R

R

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Search Engines
Chapter 5 — Ranking with Indexes

12.5.2011
Felix Naumann

. attner
The Indexing Process Institut

Text and metadata for
all documents

- Takes index terms and

creates data structures
Document (indexes) to support fast
data store searching

Index
(inverted index)

Identifies and Text Transformation
stores documents
for indexing

Transforms

documents into index
terms or features

Felix Naumann | Search Engines | Summer 2011

Hasso
The Query Process ﬂ Institut

Supports creation and Document Uses query and indexes

refinement of query, data store to generate ranked list
display of results of documents

Log data <]\:> Evaluation

Monitors and measures

effectiveness and efficiency
(primarily offline)

Felix Naumann | Search Engines | Summer 2011

7
Indexes Ingti?s{

m Indexes are data structures designed to make search faster

m Text search has unique requirements, which leads to unique data
structures

m Most common data structure is inverted index
0 General name for a class of structures
¢ Specialized for different ranking function

o “Inverted” because documents are associated with words,
rather than words with documents

m Components of search engine very dependent

o Choice of query processing algorithm depends on retrieval
model and dictates content of index.

Hasso
. Plattner
Indexes and Ranking w Institut

m Indexes are designed to support search
0 Faster response time
0 Supports updates
m Text search engines use a particular form of search: ranking
0 Documents are retrieved in sorted order according to a score
computing using
¢ document representation
¢ query
® ranking algorithm
m What is a reasonable abstract model for ranking?

o Enables discussion of indexes without details of retrieval
model (Chapter 7)

ﬂ Hasso
Overview institut

6

- m Abstract model of ranking
m Inverted indexes

m Compression
m Index construction
m Query Processing

Felix Naumann | Search Engines | Summer 2011

Hasso
Abstract Model of Ranking ﬂ institut

Numerical values generated

by feature functions

9.7 fish

4.2 tropical tropical fish

Query High value predicts
good match

Fred's Tropical Fish Shop is)
the best place to find 22.1 tI'OPICle fish

tropical fish at low, low /'
prices. Whether you're 8.2 seaweed

looking for a little fish or a 4.2 surfboards
big fish, we've got what you

need. We even have fake Topical Features
SeaWeed fO].' Youf ﬁshtan.k
(and little surfboards too). \

14 incominglinks

Ranking Function
Document Score

3 days since last update

Document Quality Features Typically ignores
very many features

Final output: Documents

sorted descending by
document score

Felix Naumann | Search Engines | Summer 2011

More Concrete Model

R(Q,D) = Z g:(Q) f:(D)

Hasso
Plattner
Institut

fi is a document feature function
g; i1s a query feature function

Only few;

others are zero

p fish 5.2

4.2 tropical <

_p tropical 3.4 gi

Fred's Tropical Fish Shop is)
the best place to find 22.1 tl'Oplcal fish -

» tropical fish 9.9

tropical fish at low, low /
prices. Whether you're 8.2 seaweed
4.2 surfboards

looking for a little fish or a
big fish, we've got what you
Topical Features

need. We even have fake
seaweed for your fishtank
(and little surfboards too).

chichlids 1.2
barbs 0.7
tropical fish

Topical Features Query

\ 14 incominglinks q—oo-— incoming links 1.2 /

3 update count

Document Quality Features

303.01

Document Score

» update count 0.9 http://www.howard.k12.md.us

/res/aquariums/chichlids.html

Quality Features

Felix Naumann | Search Engines | Summer 2011 o

ﬂ Hasso
Overview institut

m Abstract model of ranking
m Inverted indexes

m Compression

m Index construction

m Query Processing

Felix Naumann | Search Engines | Summer 2011

10

Inverted Index

m Each index term is associated with an inverted
list
o Contains lists of documents, or lists of

word occurrences in documents, and other
information

o Each entry is called a posting.

o The part of the posting that refers to a
specific document or location is called a
pointer.

o Each document in the collection is given a
unique number.

o Lists are usually document-ordered (sorted
by document number).

