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The Indexing Process
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The Query Process
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Indexes

■ Indexes are data structures designed to make search faster

■ Text search has unique requirements, which leads to unique data 
structures

■ Most common data structure is inverted index

□ General name for a class of structures

◊ Specialized for different ranking function

□ “Inverted” because documents are associated with words, 
rather than words with documents

■ Components of search engine very dependent

□ Choice of query processing algorithm depends on retrieval 
model and dictates content of index.
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Indexes and Ranking

■ Indexes are designed to support search

□ Faster response time

□ Supports updates

■ Text search engines use a particular form of search: ranking

□ Documents are retrieved in sorted order according to a score 
computing using

◊ document representation

◊ query

◊ ranking algorithm

■ What is a reasonable abstract model for ranking?

□ Enables discussion of indexes without details of retrieval 
model (Chapter 7)
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Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing
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Abstract Model of Ranking

7

Felix Naumann | Search Engines | Summer 2011

Numerical values generated
by feature functions

Typically ignores
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High value predicts
good match

Final output: Documents
sorted descending by

document score



More Concrete Model
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/res/aquariums/chichlids.html

Only few; 
others are zero



Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing
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Inverted Index

■ Each index term is associated with an inverted 
list

□ Contains lists of documents, or lists of 
word occurrences in documents, and other 
information

□ Each entry is called a posting.

□ The part of the posting that refers to a 
specific document or location is called a 
pointer.

□ Each document in the collection is given a 
unique number.

□ Lists are usually document-ordered (sorted 
by document number).

◊ Intersect postings

■ Analogy: Book index

□ Inverted indexes usually not alphabetized

□ Hash-table instead
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Alternative indexing approaches

■ Signature files

□ Each document converted to signature (set of bits)

□ Query also converted to set of bits

□ Query processing: Comparison of bit patterns

◊ All signatures must be scanned

◊ Comparison is noisy (to keep signature small)

□ Generalization for ranked search difficult

■ k-d trees

□ Each document encoded as point in high-dimensional space

□ Same with query 

□ Data structure helps find documents closest to query

□ But: Not designed for too many dimensions
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Example “Collection”

■ Four sentences from the Wikipedia entry for tropical fish

■ S1: Tropical fish include fish found in tropical environments 
around the world, including both freshwater and salt water 
species.

■ S2: Fishkeepers often use the term tropical fish to refer only those 
requiring fresh water, with saltwater tropical fish referred to as 
marine fish.

■ S3: Tropical fish are popular aquarium fish, due to their often 
bright coloration.

■ S4: In freshwater fish, this coloration typically derives from 
iridescence, while salt water fish are generally pigmented.
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Simple Inverted 
Index

■ Each box is a posting.

■ Does not record term 
frequency or occurrence

□ Example: S1 and S2 are 
treated equally for term 
“tropical”.

■ Intersection

□ Query: “freshwater 
coloration”

□ {1,4}{3,4}

□ Sorted lists: 
O(max(m,n))

◊ Can be improved
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Inverted Index
with counts

■ Before: Binary 
information

■ Now: Term frequencies

■ Supports better 
ranking algorithms

■ Query “tropical fish”

□ S1, S2, S3

□ S2 > S1

□ S2 > S3

■ Distinguish main topics 
and secondary topics 
in documents
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Inverted Index
with positions

■ Multiple 
postings per 
document

□ Each with 
document 
number 
and word 
position

■ Supports 
proximity 
matches

■ “tropical fish” 
vs. “ ‘tropical 
fish’ ”
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Proximity Matches

■ Matching phrases or words within a window

□ e.g., “tropical fish”, or “find tropical within 5 words of fish”

■ Word positions in inverted lists make these types of query 
features efficient.
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Fields and Extents

■ Document structure is useful in search: document fields
□ Restrict search to certain fields

◊ e.g., date, from:, etc.
□ Some fields more important, even for general search

◊ e.g., title, headings
■ Options

□ Separate inverted lists for each field type
◊ One index for titles, one for headings, one for regular text
◊ Problem: General search must read multiple indexes

□ Add information about fields to postings
◊ Multiple fields need extensive representation

□ General problem
◊ <author>W. Bruce Croft</author>,

<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

◊ Search for author „Croft Donald“
● Both are author words; even appear next to each other

■ Better: Extent lists
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Extent Lists

■ An extent is a contiguous region of a document

□ Represent extents using word positions

□ Inverted list records all extents for a given field type

■ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

□ (1,4)(4,6)(7,9)

■ Query: “fish” in title
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has no title

