
Search Engines
Chapter 4 – Processing Text

3.5.2011
Felix Naumann

Processing Text

■ Converting documents to index terms

□ “Text processing” or “Text transformation”

■ Easy: Do nothing

■ Why?

□ Matching the exact string of characters typed by the user is
too restrictive.

◊ Poor effectiveness

□ Not all words are of equal value in a search.

□ Sometimes not clear where words begin and end

◊ Not even clear what a word is in some languages

● e.g., Chinese, Korean

2

Felix Naumann | Search Engines | Sommer 2011

Processing Text

Felix Naumann | Search Engines | Sommer 2011

3

■ NLP (natural language
processing)

□ Syntactic analysis

□ Semantic analysis

■ Text statistics

□ Counting words

□ Counting co-occurrences

■ Many simple techniques

□ Lower case

□ Punctuation

□ Tokenization

□ Stopping

□ Stemming

□ Structure and format

□ Links

■ But profound impact

Overview

■ Text statistics

■ Document parsing

■ Link Analysis

■ Information Extraction

Felix Naumann | Search Engines | Sommer 2011

4

Text Statistics

■ Huge variety of words used in text but…

■ Many statistical characteristics of word occurrences are predictable

□ e.g., distribution of word counts

■ Retrieval models and ranking algorithms depend heavily on
statistical properties of words.

□ e.g., important words occur often in a document but are not of
high frequency in entire collection

□ tf-idf (term-frequency – inverse-document-frequency)

5

Felix Naumann | Search Engines | Sommer 2011

Zipf’s Law

■ Distribution of word frequencies is very skewed.

□ A few words occur very often, many words hardly ever occur

□ Two most common words (“the”, “of”) make up about 10% of all
word occurrences in text documents

□ Top 6 words account for 20% of text.

□ Top 50 words account for 40% of text.

□ And: 50% of all words in a large sample occur only once.

■ Zipf’s “law”:

□ Observation that rank r of a word times its frequency f is
approximately a constant k.

◊ Assuming words are ranked in order of decreasing frequency

□ r·f k or r·Pr c

◊ where Pr is probability of word occurrence and c 0.1 for
English

6

Felix Naumann | Search Engines | Sommer 2011

Zipf’s Law

7

Felix Naumann | Search Engines | Sommer 2011

r · Pr c for c = 0.1

 Pr = 0.1 / r http://www.lib.jgypk.u-
szeged.hu/alknyelv/idege
nek/klasszikusok/Zipf/nye
lvesz.htm

George Kingsley Zipf
(1902–1950)

News Collection (AP89) Statistics

■ Associated Press from 1989

Felix Naumann | Search Engines | Sommer 2011

8

Total documents 84,678

Total word occurrences 39,749,179

Vocabulary size 198,763

Words occurring > 1000 times 4,169

Words occurring once 70,064

Top 50 Words from AP89

9

Felix Naumann | Search Engines | Sommer 2011

r x Pr value always
close to 0.1

Low frequency words from AP89

■ Zipf is most inaccurate for very frequent and very infrequent
words.

Felix Naumann | Search Engines | Sommer 2011

10

Word Freq. r Pr(%) r.Pr

Assistant 5,095 1,021 .013 0.13

Sewers 100 17,110 2.56 x 10-4 0.04

Toothbrush 10 51,555 2.56 x 10-5 0.01

Hazmat 1 166,945 2.56 x 10-6 0.04

Zipf’s Law for AP89

Note problems at high and low frequencies

11

Felix Naumann | Search Engines | Sommer 2011

P
r

Zipf’s Law – example calculations

■ Reminder: r·f k

■ What is the proportion of words with a given frequency?

□ Word that occurs n times has rank rn = k/n

□ Multiple words can have same frequency

◊ rn is associated with last word in group

□ Number of words with same frequency n is

◊ rn − rn+1 = k/n − k/(n + 1) = k/n(n + 1)

□ Proportion found by dividing by total number of words

◊ = rank of last word with freq. 1 = highest rank = k/1 = k

□ So, proportion with frequency n is 1/n(n+1)

◊ => half of all words appear once

● (n=1 => proportion = ½)

12

Felix Naumann | Search Engines | Sommer 2011

Zipf’s Law – example calculation

■ Example word frequency ranking

■ To compute number of words with frequency 5,099

□ rank of “chemical” minus the rank of “summit”

