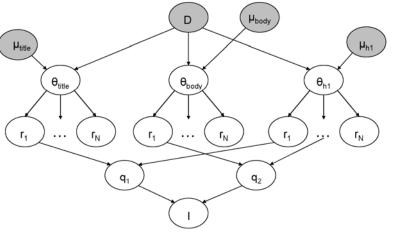
63

- Probabilistic model
- Specifies set of events and dependencies between them
- Modeled as DAG directed acyclic graph
 - Nodes: Events
 - Here: Observing a particular document or piece of evidence or some combination of evidences
 - ♦ All binary
 - □ Arcs: probabilistic dependencies between events

Inference Network



- Document node (D) corresponds to the event that a document is observed.
- Representation nodes (r_i) are document features (evidence)
 - $\hfill \ensuremath{\square}$ Probabilities associated with those features are based on language models θ estimated using the parameters μ
 - One language model for each significant document structure
 - r_i nodes can represent proximity features, or other types of evidence, e.g., date



 μ_{body}

 \mathbf{q}_2

 θ_{h1}

D

θ_{bod}

r_N

r₁

 \mathbf{q}_1

 θ_{title}

r_N

Inference Network

66

- Query nodes (q_i) are used to combine evidence from representation nodes and other query nodes
 - Represent the occurrence of more complex evidence and document features

□ A number of combination operators are available

♦ AND, OR, ...

- Information need node (I) is a special query node that combines all of the evidence from the other query nodes
 - In all, network computes
 P(I|D, μ)
 - probability that an information need is met given the document and the parameters µ (
 - Used to rank documents

67

 Connections in inference network defined by query and by representation nodes

- Probabilities for representation nodes estimated using language model
 - Reflect probability that feature is characteristic of document
 - Not probability of occurrence
 - Node for "lincoln" represents binary event that document is about that topic.
 - Language model used to calculate probability that that event is TRUE.
- Document is represented by binary vector

Inference Network

• To calculate probabilities: $P(r_i|D,\mu) = \frac{f_{r_i,D} + \mu P(r_i|C)}{|D| + \mu}$

- Same as before Dirichlet smoothing
- \Box $f_{i,D}$ is number of times feature r_i occurs in D

 \square $P(r_i|C)$ is collection probability for feature r_i

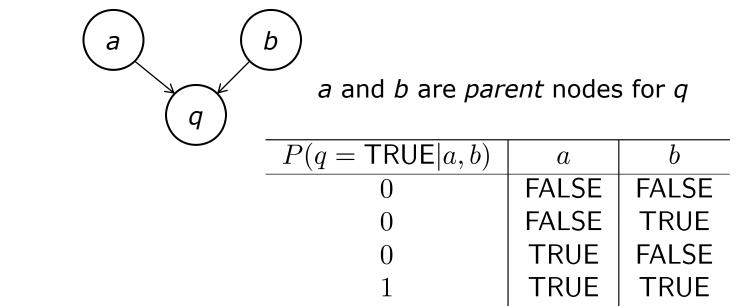
 \square μ is Dirichlet smoothing parameter

Specific to the document structure of interest

- Example: f_{i,D} is number of times "lincoln" appears in title
 - Collection probability calculated based on all collection titles
 - \square μ is title-specific

Query nodes are basis for operators of query language

- Restricted to combinations that can be efficiently calculated
- Calculate probability of each outcome (true or false) given all possible states of parent nodes
- Example for Boolean AND:



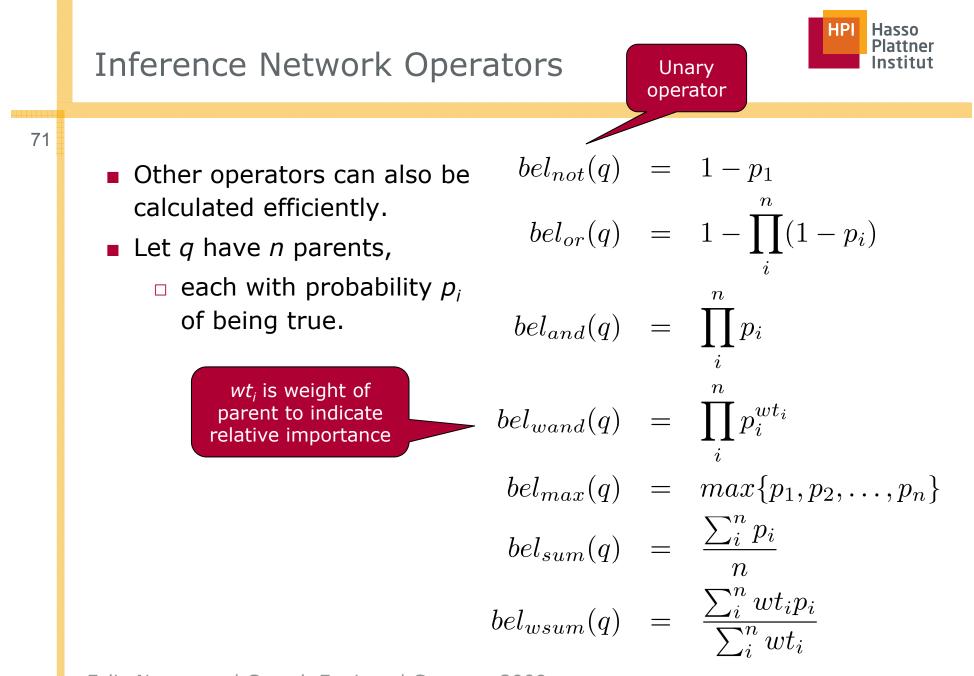
70

- Combination must consider all possible states of parents
- Some combinations can be computed efficiently
- Let p_{xy} denote probability that q is TRUE given state x and y of parents.

 \square p_a is probability that *a* is TRUE

Calculate belief value (probability) from an AND combination:

$$\begin{aligned} bel_{and}(q) &= p_{00}P(a = \mathsf{FALSE})P(b = \mathsf{FALSE}) \\ &+ p_{01}P(a = \mathsf{FALSE})P(b = \mathsf{TRUE}) \\ &+ p_{10}P(a = \mathsf{TRUE})P(b = \mathsf{FALSE}) \\ &+ p_{11}P(a = \mathsf{TRUE})P(b = \mathsf{TRUE}) \\ &= 0 \cdot (1 - p_a)(1 - p_b) + 0 \cdot (1 - p_a)p_b + 0 \cdot p_a(1 - p_b) + 1 \cdot p_a p_b \\ &= p_a p_b \end{aligned}$$



Galago Query Language

 Given description of underlying model and combination operators, we can define a query language that can be used in a search engine to produce rankings based on complex combinations of evidence.

- Example here: Galago (galagosearch.org, Developed by authors of textbook)
- Query: "pet therapy" compiled to Galago query

```
#weight(
```

72

```
3.0 #od1(pet therapy).(body)
```

```
1.0 #od1(pet therapy).(heading))
```

0.1 #weight(

```
1.0 #uw8(pet therapy).(anchor)
```

```
1.0 #uw8(pet therapy).(title)
```

```
3.0 #uw8(pet therapy).(body)
```

```
1.0 #uw8(pet therapy).(heading))))
```

```
Felix Naumann | Search Engines | Sommer 2009
```


Galago Query Language

- A document is viewed as a sequence of text that may contain arbitrary tags.
 - □ HTML tags, XML tags
- A single *context* is generated for each unique tag name *T*.
 - \Box All text and tags that appear within tags of type *T*.
 - □ Examples: <body>, <title>, <h1>, ...
 - Context may be nested
 - Terms can appear in multiple contexts.
 - □ Tags used beyond mere structure: Entity / feature extraction
- An extent is a sequence of text that appears within a single begin/end tag pair of the same type as the context.

Galago Query Language

74

<html></html>
<head></head>
<title>Department Descriptions</title>
<body></body>
The following list describes
<h1>Agriculture</h1>
<h1>Chemistry</h1>
<h1>Computer Science</h1>
<h1>Electrical Engineering</h1>

title context:
<title>Department Descriptions</title>

h1 context: <h1>Agriculture</h1> <h1>Chemistry</h1> <h1>Computer Science</h1> <h1>Electrical Engineering</h1>	<pre>body context: <body> The following list describes <h1>Agriculture</h1> <h1>Chemistry</h1> <h1>Computer Science</h1> <h1>Electrical Engineering</h1> </body></pre>
---	--

