
Search Engines
Chapter 5 – Ranking with Indexes

12.5.2011
Felix Naumann

The Indexing Process

Felix Naumann | Search Engines | Summer 2011

2

Document
data store

Text Acquisition Index Creation

Text Transformation

Index
(inverted index)

Identifies and
stores documents
for indexing

Transforms
documents into index
terms or features

Takes index terms and
creates data structures
(indexes) to support fast
searching

Text and metadata for
all documents

The Query Process

Felix Naumann | Search Engines | Summer 2011

3

Document
data store

User Interaction Ranking
(retrieval model)

Evaluation

Index

Log data

Supports creation and
refinement of query,
display of results

Monitors and measures
effectiveness and efficiency
(primarily offline)

Uses query and indexes
to generate ranked list
of documents

Indexes

■ Indexes are data structures designed to make search faster

■ Text search has unique requirements, which leads to unique data
structures

■ Most common data structure is inverted index

□ General name for a class of structures

◊ Specialized for different ranking function

□ “Inverted” because documents are associated with words,
rather than words with documents

■ Components of search engine very dependent

□ Choice of query processing algorithm depends on retrieval
model and dictates content of index.

4

Felix Naumann | Search Engines | Summer 2011

Indexes and Ranking

■ Indexes are designed to support search

□ Faster response time

□ Supports updates

■ Text search engines use a particular form of search: ranking

□ Documents are retrieved in sorted order according to a score
computing using

◊ document representation

◊ query

◊ ranking algorithm

■ What is a reasonable abstract model for ranking?

□ Enables discussion of indexes without details of retrieval
model (Chapter 7)

5

Felix Naumann | Search Engines | Summer 2011

Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing

Felix Naumann | Search Engines | Summer 2011

6

Abstract Model of Ranking

7

Felix Naumann | Search Engines | Summer 2011

Numerical values generated
by feature functions

Typically ignores
very many features

High value predicts
good match

Final output: Documents
sorted descending by

document score

More Concrete Model

8

Felix Naumann | Search Engines | Summer 2011

http://www.howard.k12.md.us
/res/aquariums/chichlids.html

Only few;
others are zero

Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing

Felix Naumann | Search Engines | Summer 2011

9

Inverted Index

■ Each index term is associated with an inverted
list

□ Contains lists of documents, or lists of
word occurrences in documents, and other
information

□ Each entry is called a posting.

□ The part of the posting that refers to a
specific document or location is called a
pointer.

□ Each document in the collection is given a
unique number.

□ Lists are usually document-ordered (sorted
by document number).

◊ Intersect postings

■ Analogy: Book index

□ Inverted indexes usually not alphabetized

□ Hash-table instead

10

Felix Naumann | Search Engines | Summer 2011

Alternative indexing approaches

■ Signature files

□ Each document converted to signature (set of bits)

□ Query also converted to set of bits

□ Query processing: Comparison of bit patterns

◊ All signatures must be scanned

◊ Comparison is noisy (to keep signature small)

□ Generalization for ranked search difficult

■ k-d trees

□ Each document encoded as point in high-dimensional space

□ Same with query

□ Data structure helps find documents closest to query

□ But: Not designed for too many dimensions

Felix Naumann | Search Engines | Summer 2011

11

Example “Collection”

■ Four sentences from the Wikipedia entry for tropical fish

■ S1: Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

■ S2: Fishkeepers often use the term tropical fish to refer only those
requiring fresh water, with saltwater tropical fish referred to as
marine fish.

■ S3: Tropical fish are popular aquarium fish, due to their often
bright coloration.

■ S4: In freshwater fish, this coloration typically derives from
iridescence, while salt water fish are generally pigmented.

Felix Naumann | Search Engines | Summer 2011

12

Simple Inverted
Index

■ Each box is a posting.

■ Does not record term
frequency or occurrence

□ Example: S1 and S2 are
treated equally for term
“tropical”.

■ Intersection

□ Query: “freshwater
coloration”

□ {1,4}{3,4}

□ Sorted lists:
O(max(m,n))

◊ Can be improved

Felix Naumann | Search Engines | Summer 2011

13

Inverted Index
with counts

■ Before: Binary
information

■ Now: Term frequencies

■ Supports better
ranking algorithms

■ Query “tropical fish”

□ S1, S2, S3

□ S2 > S1

□ S2 > S3

■ Distinguish main topics
and secondary topics
in documents

14

Felix Naumann | Search Engines | Summer 2011

Inverted Index
with positions

■ Multiple
postings per
document

□ Each with
document
number
and word
position

■ Supports
proximity
matches

■ “tropical fish”
vs. “ ‘tropical
fish’ ”

15

Felix Naumann | Search Engines | Summer 2011

Proximity Matches

■ Matching phrases or words within a window

□ e.g., “tropical fish”, or “find tropical within 5 words of fish”

■ Word positions in inverted lists make these types of query
features efficient.