Title of document 2
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Titel of document 4
starts late and
contains „fish“



Other Issues

■ Precomputed scores in inverted list

□ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature 
value for Document 1

□ Moves complexity from query processing (online) to indexing 
(offline)

□ Improves speed but reduces flexibility

◊ Scoring mechanism cannot be changed

◊ Phrase information is lost here

● But different data structures are possible

■ Score-ordered lists (not document-ordered)

□ Only for indexes with precomputed scores

□ Query processing engine can focus only on the top part of each 
inverted list, where the highest-scoring documents are recorded

□ Very efficient for single-word queries
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Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing
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Compression

■ Inverted lists are very large

□ e.g., 25-50% of collection for TREC collections using Indri 
search engine

□ Much higher if n-grams are indexed

■ Compression of indexes saves disk and/or memory space

□ Typically have to decompress lists to use them

□ Best compression techniques have good compression ratios
and are easy to decompress

□ Allows data to move up the memory hierarchy

□ Resuces seek time on disk

■ Disadvantage: Decompression time

■ Here: Lossless compression – no information lost

□ Lossy compression for images, audio, video with very high 
compression ratios
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Compression savings

■ Processor can process p inverted list postings per second

■ Memory system can supply processor with m postings per second

■ Number of postings processed each second: min(m, p). 

□ If p > m, the processor will spend some of its time waiting for 
postings to arrive from memory. 

□ If m > p, the memory system will sometimes be idle.

■ Compression ratio r, decompression factor d

□ Memory supplies rm postings per second

□ Processor processes dp postings per second

□ Number of postings processed each second: min(rm, dp). 

■ No compression: r = d = 1

■ Reasonable: r > 1 and d < 1

□ Compression useful only if p > m

□ Ideal: rm = dp
Felix Naumann | Search Engines | Summer 2011
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Compression

■ Basic idea: Common data elements use short codes while 
uncommon data elements use longer codes

■ Inverted lists are lists of numbers

□ Example: coding numbers

◊ Number sequence: 0, 1, 0, 3, 0, 2, 0

◊ Possible encoding (2 bits): 00 01 00 10 00 11 00

◊ Encode 0 using a single 0: 0 01 0 10 0 11 0

◊ Only 10 bits, but looks like: 0 01 01 0 0 11 0

◊ which encodes: 0, 1, 1, 0, 0, 2, 0

● Ooops

◊ Better: Unambiguous code

● 0 101 0 111 0 110 0
● 2-bit encoding was also unambiguous
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Number Code

0 0

1 101

2 110

3 111



Delta Encoding

■ Entropy measures predictability of input

■ Word count data is good candidate for compression

□ many small numbers and few larger numbers

□ encode small numbers with small codes

■ Document numbers are less predictable

□ Larger documents occur more often in index

□ Not large effect

■ Idea: Differences between numbers in an ordered list are smaller 
and more predictable

■ Delta encoding: Encode differences between document numbers 
(d-gaps)
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Delta Encoding

■ Inverted list (without counts)

□ 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

■ Differences between adjacent numbers (d-gaps)

□ 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

□ Advantage: Ordered list of (large) numbers turns into list of 
small numbers

■ Differences for a high-frequency word are easier to compress:

□ 1, 1, 2, 1, 5, 1, 4, 1, 1, 3, ... 

■ Differences for a low-frequency word are large:

□ 109, 3766, 453, 1867, 992, ...

□ Bad: Large numbers

□ Nice: List is short
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Bit-Aligned Codes

■ Breaks between encoded numbers can occur after any bit position

□ Byte-aligned are more favorable to certain operating sytems

■ Goal: Small numbers receive small code values

■ Unary code

□ Encode k by k 1s followed by 0

□ 0 at end makes code unambiguous

■ Others: Elias-γ and Elias-δ
Felix Naumann | Search Engines | Summer 2011
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Unary and Binary Codes

■ Unary is very efficient for small numbers such as 0 and 1, but 
quickly becomes very expensive

□ 1023 can be represented in 10 binary bits, but requires 1024 
bits in unary

■ Binary is more efficient for large numbers, but it may be 
ambiguous

□ Not useful to encode 
small numbers
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Elias-γ Code

■ To encode a number k, compute

□ kd is number of binary digits

□ kr is k after removing the leftmost 1 of its binary encoding

■ Idea: Encode kd as unary and kr as binary (in kd binary digits)

□ Unary part tells us how many binary digits to expect
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Elias-δ Code