□ 1006 − 1002 = 4

■ Proportion: 1/n(n+1) = 1/5,099(5,100) = 1/ 26,004,900

Felix Naumann | Search Engines | Sommer 2011

13

Example

■ Proportions of words occurring n times in 336,310 TREC
documents

■ Vocabulary size is 508,209

14

Felix Naumann | Search Engines | Sommer 2011

Vocabulary Growth

■ As corpus grows, so does vocabulary size

□ But: Fewer new words when corpus is already large

■ Observed relationship (Heaps’ Law, found empirically):

v = k·nβ

□ where v is vocabulary size (number of unique words)

□ n is the number of words in corpus (non-unique)

□ k, β are parameters that vary for each corpus

◊ typical values given are 10 ≤ k ≤ 100 and β ≈ 0.5

■ Example

□ n = 1,000,000 k = 50 β = 0.5

□ v = 50 · 1,000,0000.5 = 50,000

Felix Naumann | Search Engines | Sommer 2011

15

TREC AP89 Example

16

Felix Naumann | Search Engines | Sommer 2011

Heaps law with
β = 0.455 and k = 62.95

Heaps’ Law Predictions

■ Predictions for TREC collections are accurate for large numbers of
words.

□ E.g., first 10,879,522 words of the AP89 collection scanned

□ Prediction is 100,151 unique words

□ Actual number is 100,024

■ Predictions for small numbers of words (i.e. < 1,000) are much
worse.

17

Felix Naumann | Search Engines | Sommer 2011

GOV2 (Web) Example

18

Felix Naumann | Search Engines | Sommer 2011

25 billion, and still
many new words

Web Example

■ Heaps’ Law works with very large corpora

□ New words occurring even after seeing 30 million!

□ Parameter values on Web different than typical TREC values

■ New words come from a variety of sources

□ Spelling errors, invented words (e.g., product, company
names), code, other languages, email addresses, etc.

■ Search engines must deal with these large and growing
vocabularies

19

Felix Naumann | Search Engines | Sommer 2011

Estimating Result Set Size

■ How many pages contain all of the query terms?

□ Not always conjunctive semantics

■ For the query “a b c”:

fabc = N · fa/N · fb/N · fc/N = (fa · fb · fc)/N2

◊ Assuming that terms occur independently

◊ fabc is the estimated size of the result set

◊ fa, fb, fc are the number of documents that terms a, b, and
c occur in

● Available through index
● Document frequency (not word occurrences)

◊ N is the number of documents in the collection

Felix Naumann | Search Engines | Sommer 2011

20

TREC GOV2 Example

Collection size (N) is
25,205,179

21

Felix Naumann | Search Engines | Sommer 2011

Result Set Size Estimation

■ Poor estimates because words are not independent

□ e.g., fish and aquarium

■ Better estimates possible if pair-wise co-occurrence information is
available:

□ P(a ∩ b ∩ c) = P(a ∩ b) · P(c|(a ∩ b))

□ Approximate P(c|(a ∩ b)) with max[P(c|a) , P(c|b)].

◊ Reminder: P(c|a) = P(c ∩ a)/P(a)

□ ftropical∩fish∩aquarium = ftropical∩aquarium · ffish∩aquarium/faquarium

= 1921 · 9722/26480 = 705

□ ftropical∩fish∩breeding = ftropical∩breeding · ffish∩breeeding/fbreeding

= 5510 · 36427/81885 = 2451

■ Still too low, because still some independence assumptions.

□ But: Storing deeper co-occurrence (triples, quadruples, …) is
too expensive.

Felix Naumann | Search Engines | Sommer 2011

22

Result Set Estimation – New Idea

■ Even better estimates using initial result set during processing

□ Estimate is simply C/s, where

◊ s is the proportion of the total documents that have been
ranked.

◊ C is the number of documents found that contain all of the
query words.

■ E.g., “tropical fish aquarium” in GOV2

□ After processing 3,000 out of the 26,480 documents that
contain “aquarium”, C = 258
ftropical∩fish∩aquarium = 258/(3000÷26480) = 2,277
(= 26480 · 258/3000)

□ After processing 20% of the documents
ftropical∩fish∩aquarium = 1,778 (1,529 is real value)

■ Total number of documents in collection irrelevant here

23

Felix Naumann | Search Engines | Sommer 2011

Estimating Collection Size

■ Important issue for Web search engines

□ Academia: How big is the web?

□ Business: Which search engine has best coverage?