Felix Naumann | Search Engines | Summer 2011

16

Fields and Extents

■ Document structure is useful in search: document fields
□ Restrict search to certain fields

◊ e.g., date, from:, etc.
□ Some fields more important, even for general search

◊ e.g., title, headings
■ Options

□ Separate inverted lists for each field type
◊ One index for titles, one for headings, one for regular text
◊ Problem: General search must read multiple indexes

□ Add information about fields to postings
◊ Multiple fields need extensive representation

□ General problem
◊ <author>W. Bruce Croft</author>,

<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

◊ Search for author „Croft Donald“
● Both are author words; even appear next to each other

■ Better: Extent lists

Felix Naumann | Search Engines | Summer 2011

17

Extent Lists

■ An extent is a contiguous region of a document

□ Represent extents using word positions

□ Inverted list records all extents for a given field type

■ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

□ (1,4)(4,6)(7,9)

■ Query: “fish” in title

Felix Naumann | Search Engines | Summer 2011

18

extent list
Document 3
has no title

Title of document 2
does not contain „fish“

Titel of document 4
starts late and
contains „fish“

Other Issues

■ Precomputed scores in inverted list

□ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature
value for Document 1

□ Moves complexity from query processing (online) to indexing
(offline)

□ Improves speed but reduces flexibility

◊ Scoring mechanism cannot be changed

◊ Phrase information is lost here

● But different data structures are possible

■ Score-ordered lists (not document-ordered)

□ Only for indexes with precomputed scores

□ Query processing engine can focus only on the top part of each
inverted list, where the highest-scoring documents are recorded

□ Very efficient for single-word queries

Felix Naumann | Search Engines | Summer 2011

19

Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing

Felix Naumann | Search Engines | Summer 2011

20

Compression

■ Inverted lists are very large

□ e.g., 25-50% of collection for TREC collections using Indri
search engine

□ Much higher if n-grams are indexed

■ Compression of indexes saves disk and/or memory space

□ Typically have to decompress lists to use them

□ Best compression techniques have good compression ratios
and are easy to decompress

□ Allows data to move up the memory hierarchy

□ Resuces seek time on disk

■ Disadvantage: Decompression time

■ Here: Lossless compression – no information lost

□ Lossy compression for images, audio, video with very high
compression ratios

Felix Naumann | Search Engines | Summer 2011

21

Compression savings

■ Processor can process p inverted list postings per second

■ Memory system can supply processor with m postings per second

■ Number of postings processed each second: min(m, p).

□ If p > m, the processor will spend some of its time waiting for
postings to arrive from memory.

□ If m > p, the memory system will sometimes be idle.

■ Compression ratio r, decompression factor d

□ Memory supplies rm postings per second

□ Processor processes dp postings per second

□ Number of postings processed each second: min(rm, dp).

■ No compression: r = d = 1

■ Reasonable: r > 1 and d < 1

□ Compression useful only if p > m

□ Ideal: rm = dp
Felix Naumann | Search Engines | Summer 2011

22

Compression

■ Basic idea: Common data elements use short codes while
uncommon data elements use longer codes

■ Inverted lists are lists of numbers

□ Example: coding numbers

◊ Number sequence: 0, 1, 0, 3, 0, 2, 0

◊ Possible encoding (2 bits): 00 01 00 10 00 11 00

◊ Encode 0 using a single 0: 0 01 0 10 0 11 0

◊ Only 10 bits, but looks like: 0 01 01 0 0 11 0

◊ which encodes: 0, 1, 1, 0, 0, 2, 0

● Ooops

◊ Better: Unambiguous code

● 0 101 0 111 0 110 0
● 2-bit encoding was also unambiguous

Felix Naumann | Search Engines | Summer 2011

23

Number Code

0 0

1 101

2 110

3 111

Delta Encoding

■ Entropy measures predictability of input

■ Word count data is good candidate for compression

□ many small numbers and few larger numbers

□ encode small numbers with small codes

■ Document numbers are less predictable

□ Larger documents occur more often in index

□ Not large effect

■ Idea: Differences between numbers in an ordered list are smaller
and more predictable

■ Delta encoding: Encode differences between document numbers
(d-gaps)

Felix Naumann | Search Engines | Summer 2011

24

Delta Encoding

■ Inverted list (without counts)

□ 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

■ Differences between adjacent numbers (d-gaps)

□ 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

□ Advantage: Ordered list of (large) numbers turns into list of
small numbers

■ Differences for a high-frequency word are easier to compress:

□ 1, 1, 2, 1, 5, 1, 4, 1, 1, 3, ...