■ Elias-γ code uses no more bits than unary, many fewer for k > 2

□ 1023 takes 19 bits instead of 1024 bits using unary

■ In general, takes 2 log2k +1 bits

□ log2k +1 for unary part

□ log2k for binary part

■ To improve coding of large numbers, use Elias-δ code

□ Instead of encoding kd in unary, we encode kd + 1 
using Elias-γ

□ Takes approximately 2 log2 log2 k + log2 k bits
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Elias-δ Code

■ Split kd into:

□ encode kdd in unary, kdr in binary, and kr in binary

■ Sacrifices efficiency for low numbers for smaller encodings of large 
numbers

□ Numbers larger than 16 require same space as Elias-γ

□ Number larger than 32 require less space
Felix Naumann | Search Engines | Summer 2011
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Byte-Aligned Codes

■ Variable-length bit encodings can be a problem on processors that 
process bytes

■ v-byte is a popular byte-aligned code

□ Similar to Unicode UTF-8

■ Short codes for small numbers

□ Shortest v-byte code is 1 byte

◊ 8 times longer than Elias-γ for number 1

■ Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0 
otherwise

■ Byte-aligned codes compress and decompress faster
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V-Byte Encoding

32

Felix Naumann | Search Engines | Summer 2011

High bit of
last byte



Compression Example

■ Original inverted list with positions (docID, position)

□ (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)

■ Group positions for each document (docID, count, [positions]):

□ (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])

□ Count makes list decipherable even without brackets

◊ 1001,2,1,7,1002,3,6,17,197,1003,1,1

■ Delta encode document numbers and positions to make numbers 
even smaller:

□ (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])

□ Count cannot be delta-encoded.

■ Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:

□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81

□ 13 Bytes for entire list
Felix Naumann | Search Engines | Summer 2011
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Skipping 

■ Search involves comparison of inverted lists of different lengths 
(intersection)

■ Can be very inefficient (for 2-word queries)

□ Like merge join algorithm (two cursors)

□ Reads almost entire lists of both keywords

◊ Many millions

■ Example: “animal jaguar”

□ animal: 300 million pages; jaguar 1 million pages

□ 99% of the time spent processing the 299 million pages that 
contain animal but not jaguar.

■ If da < dj: Repeatedly skip ahead k documents for animal
until da ≥ dj

□ Then search linearly

■ Determine k using sample queries (100 byte is typical)

Felix Naumann | Search Engines | Summer 2011
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Skip Pointers

■ Compression makes skipping difficult

□ Variable size, only d-gaps stored

■ Skip pointers are additional data structure to support skipping

■ A skip pointer (d, p) contains a document number d and a byte (or 
bit) position p

□ Means there is an inverted list posting that starts at position 
p, and the posting before it was for document d

Felix Naumann | Search Engines | Summer 2011
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Skip Pointers - Example

■ Inverted list

□ 5, 11, 17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104, 
119

■ D-gaps

□ 5, 6, 6, 4, 5, 9, 2, 1, 8, 3, 3, 1, 5, 23, 9, 2, 3, 7, 3, 15

■ Skip pointers

□ (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)

■ Decode using skip pointer (34,6)

□ Move to position 6 in d-gaps list (number 2)

□ Add 34 to 2 = document number 36

■ Find document number 80

□ Move along skip pointers until (89,15), because 52 > 80 > 89

□ Start decoding at position 12: 

◊ 52 + 5 = 57

◊ 57 + 23 = 80

■ Exercise: Find document 85

Felix Naumann | Search Engines | Summer 2011
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Auxiliary Structures

■ Inverted lists usually stored together in a single file for efficiency.

□ Inverted file

□ Single file per index term is space inefficient.

■ Vocabulary or lexicon

□ Contains a lookup table from index terms to the byte offset of 
the inverted list in the inverted file

□ Either hash table in memory or B-tree for larger vocabularies

■ Term statistics stored at start of inverted lists

■ Collection statistics stored in separate file

■ Separate system to convert document IDs to URLs, titles, 
snippets, etc.

□ E.g. BigTable

Felix Naumann | Search Engines | Summer 2011
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Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing
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Index Construction

■ Simple in-memory indexer for simple inverted list

□ No positional information, no count information

Felix Naumann | Search Engines | Summer 2011
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Merging

■ Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.

2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial 
indexes, which are merged.

■ Partial lists must be designed so they can be easily merged in 
small pieces

□ By definition, no two partial indexes can be in memory 
simultaneously.

□ Solution: Store in alphabetical order

Felix Naumann | Search Engines | Summer 2011
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Merging

■ Can be generalized to merge many partial lists at once

■ Documents may have to be renumbered.