■ Simple technique: Use independence model

□ Given two words a and b that are (probably) independent

fab/N = fa/N · fb/N

N = (fa · fb)/fab

□ e.g., for GOV2

flincoln = 771,326 ftropical = 120,990 flincoln ∩ tropical = 3,018

N = (120990 · 771326)/3018 = 30,922,045

(actual number is 25,205,179)

24

Felix Naumann | Search Engines | Sommer 2011

Estimating Google’s Size (GS) 2009

Felix Naumann | Search Engines | Sommer 2011

25

GS = (126,000,000 · 79,900,000) / 2,740,000 = 3,674,233,577

Actual size: 1,000,000,000,000

Estimating Google’s Size (GS) 2011

Felix Naumann | Search Engines | Sommer 2011

26

= 2 billion (2,104,838,710)

Overview

■ Text statistics

■ Document parsing

■ Link Analysis

■ Information Extraction

Felix Naumann | Search Engines | Sommer 2011

27

Motivation

■ Document parsing =
Recognition of content and structure of document

■ Tokenizing / lexical analysis =
Recognition of words in sequence of characters

■ Syntactic analysis =
Recognition of structure for content

□ Uses markup

■ Parsing very tolerant – represent every document in index!

■ Input: Result of crawling – textual representation of web page

□ With some markup

■ Output: Data structure used for index

Felix Naumann | Search Engines | Sommer 2011

28

Tokenizing

■ Forming words from sequence of characters

■ Surprisingly complex in English, can be harder in other languages

■ Early IR systems:

□ Any sequence of alphanumeric characters of length > 3

□ Terminated by a space or other special character

□ Any upper-case changed to lower-case
(aka. case-folding or downcasing)

■ Example:

□ “Bigcorp's 2007 bi-annual report showed profits rose 10%.”

□ becomes “bigcorp 2007 annual report showed profits rose”

■ Too simple for search applications or even large-scale experiments

■ Why? Too much information lost

□ Small decisions in tokenizing can have major impact on
effectiveness of some queries.

29

Felix Naumann | Search Engines | Sommer 2011

Tokenizing Problems

■ Small words can be important in some queries, usually in
combinations

□ xp, ma, pm, ben e king, el paso, system r

□ master p, gm, j lo, world war II

■ Both hyphenated and non-hyphenated forms of many words are
common

□ Sometimes hyphen is not needed

◊ e-bay, wal-mart, active-x, cd-rom, t-shirts

□ Sometimes hyphens should be considered either as part of the
word or a word separator

◊ winston-salem, mazda rx-7, e-cards, pre-diabetes,
t-mobile, spanish-speaking

30

Felix Naumann | Search Engines | Sommer 2011

Tokenizing Problems

■ Special characters are an important part of
tags, URLs, code in documents, …

■ Capitalized words can have different meaning from lower case
words

□ Bush, Apple

□ bush, apple

■ Apostrophes can be a part of a word, a part of a possessive, or
just a mistake

□ rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats,
master's degree, england's ten largest cities, shriner's

31

Felix Naumann | Search Engines | Sommer 2011

Die Kapostroph-Gruselgalerie –
Kategore „Völlig willenlos“
http://www.apostroph.de/

Felix Naumann | Search Engines | Sommer 2011

32

Tokenizing Problems

■ Numbers can be important, including decimals

□ nokia 3250, top 10 courses, united 93, quicktime 6.5 pro,
92.3 the beat, 288358

■ Periods can occur in numbers, abbreviations, URLs, ends of
sentences, and other situations

□ I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

■ Note: Tokenizing steps for queries (later) must be identical to
steps for documents

33

Felix Naumann | Search Engines | Sommer 2011

Tokenizing Process

■ Step 1: Parse for markup

□ Allow for syntax errors

□ Identify appropriate parts of document to tokenize

■ Step 2: Parse for content

□ Defer complex decisions to other components

◊ Stemming, dates, NER

□ Word is any sequence of alphanumeric characters, terminated
by a space or special character, with everything converted to
lower-case

◊ Let query transformation component deal with ambiguities

□ Example: 92.3 → 92 3 but search finds documents with 92
and 3 adjacent

□ Incorporate additional rules to handle some special characters
(so query and document will match).

34

Felix Naumann | Search Engines | Sommer 2011

Tokenizing Process

■ Not that different than simple tokenizing process used in past

■ Examples of rules used with TREC

□ Apostrophes in words ignored

◊ o’connor → oconnor bob’s → bobs

□ Periods in abbreviations ignored

◊ I.B.M. → ibm

◊ But Ph.D. → ph d because ph is word not character.