■ Differences for a low-frequency word are large:

□ 109, 3766, 453, 1867, 992, ...

□ Bad: Large numbers

□ Nice: List is short

Felix Naumann | Search Engines | Summer 2011

25

Bit-Aligned Codes

■ Breaks between encoded numbers can occur after any bit position

□ Byte-aligned are more favorable to certain operating sytems

■ Goal: Small numbers receive small code values

■ Unary code

□ Encode k by k 1s followed by 0

□ 0 at end makes code unambiguous

■ Others: Elias-γ and Elias-δ
Felix Naumann | Search Engines | Summer 2011

26

Unary and Binary Codes

■ Unary is very efficient for small numbers such as 0 and 1, but
quickly becomes very expensive

□ 1023 can be represented in 10 binary bits, but requires 1024
bits in unary

■ Binary is more efficient for large numbers, but it may be
ambiguous

□ Not useful to encode
small numbers

Felix Naumann | Search Engines | Summer 2011

27

Elias-γ Code

■ To encode a number k, compute

□ kd is number of binary digits

□ kr is k after removing the leftmost 1 of its binary encoding

■ Idea: Encode kd as unary and kr as binary (in kd binary digits)

□ Unary part tells us how many binary digits to expect

Felix Naumann | Search Engines | Summer 2011

28

 kkd 2log  k
r kk 2log2

Elias-δ Code

■ Elias-γ code uses no more bits than unary, many fewer for k > 2

□ 1023 takes 19 bits instead of 1024 bits using unary

■ In general, takes 2 log2k +1 bits

□ log2k +1 for unary part

□ log2k for binary part

■ To improve coding of large numbers, use Elias-δ code

□ Instead of encoding kd in unary, we encode kd + 1
using Elias-γ

□ Takes approximately 2 log2 log2 k + log2 k bits

Felix Naumann | Search Engines | Summer 2011

29

Elias-δ Code

■ Split kd into:

□ encode kdd in unary, kdr in binary, and kr in binary

■ Sacrifices efficiency for low numbers for smaller encodings of large
numbers

□ Numbers larger than 16 require same space as Elias-γ

□ Number larger than 32 require less space
Felix Naumann | Search Engines | Summer 2011

30

 )1(log2  ddd kk  )1(log22  dk
ddr kk

Byte-Aligned Codes

■ Variable-length bit encodings can be a problem on processors that
process bytes

■ v-byte is a popular byte-aligned code

□ Similar to Unicode UTF-8

■ Short codes for small numbers

□ Shortest v-byte code is 1 byte

◊ 8 times longer than Elias-γ for number 1

■ Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0
otherwise

■ Byte-aligned codes compress and decompress faster

Felix Naumann | Search Engines | Summer 2011

31

V-Byte Encoding

32

Felix Naumann | Search Engines | Summer 2011

High bit of
last byte

Compression Example

■ Original inverted list with positions (docID, position)

□ (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)

■ Group positions for each document (docID, count, [positions]):

□ (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])

□ Count makes list decipherable even without brackets

◊ 1001,2,1,7,1002,3,6,17,197,1003,1,1

■ Delta encode document numbers and positions to make numbers
even smaller:

□ (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])

□ Count cannot be delta-encoded.

■ Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:

□ 81 82 81 86 81 82 86 8B 01 B4 81 81 81

□ 13 Bytes for entire list
Felix Naumann | Search Engines | Summer 2011

33

Skipping

■ Search involves comparison of inverted lists of different lengths
(intersection)

■ Can be very inefficient (for 2-word queries)

□ Like merge join algorithm (two cursors)

□ Reads almost entire lists of both keywords

◊ Many millions

■ Example: “animal jaguar”

□ animal: 300 million pages; jaguar 1 million pages

□ 99% of the time spent processing the 299 million pages that
contain animal but not jaguar.