¢ Intersect postings
m Analogy: Book index
o Inverted indexes usually not alphabetized
o Hash-table instead

Felix Naumann | Search Engines | Summer 2011

Wrapper, 255
HTTP, 55, 62, 254, 389, 390, 399,
405, 406
HumMer, 366
Hyperonym, 75, 147

Identitat, 77, 275, 331
IDL, siehe Interface Definition
Language
iFuice, 366
iMap, 156
IMDB, 60
IMS, 47
Information Manifold, 263, 315
Information Retrieval, 29, 332
Informationsextraktion, 254, 255
Informationsqualitat, 202, 317, 324,
353-365, 385
in Wirtschaftswissenschaften,
354
Literatur, 367
Inklusion, 182, 185, 195, 211, 268
Integration

materialisierte, 5, 8, 86-91, 106,

107, 173, 371, 420
ontologiebasierte, 267
virtuelle, 5, 8, 86-91, 106, 173,

174, 203, 371

Integritdt

referenzielle, 319

Integritdtsbedingung, 20, 25, 68, 69,
148, 166, 263, 274, 319,
384

IntelliClean, 366

Intension, 20, 67, 74, 75, 77, 123,
184, 209, 210, 363

Interface Definition Language, 396

Interpretierbarkeit, 355

Inverse Rules Algorithm, 263

J2EE, 398, 399, 401, 407

Jaccard-Ahnlichkeit, 339

Jaro-Winkler-Ahnlichkeit, 338

Java Connector Architecture, 400,
401

JCA, siehe Java Connector
Architecture

JDBC, 55, 62, 101, 393, 400, 401,
429

Jena Framework, 315

Join, 34, 35, 69, 178, 189, 192, 199,
203, 225, 226, 237, 238,

Hasso
Plattner
Institut

244, 247, 346, 347, 415,
427

-Ketten, 242, 247

Ausfiihrungsort, 238, 240

Ausfiihrungsreihenfolge, 241,
242, 264

Equi-, 35

Inner-, 140

Match-, 366

Quter-, 36, 131, 140, 347, 350

Semi-, siehe Semi-Join

zur Datenfusion, 349

JSP, 399, 429

Kapselung, 63, 395
Kardinalitdt, 20, 69, 136, 282, 284,
307, 311, 363
KL-ONE, 314
Knappheit, 356
Komplementierung, 344, 351
Komplexitat, 89, 90, 187, 192, 208,
224, 263, 284, 311, 397
Konfliktlgsung, 36, 196
Konjunktion, 224
Konsistenz, 54, 69, 277, 328, 356,
372, 390
Kontext, 74, 77, 127, 177, 196, 276
Konzept, 64, 74, 76, 77, 117, 184,
209, 267, 272, 273, 276,
279, 282, 286, 288, 293,
313, 413
atomar, 282
Konzepthierarchie, 285, 418
Konzeptliste, 277
Kopf, siehe Datalog
Kopplung, 105
enge, 93
lose, 93, 406, 415
Korrektheit, 117, 213, 419
Korrespondenz, siehe
Wertkorrespondenz,
Anfragekorrespondenz,
115, 123, 190, 211, 289
komplexe, 189
mehrwertige, 155
objektorientierte, 195
Richtung, 186
XML-, 194
zur Schemaintegration, 119, 122
Korrespondenztypen, 185, 186
Kosten

Hasso
. . - Plattner
Alternative indexing approaches w Institut

11
m Signature files

o Each document converted to signature (set of bits)
0 Query also converted to set of bits
0 Query processing: Comparison of bit patterns
¢ All signatures must be scanned
¢ Comparison is noisy (to keep signature small)
o Generalization for ranked search difficult
m k-d trees
o Each document encoded as point in high-dimensional space
0 Same with query
0 Data structure helps find documents closest to query
o But: Not designed for too many dimensions

12

; 4 attner
Example “Collection Institut

m Four sentences from the Wikipedia entry for tropical fish

m S1: Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

m S2: Fishkeepers often use the term tropical fish to refer only those
requiring fresh water, with saltwater tropical fish referred to as
marine fish.

m S3: Tropical fish are popular aquarium fish, due to their often
bright coloration.

m S4: In freshwater fish, this coloration typically derives from
iridescence, while salt water fish are generally pigmented.