35

Felix Naumann | Search Engines | Sommer 2011

Stopping

■ Function words (determiners,
prepositions) have little
meaning on their own
□ Determiners: The, a, an,

that, those, …
□ Prepositions: Over, under,

above, below, …
■ High occurrence frequencies
■ Little relevance (except for

phrases)
■ Treated as stopwords (i.e.,

removed)
□ Reduce index space
□ Improve response time
□ Improve effectiveness

■ Can be important in
combinations
□ e.g., “to be or not to be”

36

Felix Naumann | Search Engines | Sommer 2011

Stopping

■ Stopword list can be created from high-frequency words or based
on a standard list

□ With caution

■ Lists are customized for applications, domains, and even parts of
documents.

□ E.g., “click” is a good stopword for anchor text

■ Best policy is to index all words in documents, and then make
decisions about which words to use at query time.

□ Stopwords are removed from query, except with “+”-sign

□ But: Space consuming

37

Felix Naumann | Search Engines | Sommer 2011

Stemming

■ Also: “Conflation”

■ Many morphological variations of words

□ inflectional (plurals, tenses)

◊ Flexion, Beugung: Kasus, Numerus, Genus, Tempus

□ derivational (making verbs nouns etc.)

◊ Ableitung und Zusammensetzung (Komposition)

■ In most cases, these have the same or very similar meanings

■ Stemmers attempt to reduce morphological variations of words to
a common stem

□ Usually involves removing suffixes

■ Can be done at indexing time or as part of query processing (like
stopwords).

38

Felix Naumann | Search Engines | Sommer 2011

Stemming

■ Generally a small but significant effectiveness improvement

□ can be crucial for some languages

□ e.g., 5-10% improvement for English, up to 50% in Arabic

Words with the Arabic root ktb

40

Felix Naumann | Search Engines | Sommer 2011

Stemming

■ Two basic types of stemmers

□ Dictionary-based: uses lists of related words

□ Algorithmic: uses program to determine related words

■ Algorithmic stemmers

□ suffix-s: remove ‘s’ endings assuming plural

◊ e.g., cats → cat, lakes → lake, wiis → wii

◊ Many false negatives: supplies → supplie

◊ Some false positives: ups → up

■ More complex stemmers include more endings

□ -ing, -ed

□ Fewer false negatives, more false positives

41

Felix Naumann | Search Engines | Sommer 2011

Porter Stemmer

■ Algorithmic stemmer used in IR experiments since the 70s

■ Consists of a series of rules

□ Find the longest possible suffix at each step

□ Some non-intuitive

■ Effective in TREC

■ Produces stems not words

■ Makes a number of errors and difficult to modify

42

Felix Naumann | Search Engines | Sommer 2011 Martin Porter: http://tartarus.org/~martin/

Porter Stemmer: Example step (1 of 5)

Felix Naumann | Search Engines | Sommer 2011

43

Porter Stemmer

■ Some errors of Porter stemmer

■ Porter2 stemmer addresses some of these issues

■ Approach has been used with other languages

44

Felix Naumann | Search Engines | Sommer 2011

Dictionary-based Stemmers

■ Word-relationships stored explicitly

■ Difficult cases are caught

□ Is, be, was

□ Few false positives

■ But: Language evolves

■ Observation

□ Old words are irregular

□ Newer words are more regular

■ Thus: Hybrid approach

□ Dictionary-based for old/difficult words

□ Algorithmic-based for new words

Felix Naumann | Search Engines | Sommer 2011

45

Krovetz Stemmer

■ Hybrid algorithmic-dictionary

□ Word checked in dictionary and exception set

◊ If present, either left alone or replaced with “exception”

◊ If not present, word is checked for suffixes that could be
removed

◊ After removal, dictionary is checked again

◊ If still not present, different endings are tried

■ Produces words not stems

■ Comparable effectiveness

■ Lower false positive rate, somewhat higher false negative

46

Felix Naumann | Search Engines | Sommer 2011

Stemmer Comparison

■ Original text

□ Document will describe marketing strategies carried out by
U.S. companies for their agricultural chemicals, report
predictions for market share of such chemicals, or report
market statistics for agrochemicals, pesticide, herbicide,
fungicide, insecticide, fertilizer, predicted sales, market
share, stimulate demand, price cut, volume of sales.