■ If da < dj: Repeatedly skip ahead k documents for animal
until da ≥ dj

□ Then search linearly

■ Determine k using sample queries (100 byte is typical)

Felix Naumann | Search Engines | Summer 2011

34

Skip Pointers

■ Compression makes skipping difficult

□ Variable size, only d-gaps stored

■ Skip pointers are additional data structure to support skipping

■ A skip pointer (d, p) contains a document number d and a byte (or
bit) position p

□ Means there is an inverted list posting that starts at position
p, and the posting before it was for document d

Felix Naumann | Search Engines | Summer 2011

35

skip pointers
Inverted list

Skip Pointers - Example

■ Inverted list

□ 5, 11, 17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104,
119

■ D-gaps

□ 5, 6, 6, 4, 5, 9, 2, 1, 8, 3, 3, 1, 5, 23, 9, 2, 3, 7, 3, 15

■ Skip pointers

□ (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)

■ Decode using skip pointer (34,6)

□ Move to position 6 in d-gaps list (number 2)

□ Add 34 to 2 = document number 36

■ Find document number 80

□ Move along skip pointers until (89,15), because 52 > 80 > 89

□ Start decoding at position 12:

◊ 52 + 5 = 57

◊ 57 + 23 = 80

■ Exercise: Find document 85

Felix Naumann | Search Engines | Summer 2011

36

Auxiliary Structures

■ Inverted lists usually stored together in a single file for efficiency.

□ Inverted file

□ Single file per index term is space inefficient.

■ Vocabulary or lexicon

□ Contains a lookup table from index terms to the byte offset of
the inverted list in the inverted file

□ Either hash table in memory or B-tree for larger vocabularies

■ Term statistics stored at start of inverted lists

■ Collection statistics stored in separate file

■ Separate system to convert document IDs to URLs, titles,
snippets, etc.

□ E.g. BigTable

Felix Naumann | Search Engines | Summer 2011

37

Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing

Felix Naumann | Search Engines | Summer 2011

38

Index Construction

■ Simple in-memory indexer for simple inverted list

□ No positional information, no count information

Felix Naumann | Search Engines | Summer 2011

39

Two problems
• RAM-based
• Sequential execution

t

t

t

Merging

■ Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.

2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial
indexes, which are merged.

■ Partial lists must be designed so they can be easily merged in
small pieces

□ By definition, no two partial indexes can be in memory
simultaneously.

□ Solution: Store in alphabetical order

Felix Naumann | Search Engines | Summer 2011

40

Merging

■ Can be generalized to merge many partial lists at once

■ Documents may have to be renumbered.

■ Minimum space requirement:
two words, one posting, some file pointers

□ In practice: Large chunks in memory

Felix Naumann | Search Engines | Summer 2011

41

Distributed Indexing

■ Distributed processing driven by need to index and analyze huge
amounts of data (i.e., the Web)
□ Fast and increasing growth of Web
□ Not just search engines but also applications that analyze the

Web.
■ Large numbers of inexpensive servers used rather than larger, more

expensive machines
□ Smaller machines are sold more often
□ Large machines do not develop economy of scale
□ Disadvantages

◊ Small servers fail more often
◊ Among many servers, the likelihood that one fails increases.
◊ Difficult to program: Programmers trained for single-threaded

applications, not for multi-threaded, multiprocessor,
networked applications.
● Some help: RPC, CORBA, Java RMI, SOAP, Hadoop

Felix Naumann | Search Engines | Summer 2011

42

Data Placement – Example

■ Key problem: Place data efficiently among multiple servers / disks
■ Given a large text file that contains data about credit card

transactions
□ Each line of the file contains a credit card number and an amount

of money.
□ Task: Determine the sum of transactions for each unique credit

card number.
■ Could use hash table – hash the credit card number

□ But: Memory problems
■ Same task, but file is sorted by credit card numbers

□ Aggregating is simple with sorted file
■ Similar with distributed approach

□ Distribute small (random) batches – but how to combine?
□ Thus: Careful distribution, so that all transactions of one card end

up in same batch: Sorting
□ Sorting and placement are crucial

Felix Naumann | Search Engines | Summer 2011

43

MapReduce

■ MapReduce is a distributed programming
framework/paradigm/tool designed for indexing and analysis tasks

□ Focus on data placement and distribution

■ Functional languages

□ Mapper

◊ Generally, transforms a list of items into another list of
items of the same length