■ Minimum space requirement: 
two words, one posting, some file pointers

□ In practice: Large chunks in memory

Felix Naumann | Search Engines | Summer 2011
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Distributed Indexing

■ Distributed processing driven by need to index and analyze huge 
amounts of data (i.e., the Web)
□ Fast and increasing growth of Web
□ Not just search engines but also applications that analyze the 

Web.
■ Large numbers of inexpensive servers used rather than larger, more 

expensive machines
□ Smaller machines are sold more often
□ Large machines do not develop economy of scale
□ Disadvantages

◊ Small servers fail more often
◊ Among many servers, the likelihood that one fails increases.
◊ Difficult to program: Programmers trained for single-threaded 

applications, not for multi-threaded, multiprocessor, 
networked applications.
● Some help: RPC, CORBA, Java RMI, SOAP, Hadoop
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Data Placement – Example

■ Key problem: Place data efficiently among multiple servers / disks
■ Given a large text file that contains data about credit card 

transactions
□ Each line of the file contains a credit card number and an amount 

of money.
□ Task: Determine the sum of transactions for each unique credit 

card number.
■ Could use hash table – hash the credit card number

□ But: Memory problems
■ Same task, but file is sorted by credit card numbers

□ Aggregating is simple with sorted file
■ Similar with distributed approach

□ Distribute small (random) batches – but how to combine?
□ Thus: Careful distribution, so that all transactions of one card end 

up in same batch: Sorting
□ Sorting and placement are crucial

Felix Naumann | Search Engines | Summer 2011
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MapReduce

■ MapReduce is a distributed programming 
framework/paradigm/tool designed for indexing and analysis tasks

□ Focus on data placement and distribution

■ Functional languages

□ Mapper

◊ Generally, transforms a list of items into another list of 
items of the same length

□ Reducer

◊ Transforms a list of items into a single item

■ Definitions for MapReduce not so strict in terms of number of 
outputs

■ Many mapper and reducer tasks on a cluster of machines

Felix Naumann | Search Engines | Summer 2011
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MapReduce algorithms on Hadoop

■ http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html
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MapReduce

■ Basic process

□ Map stage which transforms data records into pairs

◊ each with a key and a value

□ Shuffle uses a hash function so that all pairs with the same 
key end up next to each other and on the same machine

◊ Not implemented by developer

□ Reduce stage processes records in batches, where all pairs 
with the same key are processed at the same time

■ Idempotence of Mapper and Reducer provides fault tolerance

□ Multiple operations on same input gives same output

□ In case of hardware failure, that set of tasks is performed 
again (on a different machine)

■ Backup processes replicate results of slowest machines
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MapReduce
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Credit Card Example
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Indexing Example
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Updates: Result Merging

■ Collections of text grow and change

■ Index merging is a good strategy for handling updates when they 
come in large batches

□ Inefficient for small updates: Entire index must be written to 
disk each time.

■ Result merging for small updates: Create separate index for new 
documents, merge results from both searches

□ Separate index in memory, thus fast to update and search

■ Deletions handled using delete list

□ Before showing result, search engine verifies that no result 
element is on delete list.

■ Modifications done by insert and delete

□ Put old version on delete list

□ Add new version to new documents index

Felix Naumann | Search Engines | Summer 2011
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Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing
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Query Processing

■ Document-at-a-time

□ Calculates complete scores for documents by processing all 
term lists, one document at a time

■ Term-at-a-time

□ Accumulates scores for documents by processing term lists 
one at a time

■ Both approaches have optimization techniques that significantly 
reduce time required to generate scores
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Document-At-A-Time

■ Query: salt water tropical

■ Inverted list with word counts

■ Score: Sum of word counts

■ One step per document

Felix Naumann | Search Engines | Summer 2011
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Document-At-A-Time
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by document number
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Term-At-A-Time

■ Query: salt water tropical

■ Accumulators 
accumulate 
scores for each 
document

■ One step per query
term
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Term-At-A-Time
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Optimization Techniques

■ Term-at-a-time uses more memory for accumulators, but accesses 
disk more efficiently.