Simple Inverted T3 Hasso

Plattner

and |1 only |2 t
I n d eX aquarium pigmented
are popular
13 around refer
. - as referred
m Each box is a posting. -~ requiring
m Does not record term bright salt
frequency or occurrence coloration saltwater
derives species
o Example: S1 and S2 are due ferm
treated equally for term environments the
“tropical”. fish their
fishkeepers this
m Intersection found those
R fresh to
O Query.. fr"eshwater bt tropical
coloration from typically
0 {1’4}0{3’4} generally use
_ in water
0 Sorted lists: include while
O(max(m,n)) including with
¢ Can be improved mdi(;e;;z world
often

Felix Naumann | Search Engines | Summer 2011

14

Inverted Index
with counts

and

aquarium

are

Before: Binary around
. . as
information -~
Now: Term frequencies bright
coloration

Supports better derives
ranking algorithms due
" . . , environments
Query “tropical fish fish
O S]., SZ, S3 fishkeepers
found

n S2 > 651 fresh
5 S2 > S3 freshvx;ater
rom

Distinguish main topics generally
. in

.and secondary topics e
in documents including
iridescence

marine

often

Felix Naumann | Search Engines | Summer 201

ol | el I El R | Bl | Rl 1 (Rt | R {0l | Fou
el L e e e e L e e e | e |

Ly
—

-
—_

1:2) |2:3] [3:2] [4:2

)

[\Dl\Drhl—ll—il—\ﬂk,.[;y—l[_')H
’—‘HI—"—‘H'—‘H)—\’—‘HI—\

e

[

-
[y

=
[—

o
p—

only
pigmented
popular
refer
referred
requiring
salt
saltwater
species
term

the

their

this
those

to
tropical
typically
use
water
while
with

world

Hasso
Plattner
Institut

[UNINY | Y | T | UNY | Gy | -
>
—

e Ead B e d e A e
IR e el et | et L e e
]

[y

11:2] | 2:2] [3:1]
[1:1] [2:1] [4:1]
[4:1]

Inverted Index ﬂ Hasso

. y Plattner
with positions Institut
and marine
15 aquarium | 3,5 often |2,2 | 3,10
_ are 4,14 only
[| MUItlple around pigmented
. 2,21 popular
ostings per s
p g p both refer
document bright [3,11 referred |2,19
o Each with coloration 4,5 requiring
derives | 4,7 salt |1,16] [4,11
document due saltwater
number environments [1.8 species | 1,18
fish [1,2 |[L,4][27][2,18][2,23] term
and word 132 | [36 |[43] the 2.4
position their
fishkeepers this
u Supports found |1,5 those |[2,11
proximity fresh to [28][2,20][338 |
freshwater |1,14][4,2 tropical 1,1 |[1,7 |[2,6 | [2,17][3,1 |
matches .
from typically
m tropical fish” generally [415 use [2,3
w . in 4,1 water | 1,17] (2,14 [4,12]
V_S. , "troplcal include |1,3 while [4,10
fish including with
iridescence 4,9 world |1,11

n

Felix Naumann | Search Engines | Summer 2011

Hasso
Proximity Matches H institut

16
m Matching phrases or words within a window

o e.qg., "tropical fish”, or “find tropical within 5 words of fish”

m Word positions in inverted lists make these types of query
features efficient.

tropical ||1,1 1,7 2.0 217 3,1

fish ||1,2 [[1,4 2,7 [112,18] 12,23]13,2 |||3,6 | |43 | |4,13

Felix Naumann | Search Engines | Summer 2011

ﬂ Hasso
Fields and Extents Institut

17
m Document structure is useful in search: document fields
o Restrict search to certain fields
¢ e.g., date, from:, etc.
o Some fields more important, even for general search
¢ e.g., title, headings
m Options
o Separate inverted lists for each field type
¢ One index for titles, one for headings, one for regular text
¢ Problem: General search must read multiple indexes
o Add information about fields to postings
¢ Multiple fields need extensive representation
o General problem

¢ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

¢ Search for author ,Croft Donald"
e Both are author words; even appear next to each other

m Better: Extent lists

ﬂ Hasso
Extent Lists Institut

18
m An extent is a contiguous region of a document
0 Represent extents using word positions

o Inverted list records all extents for a given field type

m <author>W. Bruce Croft</author>, =~
<author>Donald Metzler</author>, and =T g
<author>Trevor Strohman</author> S -

o (1,4)(4,6)(7,9)
m Query: “fish” in title
fish |1,2 1,4 2,7 2,18 12,23 |3,2
title | 1:(1,3) 2:(1,5)

\

extent list Title of document 2
does not contain ,fish"

wimmep Geargn

Document 3

has no title

Titel of document 4
starts late and
contains ,fish"