■ Porter stemmer

□ document describ market strategi carri compani agricultur
chemic report predict market share chemic report market
statist agrochem pesticid herbicid fungicid insecticid fertil
predict sale market share stimul demand price cut volum sale

■ Krovetz stemmer

□ document describe marketing strategy carry company
agriculture chemical report prediction market share chemical
report market statistic agrochemic pesticide herbicide
fungicide insecticide fertilizer predict sale stimulate demand
price cut volume sale

Felix Naumann | Search Engines | Sommer 2011

47

Stems

Words
(mostly)

Phrases

■ Many queries are 2-3 word phrases.

■ Phrases are

□ more precise than single words

◊ e.g., documents containing “black sea” vs. two words
“black” and “sea”

□ less ambiguous

◊ e.g., “big apple” vs. “rotten apple” vs. “apple”

■ Can be difficult for ranking

◊ e.g., given query “fishing supplies”, how do we score
documents with
● exact phrase many times
● exact phrase just once
● individual words in same sentence, same paragraph,

whole document
● variations on words?

48

Felix Naumann | Search Engines | Sommer 2011

Phrases

■ Ranking: See retrieval model

□ But: Deal with phrases during text processing?

■ Text processing issue – how are phrases recognized?

■ Three possible approaches:

□ Identify syntactic phrases using a part-of-speech (POS)
tagger.

□ Use word n-grams.

□ Store word positions in indexes and use proximity operators in
queries.

49

Felix Naumann | Search Engines | Sommer 2011

POS Tagging

■ POS taggers use statistical models or rule-based models of text to
predict syntactic tags of words

■ Trained on large corpora

□ Example tags:

◊ NN (singular noun), NNS (plural noun), VB (verb), VBD
(verb, past tense), VBN (verb, past participle), IN
(preposition), JJ (adjective), CC (conjunction, e.g., “and”,
“or”), PRP (pronoun), and MD (modal auxiliary, e.g., “can”,
“will”).

■ Phrases can then be defined as simple noun groups (noun phrase)

□ Or simpler: Sequence of nouns, or nouns plus adjective

■ Disadvantage: Slow

50

Felix Naumann | Search Engines | Sommer 2011

Pos Tagging Example

■ Original text
□ Document will describe marketing strategies carried out by U.S.

companies for their agricultural chemicals, report predictions for
market share of such chemicals, or report market statistics for
agrochemicals, pesticide, herbicide, fungicide, insecticide,
fertilizer, predicted sales, market share, stimulate demand, price
cut, volume of sales.

■ Brill tagger
□ Document/NN will/MD describe/VB marketing/NN

strategies/NNS carried/VBD out/IN by/IN U.S./NNP
companies/NNS for/IN their/PRP agricultural/JJ
chemicals/NNS ,/, report/NN predictions/NNS for/IN market/NN
share/NN of/IN such/JJ chemicals/NNS ,/, or/CC report/NN
market/NN statistics/NNS for/IN agrochemicals/NNS ,/,
pesticide/NN ,/, herbicide/NN ,/, fungicide/NN ,/, insecticide/NN
,/, fertilizer/NN ,/, predicted/VBN sales/NNS ,/, market/NN
share/NN ,/, stimulate/VB demand/NN ,/, price/NN cut/NN ,/,
volume/NN of/IN sales/NNS ./.

Felix Naumann | Search Engines | Sommer 2011

51

Noun
phrase

Noun
phrase

Not recognized as
noun phrasehttp://research.microsoft.com/en-us/um/people/brill/

Example Noun Phrases

52

Felix Naumann | Search Engines | Sommer 2011

Fewer content
related

Many proper
nouns

Many topical
phrases

Word positions

■ POS tagging too slow for large collections

■ Instead: Store word position information in index

■ Identify phrases only when query is processed

■ More flexible in types of phrases

□ Not restricted to adjacent words

□ Identification of phrases using proximity / occurrence within a
window

■ Indexing positions and retrieval model for positions: Later

Felix Naumann | Search Engines | Sommer 2011

53

Word N-Grams

■ Simpler definition – phrase is any sequence of n words – known as
n-grams

□ bigram: 2 word sequence, trigram: 3 word sequence,
unigram: single words

□ N-grams also used at character level for applications such as
OCR

□ Also useful for indexing Chinese text

■ N-grams typically formed from overlapping sequences of words

□ i.e., move n-word “window” one word at a time in document

■ Indexes grow larger

54

Felix Naumann | Search Engines | Sommer 2011

N-Grams

■ Frequent n-grams are more likely to be meaningful phrases

■ N-grams also form a Zipf distribution

□ Better fit than words alone

■ Could index all n-grams up to specific length

□ Much faster than POS tagging

□ Uses a lot of storage:

◊ Document containing 1,000 words would contain 3,990
instances of word n-grams of length 2 ≤ n ≤ 5

□ Remove stopword n-grams: “and the”, “there is”, …

◊ But again: “to be or not to be”

55

Felix Naumann | Search Engines | Sommer 2011

Google N-Grams
“All Our N-gram are Belong to You”

■ Web search engines index n-grams

■ Google sample (http://googleresearch.blogspot.com/2006/08/all-
our-n-gram-are-belong-to-you.html):

□ Number of tokens: 1,024,908,267,229

□ Number of sentences: 95,119,665,584

□ Number of unigrams: 13,588,391

□ Number of bigrams: 314,843,401

□ Number of trigrams: 977,069,902

□ Number of fourgrams: 1,313,818,354

□ Number of fivegrams: 1,176,470,663

■ Most frequent trigram in English is “all rights reserved”

□ In Chinese, “limited liability corporation”

□ Not dominated by patterns of speech (“and will be”)
Felix Naumann | Search Engines | Sommer 2011

56

Document Structure and Markup

■ Some parts of documents are more important than others.
□ Similar to databases: Column-names

■ Document parser recognizes structure using markup, such as HTML
tags
□ Headers, anchor text, bolded text all likely to be important
□ Metadata can also be important
□ Links used for link analysis

58

Felix Naumann | Search Engines | Sommer 2011

Example Web Page

59

Felix Naumann | Search Engines | Sommer 2011

Document Structure and Markup

■ URL itself is source for words

■ http://en.wikipedia.org/wiki/Tropical_fish

■ Depth of URL: Where is IBM‘s homepage?

□ www.ibm.com vs.

□ www.pcworld.com/businesscenter/article/698/ibm_buys_apt!

■ HTML for layout and presentation

■ XML for semantic markup

□ Simple Dublin Core Metadata Element Set

◊ Title, Creator, Subject, Description, Publisher, Contributor, Date, Type,
Format, Identifier, Source, Language, Relation, Coverage, Rights

□ Geotagging

◊ <meta name="geo.position" content="50.167958;-97.133185">
<meta name="geo.placename" content="Rockwood Rural
Municipality, Manitoba, Canada"> <meta name="geo.region"
content="ca-mb">

Felix Naumann | Search Engines | Sommer 2011

60

Overview

■ Text statistics

■ Document parsing

■ Link Analysis

■ Information Extraction

Felix Naumann | Search Engines | Sommer 2011

61

Link Analysis

■ Links are a key component of the Web.

□ Relationships

■ Important for navigation, but also for search

□ e.g., Example website

□ “Example website” is the anchor text.

□ “http://example.com” is the destination link.

□ Both are used by search engines.

■ No relevance for desktop search

62

Felix Naumann | Search Engines | Sommer 2011

Anchor Text

■ Used as a description of the content of the destination page

□ Collection of anchor texts in all links pointing to a page used as an
additional text field

■ Anchor text tends to be short, descriptive, and similar to query text.

□ ebay

□ But: click here

■ Written by people who are not author of page

□ Description from a different perspective

□ Description of most important aspect

■ Link itself is also a vote for importance

■ Retrieval experiments have shown that anchor text has significant
impact on effectiveness for some types of queries.

□ Especially homepages

□ More effective than PageRank

63

Felix Naumann | Search Engines | Sommer 2011

PageRank

■ Tens of billions of web pages, some more informative than others

□ Spam vs. personal homepage/photo album vs. news site vs.
corporate homepage

□ Ranking difficult

■ Links can be viewed as information about the popularity
(authority?) of a web page

□ Can be used by ranking algorithm

■ Inlink count could be used as simple measure

□ Susceptible to link spam

■ Link analysis algorithms like PageRank provide more reliable
ratings

□ Less susceptible to link spam

64

Felix Naumann | Search Engines | Sommer 2011

PageRank: Random Surfer

Felix Naumann | Search Engines | Sommer 2011

65

Surfer Bob is bored

Felix Naumann | Search Engines | Sommer 2011

66

?