□ Reducer

◊ Transforms a list of items into a single item

■ Definitions for MapReduce not so strict in terms of number of
outputs

■ Many mapper and reducer tasks on a cluster of machines

Felix Naumann | Search Engines | Summer 2011

44

MapReduce algorithms on Hadoop

■ http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html

Felix Naumann | Search Engines | Summer 2011

45

MapReduce

■ Basic process

□ Map stage which transforms data records into pairs

◊ each with a key and a value

□ Shuffle uses a hash function so that all pairs with the same
key end up next to each other and on the same machine

◊ Not implemented by developer

□ Reduce stage processes records in batches, where all pairs
with the same key are processed at the same time

■ Idempotence of Mapper and Reducer provides fault tolerance

□ Multiple operations on same input gives same output

□ In case of hardware failure, that set of tasks is performed
again (on a different machine)

■ Backup processes replicate results of slowest machines

Felix Naumann | Search Engines | Summer 2011

46

MapReduce

47

Felix Naumann | Search Engines | Summer 2011

Credit Card Example

48

Felix Naumann | Search Engines | Summer 2011

Indexing Example

49

Felix Naumann | Search Engines | Summer 2011

e.g. compression

Chapter 4

values

Updates: Result Merging

■ Collections of text grow and change

■ Index merging is a good strategy for handling updates when they
come in large batches

□ Inefficient for small updates: Entire index must be written to
disk each time.

■ Result merging for small updates: Create separate index for new
documents, merge results from both searches

□ Separate index in memory, thus fast to update and search

■ Deletions handled using delete list

□ Before showing result, search engine verifies that no result
element is on delete list.

■ Modifications done by insert and delete

□ Put old version on delete list

□ Add new version to new documents index

Felix Naumann | Search Engines | Summer 2011

50

Overview

■ Abstract model of ranking

■ Inverted indexes

■ Compression

■ Index construction

■ Query Processing

Felix Naumann | Search Engines | Summer 2011

51

Query Processing

■ Document-at-a-time

□ Calculates complete scores for documents by processing all
term lists, one document at a time

■ Term-at-a-time

□ Accumulates scores for documents by processing term lists
one at a time

■ Both approaches have optimization techniques that significantly
reduce time required to generate scores

Felix Naumann | Search Engines | Summer 2011

52

Document-At-A-Time

■ Query: salt water tropical

■ Inverted list with word counts

■ Score: Sum of word counts

■ One step per document

Felix Naumann | Search Engines | Summer 2011

53

Step 1 Step 2 Step 3 Step 4

Document-At-A-Time

54

Felix Naumann | Search Engines | Summer 2011

Q Query
I Index
f, g sets of feature functions
k number of documents to retrieve

Move cursor (lists are sorted
by document number

Should hold only
k documents

Should be restricted to documents
that appear at least in one list

sD  0

Term-At-A-Time

■ Query: salt water tropical

■ Accumulators
accumulate
scores for each
document

■ One step per query
term

Felix Naumann | Search Engines | Summer 2011

55

Step 1

Step 2

Step 3

Term-At-A-Time

56

Felix Naumann | Search Engines | Summer 2011

New!

High memory load

Advantage: Less disk seeking
(each list is read only once)

Optimization Techniques

■ Term-at-a-time uses more memory for accumulators, but accesses
disk more efficiently.

■ Two classes of optimization

□ Read less data from inverted lists

◊ e.g., skip lists

◊ Better for simple feature functions

□ Calculate scores for fewer documents

◊ e.g., conjunctive processing

◊ Better for complex feature functions

Felix Naumann | Search Engines | Summer 2011

57

List skipping:
Read less data from inverted lists

■ n bytes in list, skip pointers after each c bytes, pointer are k long
■ Read entire list: O(n)
■ Jumping through list: O(kn/c) = O(n)

□ But: If c = 100 and k = 4 we read just 2.5% of total data.
■ c should not be arbitrarily large: Need to find p postings

□ n/c intervals; posting is halfway into interval: pc/2
□ Total: kn/c + pc/2

◊ Assuming p << n/c (otherwise multiple postings within interval)
□ Find optimal c using previous queries

■ In reality c > 100.000 to observe any improvement
□ Disks perform poorly at jumping to arbitrary positions

■ And: Skipping reduces decompression load

Felix Naumann | Search Engines | Summer 2011

58

skip pointers
Inverted list

Conjunctive processing:
Calculate scores for fewer documents

■ All query terms need to be present in result documents

□ Default for most search engines

□ Not usful for very long queries (plagiarism)

■ Optimizes performance and effectiveness

■ Especially helpful with query terms of different frequency

■ Can be used for term-at-a-time and document-at-a-time

Felix Naumann | Search Engines | Summer 2011

59

Felix Naumann | Search Engines | Summer 2011

60

Skip ahead using
accumulator table

Runs best if lists
are sorted by size

Conjunctive
Term-at-a-Time

Conjunctive
Document-at-a-Time

Felix Naumann | Search Engines | Summer 2011

61

Get largest
document currently

pointed to.
Not guaranteed to
contain all terms,

but good candidate

Try to skip each list
to that document.
If fails, use next

largest document.