Felix Naumann | Search Engines | Summer 2011

Hasso
Plattner
Institut

Other Issues

19
m Precomputed scores in inverted list

o e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature
value for Document 1

o Moves complexity from query processing (online) to indexing
(offline)

o Improves speed but reduces flexibility
¢ Scoring mechanism cannot be changed

¢ Phrase information is lost here
e But different data structures are possible
m Score-ordered lists (not document-ordered)

o Only for indexes with precomputed scores

0 Query processing engine can focus only on the top part of each
inverted list, where the highest-scoring documents are recorded

o Very efficient for single-word queries

ﬂ Hasso
Overview institut

20
m Abstract model of ranking

m Inverted indexes
- m Compression

m Index construction

m Query Processing

Felix Naumann | Search Engines | Summer 2011

ﬂ Hasso
Compression Institut

21
m Inverted lists are very large

o e.g., 25-50% of collection for TREC collections using Indri
search engine

o Much higher if n-grams are indexed
m Compression of indexes saves disk and/or memory space
o Typically have to decompress lists to use them

0 Best compression techniques have good compression ratios
and are easy to decompress

o Allows data to move up the memory hierarchy
0 Resuces seek time on disk

m Disadvantage: Decompression time

m Here: Lossless compression — no information lost

0 Lossy compression for images, audio, video with very high
compression ratios

. - attner
Compression savings Institut

22
m Processor can process p inverted list postings per second

m Memory system can supply processor with m postings per second
m Number of postings processed each second: min(m, p).

o If p > m, the processor will spend some of its time waiting for
postings to arrive from memory.

o If m > p, the memory system will sometimes be idle.
m Compression ratio r, decompression factor d

o Memory supplies rm postings per second

0 Processor processes dp postings per second

o Number of postings processed each second: min(rm, dp).
m No compression: r=d =1
m Reasonable: r>1andd< 1

0 Compression useful only if p > m

o Ideal: rm = dp

ﬂ Hasso
Compression Institut

23

m Basic idea: Common data elements use short codes while
uncommon data elements use longer codes

m Inverted lists are lists of numbers
o Example: coding numbers
¢ Number sequence: 0,1,0,3,0,2,0
¢ Possible encoding (2 bits): 00 01 00 10 00 11 00
¢ Encode O using asingle0: 0010100110
¢ Only 10 bits, but looks like:0 01 0100110

¢ which encodes: 0,1,1,0,0, 2,0
e Ooops
¢ Better: Unambiguous code 0 0

101
110
111

e 0101011101100
e 2-bit encoding was also unambiguous

W N B~

ﬂ o
. Plattner
Delta Encoding Institut

24
m Entropy measures predictability of input

m Word count data is good candidate for compression
o many small numbers and few larger numbers
o encode small numbers with small codes
m Document numbers are less predictable
o Larger documents occur more often in index
o Not large effect

m Idea: Differences between numbers in an ordered list are smaller
and more predictable

m Delta encoding: Encode differences between document numbers
(d-gaps)

ﬂ o
. Plattner
Delta Encoding Institut

25
m Inverted list (without counts)

o 1,5,9, 18, 23, 24, 30, 44, 45, 48
m Differences between adjacent numbers (d-gaps)
01,4,4,9,51,6,14,1, 3

o Advantage: Ordered list of (large) numbers turns into list of
small numbers

m Differences for a high-frequency word are easier to compress:
01,1,2,1,5,1,4,1,1, 3, ...
m Differences for a low-frequency word are large:
o 109, 3766, 453, 1867, 992, ...
o Bad: Large numbers
o Nice: List is short

26

Hasso
Bit-Aligned Codes ﬂ Inatitut

m Breaks between encoded numbers can occur after any bit position
o Byte-aligned are more favorable to certain operating sytems
m Goal: Small numbers receive small code values
m Unary code
0 Encode k by k 1s followed by 0

o 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

Sl W N~ O

m Others: Elias-y and Elias-0

| P e
Unary and Binary Codes

Institut

27

m Unary is very efficient for small numbers such as 0 and 1, but
quickly becomes very expensive

0 1023 can be represented in 10 binary bits, but requires 1024
bits in unary

m Binary is more efficient for large numbers, but it may be
ambiguous

% WolframAlpha
0 Not useful to encode '

1023 as binary

B|
small numbers

Input interpretation:

rt 1023 to base 2

Result:

1111111111,
Other base conversions:
33333,
17775
3ff 16
Felix Naumann | Search Engines | Summer 2011

ﬂ Hasso
Elias-y Code Institut

28
m To encode a number k, compute

k, =|log, k | k. =k — 2Lk
0 K4 is number of binary digits
0 K, is k after removing the leftmost 1 of its binary encoding
m Idea: Encode k,as unary and k, as binary (in k; binary digits)
o Unary part tells us how many binary digits to expect