- Term is basic building block.
 - Corresponds to representation nodes in inference network
- Large variety of terms defined
 - □ Simple, ordered phrase, synonym, ...
- Simple terms:
 - 🗆 term

- term that will be normalized and stemmed.
- 🗆 "term"
 - term is not normalized or stemmed.
- Examples:
 - ♦ presidents
 - ♦ "NASA"
- Felix Naumann | Search Engines | Sommer 2009

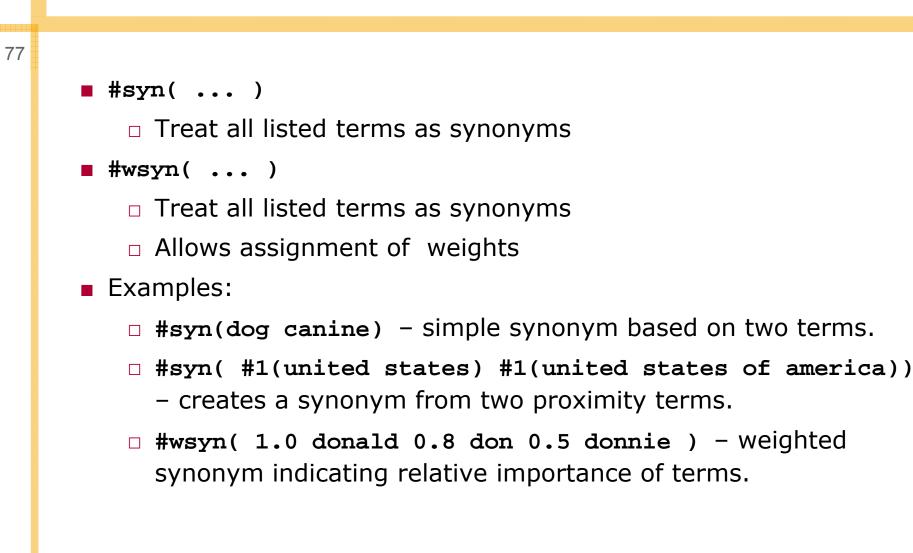
Galago Query Language – Proximity Terms

76

- **#**N(...)
 - Ordered window terms must appear ordered, with at most N-1 terms between each.
- **#**od(...)
 - Unlimited ordered window all terms must appear ordered anywhere within current context.
- #uwN(...)
 - Unordered window all terms must appear within a window of length N in any order.
- **#uw(...)**
 - Unlimited unordered window all terms must appear within current context in any order.

```
Examples:
```

- #1(white house) matches "white house" as an exact phrase.
- #2(white house) matches "white * house" (where * is any word or null).
- uw2(white house) matches "white house" and "house white".



78 8 98 98 98 98 98 98 98 98 98 98 99 90 90 90 90 91 91 91 91 92 93 94</

Galago Query Language – Context Restriction and Evaluation

expression.C1,...,CN

- □ Matches when the expression appears in all contexts C1 through CN.
- expression.(C1,...,CN)
 - Evaluates the expression using the language model defined by the concatenation of contexts C1...CN within the document.

• Examples:

- □ dog.title matches the term "dog" appearing in a title extent.
- uw(smith jones).author matches when the two names "smith" and "jones" appear in an author extent.
- dog.(title) evaluates the term based on the title language model for the document: Probability of occurence for dog based on number of times word occurs in title field, normalized for number of words in title.
 Smoothing using only title fields in collection
- #1(abraham lincoln).person.(header) builds a language model from all of the "header" text in the document and evaluates #1(abraham lincoln).person in that context (i.e. matches only the exact phrase appearing within a person extent within the header context).