Runs best if lists
are sorted by size

Threshold Methods

■ Threshold methods use limit of top-ranked documents needed (k)
to optimize query processing

□ For most applications, k is small

■ For any query, there is a minimum score that each document
needs to reach before it can be shown to the user.

□ Score of the kth-highest scoring document

□ Gives threshold τ

□ But: Yet unknown

■ Optimization methods estimate τ′ to ignore documents

□ τ′ ≤ τ for safety

□ For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for τ′

□ For term-at-a-time, have to use kth-largest score in the
accumulator table

Felix Naumann | Search Engines | Summer 2011

62

Threshold Methods – MaxScore

■ MaxScore method compares the maximum score that remaining
documents could have to τ′.

□ τ′ is lower bound.

□ Safe optimization: Ranking will be same without optimization

■ Indexer computes μtree

□ Maximum score for any document containing just “tree”

■ Assume k = 3, τ′ is lowest score after first three docs

■ Likely that τ′ > μtree

□ τ′ is the score of a document that contains both query terms

■ Can safely skip over all gray postings

■ Works for non-conjunctive processing
Felix Naumann | Search Engines | Summer 2011

63

Early termination of query processing

■ Term-at-a-time

□ Ignore high-frequency word lists in

◊ Similar to stop word lists

□ Ignore all terms above some constant

◊ For queries with very many terms

◊ Later terms only change the ranking slightly

■ Document-at-a-time

□ Ignore documents at end of lists

□ Works well only if documents are sorted by quality

■ In general, early termination is an unsafe optimization

□ But: “To be or not to be” is immune to other optimizations,
because it has very long index lists.

□ Thus: Early termination is only choice

Felix Naumann | Search Engines | Summer 2011

64

List ordering

■ In general: Document IDs are assigned randomly to web pages

□ Best documents can be at end of lists

□ Assignment is unused degree of freedom

■ Order inverted lists by quality metric (e.g., PageRank) or by
partial score

□ Metric independent of query

□ Can compute upper bounds more easily

■ Order inverted lists by partial score

□ As for one-word queries

□ Works well for term-at-a-time, but read only partial lists until
satisfied.

■ Makes unsafe (and fast) optimizations more likely to produce good
documents

Felix Naumann | Search Engines | Summer 2011

65

Distributed Evaluation

■ Basic process

□ All queries sent to a director machine

□ Director then sends messages to many index servers

□ Each index server does some portion of the query processing

□ Director organizes the results and returns them to the user

■ Two main approaches

□ Document distribution

◊ by far the most popular

□ Term distribution

◊ Much network traffic

Felix Naumann | Search Engines | Summer 2011

68

Distributed Evaluation

■ Document distribution

□ Each index server acts as a search engine for a small fraction
of the total collection

□ Director sends a copy of the query to each of the index
servers, each of which returns the top-k results

□ Results are merged into a single ranked list by the director

■ Collection statistics should be shared for effective ranking

Felix Naumann | Search Engines | Summer 2011

69

Distributed Evaluation

■ Term distribution

□ Single index is built for the whole cluster of machines

□ Each inverted list in that index is then assigned to one index
server

◊ In most cases the data to process a query is not stored on
a single machine

□ One of the index servers is chosen to process the query

◊ Usually the one holding the longest inverted list

□ Other index servers send information to that server

□ Final results sent to director

■ Disk seek time for k terms and n index servers

□ Document distribution: O(kn)

□ Term distribution: O(k)

Felix Naumann | Search Engines | Summer 2011

70

Caching

■ Insight: Query distributions similar to Zipf

□ About ½ of queries each day are unique, but some are very
popular

■ Caching can significantly improve effectiveness

□ Cache popular query results

□ Cache common inverted lists

■ Inverted list caching can help with unique queries

□ And not only one-word queries

■ Cache must be refreshed to prevent stale data

Felix Naumann | Search Engines | Summer 2011

71