Number (k) | kg | k&, | Code
11 0 010

2 1 0] 100

3 1 11101

6 2 2 | 110 10

5] 3 7| 1110 111

16 | 4 0 | 11110 0000
255 7| 127 | 11111110 1111111
1023 9 | 511 | 1111111110 111111111

ﬂ Hasso
Elias-0 Code Institut

29
m Elias-y code uses no more bits than unary, many fewer for k > 2

0 1023 takes 19 bits instead of 1024 bits using unary
m In general, takes 2[log,k]|+1 bits

o |log,k]+1 for unary part

o |log,k] for binary part
m To improve coding of large numbers, use Elias-0 code

o Instead of encoding k, in unary, we encode k, + 1
using Elias-y
0 Takes approximately 2 log, log, k + log, k bits

ﬂ Hasso
Elias-® Code Institut

30
= Split k, into: Ky, =|log,(k, +1) | K, =K, _ gllog; (kg +1)
0 encode k4 in unary, k,. in binary, and k, in binary

Number (k) | kq kr | kga | kqgr | Code
1 0 0 0 010
2 1 0 1 01000
3 1 1 1 01001
§ 2 2 1 1110110
15 3 7 2 0O 110 00 111
16 4 0 2 1 | 110 01 0000
255 7| 127 3 0| 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

m Sacrifices efficiency for low numbers for smaller encodings of large
numbers

0 Numbers larger than 16 require same space as Elias-y
o Number larger than 32 require less space

31

Hasso
Byte-Aligned Codes w Institut

m Variable-length bit encodings can be a problem on processors that
process bytes

m Vv-byte is a popular byte-aligned code
o Similar to Unicode UTF-8
m Short codes for small numbers
o Shortest v-byte code is 1 byte
¢ 8 times longer than Elias-y for number 1

m Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0
otherwise

m Byte-aligned codes compress and decompress faster

V-Byte Encoding

32

k Number of bytes

k< 2f 1

2 < k<2 |2

21 <k <221 |3

221 <k < 2% | 4
k Binary Code | Hexadecimal
1 1 0000001 81
6 1 0000110 86
127 11111111 FF
128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C AO

High bit of
last byte

Felix Naumann | Search Engines | Summer 2011

Hasso
Plattner
Institut

- attner
Compression Example Institut

33
m Original inverted list with positions (docID, position)

o (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)
m Group positions for each document (docID, count, [positions]):
o (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])
o Count makes list decipherable even without brackets
¢ 1001,2,1,7,1002,3,6,17,197,1003,1,1

m Delta encode document numbers and positions to make numbers
even smaller:

o (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])
o Count cannot be delta-encoded.
m Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:
0 81 82 81 86 81 82 86 8B 01 B4 81 81 81
0 13 Bytes for entire list

34

w Hasso
. . Plattner
Sk|pp|ng Institut

Search involves comparison of inverted lists of different lengths
(intersection)

Can be very inefficient (for 2-word queries)
o Like merge join algorithm (two cursors)
0 Reads almost entire lists of both keywords
¢ Many millions
Example: “animal jaguar”
o animal: 300 million pages; jaguar 1 million pages

0 99% of the time spent processing the 299 million pages that
contain animal but not jaguar.

If d, < d;: Repeatedly skip ahead k documents for animal
until d, =2 d;

o Then search linearly
Determine k using sample queries (100 byte is typical)

ﬂ Hasso
Skip Pointers Institut

35
m Compression makes skipping difficult
o Variable size, only d-gaps stored
m Skip pointers are additional data structure to support skipping

m A skip pointer (d, p) contains a document number d and a byte (or
bit) position p

0 Means there is an inverted list posting that starts at position
p, and the posting before it was for document d

\

|

skip pointers

Inverted list

. . attner
Skip Pointers - Example Institut

36
m Inverted list

o 5,11,17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104,
119

m D-gaps
o 5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2,3,7, 3,15
m Skip pointers
o (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)
m Decode using skip pointer (34,6)
o Move to position 6 in d-gaps list (number 2)
o Add 34 to 2 = document number 36
m Find document number 80
o Move along skip pointers until (89,15), because 52 > 80 > 89
o Start decoding at position 12:
¢ 52+ 5=57
& 57 + 23 =80
m Exercise: Find document 85