Galago Query Language – Belief Operators

80

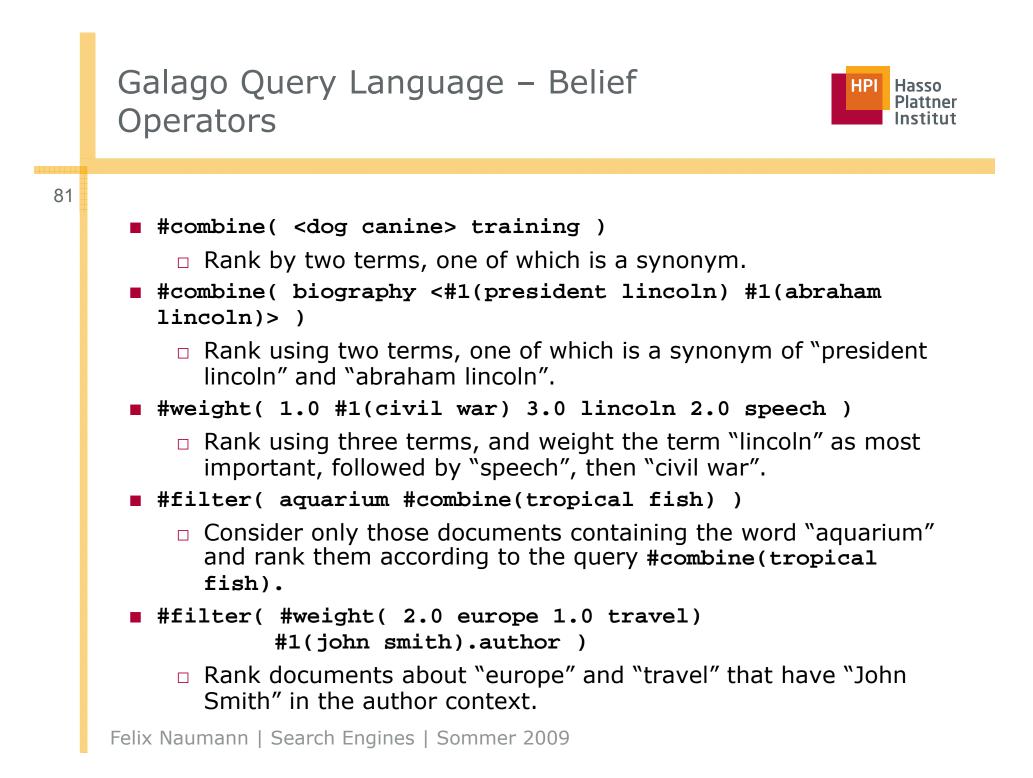
- Used to combine evidence
- Weights can specify relative importance of evidence.
- #combine(...)
 - Normalized version of the bel_{and}(q) operator in the inference network model.

```
#weight(...)
```

□ Normalized version of the $bel_{wand}(q)$ operator.

```
#filter(...)
```

Similar to #combine, but with the difference that all terms (simple, proximity, synonym, etc.) are evaluated without smoothing. Document must contain at least one instance of the term.



Overview

- Older models
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Web Search

- Retrieval models in practice
 - Web search most important, but not only, search application
- Major differences to TREC news
 - □ Size of collection
 - ♦ Billions
 - Connections between documents
 - Links
 - Range of document types
 - Importance of spam
 - □ Volume of queries
 - Tens of millions per day
 - Range of query types
 - Informational navigational, transactional

HPI Hasso Plattner Institut

Search Taxonomy

84

Informational

- Finding information about some topic which may be on one or more web pages
- Topical search
- Navigational
 - Finding a particular web page that the user has either seen before or is assumed to exist
 - Known-item search
- Transactional
 - Finding a site where a task such as shopping or downloading music can be performed

 For effective navigational and transactional search, need to combine features that reflect user relevance.

- Commercial web search engines combine evidence from *hundreds* of features to generate a ranking score for a web page
 - Page content
 - Page metadata
 - "age", how often it is updated
 - URL of the page
 - Domain name of its site
 - Amount of text content
 - Anchor text
 - Links (e.g., PageRank)
 - User behavior (click logs)

Search Engine Optimization

- SEO: Understanding the relative importance of features used in search and how they can be manipulated to obtain better search rankings for a web page
 - Improve the text used in the title tag
 - Improve the text in heading tags
 - Make sure that the domain name and URL contain important keywords
 - Improve the anchor text and link structure
- Some of these techniques are regarded as not appropriate by search engine companies

In TREC evaluations, most effective features for navigational

- search are:
 - □ Text in the title, body, headings (h1, h2, h3, and h4)
 - Anchor text of all links pointing to the document

PageRank number and inlink count

Given size of Web, many pages will contain all query terms

- Search engines can use AND semantics
 - Dangerous for smaller collections
 - Site search, news search, ...
 - TREC: Only 50% of relevant pages contain all search terms
- Ranking algorithm focuses on discriminating between these pages
- Word proximity is important