PageRank: Random Surfer Model

■ Browse the Web using the following algorithm:

□ Choose a random number r between 0 and 1

□ If r < λ:

◊ Go to a random page

□ If r ≥ λ:

◊ Click a link at random on the current page

□ Start again

■ “PageRank” of a page is the probability that the “random surfer” will
be looking at that page

□ Links from popular pages will increase PageRank of pages they
point to, because they are more often visited than non-popular
pages

□ Many pages will be reached very often (thousands of time more
often than others)

■ λ is typically small

67

Felix Naumann | Search Engines | Sommer 2011

Dangling Links

■ Random jump guarantees that every page will be reached at some
point in time.

■ Random jump prevents getting stuck on pages that

□ do not have links,

□ contain only links that no longer point to other pages, or

□ have links forming a loop.

■ Links that point to the first two types of pages are called dangling
links.

□ May also be links to pages that have not yet been crawled

■ Problem: Bob does not have enough time…

68

Felix Naumann | Search Engines | Sommer 2011

PageRank – Random Link

■ PageRank (PR) of page C:
PR(C) = PR(A)/2 + PR(B)/1

■ More generally,

□ where Bu is the set of pages that point to u, and Lv is the
number of outgoing links from page v (not counting duplicate
links)

□ But: What is PR(v) ?

69

Felix Naumann | Search Engines | Sommer 2011

PageRank – Random Link

■ Don’t know PageRank values at start

■ Idea: Assume equal values (1/3 in this case), then iterate:

□ First iteration:
PR(C) = 0.33/2 + 0.33 = 0.5, PR(A) = 0.33, PR(B) = 0.17

□ Second iteration:
PR(C) = 0.33/2 + 0.17 = 0.33, PR(A) = 0.5, PR(B) = 0.17

□ Third iteration:
PR(C) = 0.42, PR(A) = 0.33, PR(B) = 0.25

■ Converges to PR(C) = 0.4, PR(A) = 0.4, and PR(B) = 0.2

70

Felix Naumann | Search Engines | Sommer 2011

PageRank – Random Page

■ Taking random page jump into account, 1/3 chance of going to
any page when r < λ

■ PR(C) = λ · 1/3 + (1 − λ) · (PR(A)/2 + PR(B)/1)

■ More generally,

□ where N is the number of pages, λ typically 0.15

■ Equivalent to R = T · R

□ Where R is vector of PageRank values and T is transition
probability matrix:

■ R is Eigenvector of T

71

Felix Naumann | Search Engines | Sommer 2011

i
ij LN

T 1)1(

72

Felix Naumann | Search Engines | Sommer 2011

Link Quality

■ Link quality is affected by spam and other factors

□ e.g., link farms to increase PageRank

□ Trackback links in blogs can create loops

□ Trackback links are links of a different nature

73

Felix Naumann | Search Engines | Sommer 2011

Link Quality

■ Link quality is affected by spam and other factors

□ Links from comments section of popular blogs boost own web
page

◊ Blog services modify comment links to contain
rel=nofollow attribute

● To help search engines
● Initiatied by Google in 2005

◊ e.g., “Come visit my <a rel=nofollow
href="http://www.page.com">web page.”

74

Felix Naumann | Search Engines | Sommer 2011
http://en.wikipedia.org/wiki/Nofollow

Overview

■ Text statistics

■ Document parsing

■ Link Analysis

■ Information Extraction

Felix Naumann | Search Engines | Sommer 2011

75

Information Extraction

■ Automatically extract structure from text

□ Annotate document using tags to identify extracted structure

□ Near-term goal: Improve ranking

□ Far-term goal: Turn search problem into database problem

■ Already some information extraction

□ HTML structure

□ XML annotations

■ Named entity recognition (NER)

□ Identify word or sequence of words that refer to something of
interest in a particular application.

□ e.g., people, companies, locations, dates, product names,
prices, drug names, etc.

□ Also: Semantic annotation (domain-specific)

76

Felix Naumann | Search Engines | Sommer 2011

Felix Naumann | Search Engines | Sommer 2011

77

Felix Naumann | Search Engines | Sommer 2011

78

Felix Naumann | Search Engines | Sommer 2011

79

Felix Naumann | Search Engines | Sommer 2011

80

Felix Naumann | Search Engines | Sommer 2011

81

Felix Naumann | Search Engines | Sommer 2011

82

Google Squared

Felix Naumann | Search Engines | Sommer 2011

83

Named Entity Recognition

■ “Fred Smith, who lives at 10 Water Street, Springfield, MA, is a
long‐time collector of tropical fish.”