■ Two classes of optimization

□ Read less data from inverted lists

◊ e.g., skip lists

◊ Better for simple feature functions

□ Calculate scores for fewer documents

◊ e.g., conjunctive processing

◊ Better for complex feature functions
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List skipping: 
Read less data from inverted lists

■ n bytes in list, skip pointers after each c bytes, pointer are k long
■ Read entire list: O(n)
■ Jumping through list: O(kn/c) = O(n)

□ But: If c = 100 and k = 4 we read just 2.5% of total data.
■ c should not be arbitrarily large: Need to find p postings

□ n/c intervals; posting is halfway into interval: pc/2
□ Total: kn/c + pc/2

◊ Assuming p << n/c (otherwise multiple postings within interval)
□ Find optimal c using previous queries

■ In reality c > 100.000 to observe any improvement
□ Disks perform poorly at jumping to arbitrary positions

■ And: Skipping reduces decompression load

Felix Naumann | Search Engines | Summer 2011
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Conjunctive processing:
Calculate scores for fewer documents

■ All query terms need to be present in result documents

□ Default for most search engines

□ Not usful for very long queries (plagiarism)

■ Optimizes performance and effectiveness

■ Especially helpful with query terms of different frequency

■ Can be used for term-at-a-time and document-at-a-time
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Term-at-a-Time



Conjunctive 
Document-at-a-Time
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Not guaranteed to 
contain all terms, 

but good candidate

Try to skip each list 
to that document. 
If fails, use next 

largest document.
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are sorted by size



Threshold Methods

■ Threshold methods use limit of top-ranked documents needed (k) 
to optimize query processing

□ For most applications, k is small

■ For any query, there is a minimum score that each document 
needs to reach before it can be shown to the user.

□ Score of the kth-highest scoring document

□ Gives threshold τ

□ But: Yet unknown

■ Optimization methods estimate τ′ to ignore documents

□ τ′ ≤ τ for safety

□ For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for τ′ 

□ For term-at-a-time, have to use kth-largest score in the 
accumulator table
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Threshold Methods – MaxScore

■ MaxScore method compares the maximum score that remaining 
documents could have to τ′.

□ τ′ is lower bound.

□ Safe optimization: Ranking will be same without optimization

■ Indexer computes μtree

□ Maximum score for any document containing just “tree”

■ Assume k = 3, τ′ is lowest score after first three docs

■ Likely that τ′ > μtree

□ τ′ is the score of a document that contains both query terms

■ Can safely skip over all gray postings

■ Works for non-conjunctive processing
Felix Naumann | Search Engines | Summer 2011
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Early termination of query processing

■ Term-at-a-time 

□ Ignore high-frequency word lists in

◊ Similar to stop word lists

□ Ignore all terms above some constant

◊ For queries with very many terms

◊ Later terms only change the ranking slightly

■ Document-at-a-time

□ Ignore documents at end of lists

□ Works well only if documents are sorted by quality

■ In general, early termination is an unsafe optimization

□ But: “To be or not to be” is immune to other optimizations, 
because it has very long index lists.

□ Thus: Early termination is only choice
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List ordering

■ In general: Document IDs are assigned randomly to web pages

□ Best documents can be at end of lists

□ Assignment is unused degree of freedom

■ Order inverted lists by quality metric (e.g., PageRank) or by 
partial score

□ Metric independent of query

□ Can compute upper bounds more easily

■ Order inverted lists by partial score

□ As for one-word queries

□ Works well for term-at-a-time, but read only partial lists until 
satisfied.

■ Makes unsafe (and fast) optimizations more likely to produce good 
documents
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Distributed Evaluation

■ Basic process

□ All queries sent to a director machine

□ Director then sends messages to many index servers

□ Each index server does some portion of the query processing

□ Director organizes the results and returns them to the user

■ Two main approaches

□ Document distribution

◊ by far the most popular

□ Term distribution

◊ Much network traffic
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Distributed Evaluation

■ Document distribution

□ Each index server acts as a search engine for a small fraction 
of the total collection

□ Director sends a copy of the query to each of the index 
servers, each of which returns the top-k results

□ Results are merged into a single ranked list by the director

■ Collection statistics should be shared for effective ranking
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Distributed Evaluation

■ Term distribution

□ Single index is built for the whole cluster of machines

□ Each inverted list in that index is then assigned to one index 
server

◊ In most cases the data to process a query is not stored on 
a single machine

□ One of the index servers is chosen to process the query

◊ Usually the one holding the longest inverted list

□ Other index servers send information to that server

□ Final results sent to director

■ Disk seek time for k terms and n index servers

□ Document distribution: O(kn)

□ Term distribution: O(k)
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Caching

■ Insight: Query distributions similar to Zipf

□ About ½ of queries each day are unique, but some are very 
popular

■ Caching can significantly improve effectiveness

□ Cache popular query results

□ Cache common inverted lists

■ Inverted list caching can help with unique queries

□ And not only one-word queries

■ Cache must be refreshed to prevent stale data
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