Term Proximity

- Assumption: Query terms are likely to appear in close proximity within relevant documents
 - Green party political views"
- Many models have been developed
 - □ N-grams are commonly used in commercial web search
- Dependence model based on inference net has been effective in TREC - e.g.
- Let S_Q be the set of all non-empty subsets of Q (power set)
 - □ Every $s \in S_Q$ that consists of contiguous query terms is likely to appear as an exact phrase in a relevant document
 - Represented using the #1 operator
 - □ Every $s \in S_Q$ such that |s| > 1 is likely to appear (ordered or unordered) within a reasonably sized window of text in a relevant document
 - ♦ Represented as #uw8 for |s| = 2 and #uw12 for |s| = 3

Term Proximity

89

- Example query "embryonic stem cells"
- Compiled to Galago query

```
#weight(
```

)

- 0.8 #combine(embryonic stem cells)
- 0.1 #combine(#od1(stem cells)

#od1(embryonic stem)

#od1(embryonic stem cells))

0.1 #combine(#uw8(stem cells)

#uw8(embryonic cells)

#uw8(embryonic stem)

#uw12(embryonic stem cells))

Example Web Query

90


```
PageRank and
                                inlinks calculated at
Query: "pet therapy"
                                    index time

    Compiled to Galago guery

#weight(
  0.1 #weight( 0.6 #prior(pagerank) 0.4 #prior(inlinks))
  1.0 #weight(
      0.9 #combine(
               #weight(1.0 pet.(anchor) 1.0 pet.(title)
                       3.0 pet.(body) 1.0 pet.(heading))
               #weight(1.0 therapy.(anchor) 1.0 therapy.(title)
                       3.0 therapy.(body) 1.0 therapy.(heading)))
      0.1 #weight(
               1.0 #od1(pet therapy).(anchor)
               1.0 #od1(pet therapy).(title)
               3.0 #od1(pet therapy).(body)
               1.0 #od1(pet therapy).(heading))
                                                        Proximity can be
      0.1 #weight(
                                                       index, but increases
               1.0 #uw8(pet therapy).(anchor)
                                                           index size
               1.0 #uw8(pet therapy).(title)
               3.0 #uw8(pet therapy).(body)
               1.0 #uw8(pet therapy).(heading))))
```


Query types

- Insights gained from TREC experiments
- Topical search:
 - Simple terms and proximity features suffice
- Navigational search:
 - □ More evidence is helpful
- Pseudo-relevance feedback
 - Helps topical search
 - Is detrimental for navigational search
- But: How can we determine query type?

- Other evidence is in general useful
 - User behavior: Clicked-on pages, dwell time, links followed
- But: How to weight and combine more and more evidence?
 - Idea: Machine learning

Overview

- Older models
- Probabilistic models
- Language models
- Combining evidence
- Web search
- Learning to Rank

Machine Learning and IR

Considerable interaction between these fields

- □ Rocchio algorithm (60s) is a simple learning approach
- □ 80s, 90s: learning ranking algorithms based on user feedback
- 2000s: text categorization
- Limited by amount of training data
- Web query logs have generated new wave of research

e.g., "Learning to Rank"

 All of the probabilistic retrieval models presented so far fall into the category of *generative models*.

- A generative model assumes that documents were generated from some underlying model (in this case, usually a multinomial distribution) and uses training data to estimate the parameters of the model.
- Probability of belonging to a class (i.e. the relevant documents for a query) is then estimated using Bayes' Rule and the document model.

A discriminative model estimates the probability of belonging to a class directly from the observed features of the document based on the training data.

- Generative models perform well with low numbers of training examples.
- Discriminative models usually have the advantage given enough training data.
 - Can also easily incorporate many features

- Discriminative models can be trained using explicit relevance judgments or click data in query logs
 - □ Click data is much cheaper, more noisy
 - e.g. Ranking Support Vector Machine (SVM) takes as input partial rank information for queries
 - Partial information about which documents should be ranked higher than others

- Best retrieval model depends on application and data available
- Evaluation corpus (or test collection), training data, and user data are all critical resources.
- Language resources (e.g., thesaurus) can make a big difference