□ <p><PersonName><GivenName>Fred</GivenName>
<Sn>Smith</Sn></PersonName>, who lives at
<address><Street>10 Water Street</Street>,
<City>Springfield</City>,
<State>MA</State></address>, is a long‐time collector
of tropical fish.</p>

■ Example shows semantic annotation of text using XML tags

■ Information extraction also includes document structure and more
complex features such as relationships and events

■ Uses

□ Faceted search

□ Improved browsing (clickable locations,
phone-numbers, etc.)

Felix Naumann | Search Engines | Sommer 2011

84

Named Entity Recognition

■ Rule-based

□ Uses lexicons (lists of words and phrases) that categorize
names

◊ e.g., locations, person names, organizations, etc.

□ Rules (patterns) also used to verify or find new entity names,
e.g.,

◊ “<number> <word> street” for addresses

◊ “<street address>, <city>” or “in <city>” to verify city
names

◊ “<street address>, <city>, <state>” to find new cities

◊ “<title> <name>” to find new names

■ Rules either developed manually by trial and error or using
machine learning techniques

85

Felix Naumann | Search Engines | Sommer 2011

Named Entity Recognition

■ Statistical

□ Uses a probabilistic model of the words in and around an
entity

□ Probabilities estimated using training data (manually
annotated text)

□ Hidden Markov Model (HMM) is one approach

■ HMM for Extraction

□ Resolve ambiguity (homonyms) in a word using context

◊ Like humans

◊ e.g., “marathon” is a location or a sporting event, “boston
marathon” is a specific sporting event

□ Model the context using a generative model of the sequence of
words

◊ Markov property: the next word in a sequence depends
only on a small number of the previous words

86

Felix Naumann | Search Engines | Sommer 2011

HMM for Extraction

■ Markov Model describes a process as a collection of states with
transitions between them.

□ Each transition has a probability associated with it.

□ Next state depends only on current state and transition
probabilities

■ Hidden Markov Model

□ Each state has a set of possible outputs.

□ Outputs have probabilities.

□ “Hidden”, because sequence of states not visible

◊ Output is visible, however

87

Felix Naumann | Search Engines | Sommer 2011

HMM Sentence Model

■ Each state is associated with a probability distribution over words
(the output)

88

Felix Naumann | Search Engines | Sommer 2011

HMM for Extraction

■ Could generate sentences with this model

■ To recognize named entities, find sequence of “labels” that give
highest probability for the sentence

□ Only the outputs (words) are visible or observed, states are
“hidden”.

□ “Fred Smith, who lives at 10 Water Street, Springfield, MA, is
a long‐time collector of tropical fish.”

□ <start><name><not-an-entity><location><not-an-
entity><end>

■ Viterbi algorithm used for recognition

□ Dynamic programming

89

Felix Naumann | Search Engines | Sommer 2011

Named Entity Recognition

■ Accurate recognition requires about 1 million words of training
data (1,500 news stories)

□ May be more expensive than developing rules for some
applications

■ Both rule-based and statistical approaches can achieve about 90%
effectiveness for categories such as names, locations,
organizations.

□ Others, such as product name or genes, can be much worse

90

Felix Naumann | Search Engines | Sommer 2011

Internationalization

Felix Naumann | Search Engines | Sommer 2011

91

Internationalization

■ 2/3 of the Web is in English

□ But decreasing

■ At least 50% of Web users do not
use English as their primary
language

■ Many (maybe most) search
applications have to deal with
multiple languages

□ monolingual search: search in
one language, but with many
possible languages

□ cross-language search: search
in multiple languages at the
same time

92

Felix Naumann | Search Engines | Sommer 2011

http://en.wikipedia.org/wiki/Global_Internet_usage

Internationalization

■ Many aspects of search engines are language-neutral

■ Major differences are in text processing:

□ Text encoding (converting to Unicode)

□ Tokenizing (many languages have no word separators)

□ Stemming

■ Cultural differences may also impact interface design and features
provided

93

Felix Naumann | Search Engines | Sommer 2011

Chinese “Tokenizing”

■ Auch im Deutschen

□ Donaudampfschifffahrts-
gesellschaft

Felix Naumann | Search Engines | Sommer 2011

94