- p- attner
Auxiliary Structures Institut

37
m Inverted lists usually stored together in a single file for efficiency.
o Inverted file
o Single file per index term is space inefficient.
m Vocabulary or lexicon

0 Contains a lookup table from index terms to the byte offset of
the inverted list in the inverted file

o Either hash table in memory or B-tree for larger vocabularies
m Term statistics stored at start of inverted lists
m Collection statistics stored in separate file

m Separate system to convert document IDs to URLs, titles,
snippets, etc.

o E.g. BigTable

ﬂ Hasso
Overview institut

38
m Abstract model of ranking

m Inverted indexes
m Compression

- = Index construction

m Query Processing

Felix Naumann | Search Engines | Summer 2011

. attner
Index Construction Institut

39
m Simple in-memory indexer for simple inverted list
o No positional information, no count information

procedure BUILDINDEX(D) > D is a set of text documents
I «— HashTable() > Inverted list storage
n «— 0 > Document numbering
for all documents d € D do
n<—mn+1
T« Parse(d) > Parse document into tokens

Remove duplicates from T’
for all tokens t € T' do

if 1 ¢ I then
It « Array()
end if
I, .append(n) Two problems
end for « RAM-based
end for « Sequential execution
return /

end procedure

Felix Naumann | Search Engines | Summer 2011

Hasso
. w Plattner
Merg | ng Institut

40
m Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.
2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial
indexes, which are merged.

m Partial lists must be designed so they can be easily merged in
small pieces

o By definition, no two partial indexes can be in memory
simultaneously.

o Solution: Store in alphabetical order

Merging

41
Index A

Index B

Index A
Index B

Combined index

m Can be generalized to merge many partial lists at once

Hasso
Plattner
Institut

aardvark 4|5 | apple |2 |4

aardvark actor | 15 | 42 | 68

aardvark 415 apple | 2 | 4
aardvark 619 actor | 15 | 42 | 68

aardvark 4 |5(619 actor | 15 [42 |68 | apple |2 | 4

m Documents may have to be renumbered.

m Minimum space requirement:
two words, one posting, some file pointers

o In practice: Large chunks in memory

Felix Naumann | Search Engines | Summer 2011

Hasso
. - . Plattner
Distributed Indexing w Institut

42

m Distributed processing driven by need to index and analyze huge
amounts of data (i.e., the Web)

o Fast and increasing growth of Web

o Not just search engines but also applications that analyze the
Web.

m Large numbers of inexpensive servers used rather than larger, more
expensive machines

o Smaller machines are sold more often
o Large machines do not develop economy of scale
o Disadvantages
¢ Small servers fail more often
¢ Among many servers, the likelihood that one fails increases.

¢ Difficult to program: Programmers trained for single-threaded
applications, not for multi-threaded, multiprocessor,
networked applications.

e Some help: RPC, CORBA, Java RMI, SOAP, Hadoop

atiner
Data Placement - Example Institut

43
m Key problem: Place data efficiently among multiple servers / disks

m Given a large text file that contains data about credit card
transactions

o Each line of the file contains a credit card number and an amount
of money.

o Task: Determine the sum of transactions for each unique credit
card number.

m Could use hash table - hash the credit card number
o But: Memory problems
m Same task, but file is sorted by credit card numbers
o Aggregating is simple with sorted file
m Similar with distributed approach
o Distribute small (random) batches - but how to combine?

o Thus: Careful distribution, so that all transactions of one card end
up in same batch: Sorting

o Sorting and placement are crucial

44

ﬂ Hasso
MapReduce Institut

MapReduce is a distributed programming
framework/paradigm/tool designed for indexing and analysis tasks

0 Focus on data placement and distribution
Functional languages
o Mapper

¢ Generally, transforms a list of items into another list of
items of the same length

0 Reducer
¢ Transforms a list of items into a single item

Definitions for MapReduce not so strict in terms of nhumber of
outputs

Many mapper and reducer tasks on a cluster of machines

P P
. attner
MapReduce algorithms on Hadoop Institut

45

m http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html

Felix Naumann | Search Engines | Summer 2011

ﬂ Hasso
MapReduce Institut

46
m Basic process
o Map stage which transforms data records into pairs
¢ each with a key and a value

0 Shuffle uses a hash function so that all pairs with the same
key end up next to each other and on the same machine

¢ Not implemented by developer

0 Reduce stage processes records in batches, where all pairs
with the same key are processed at the same time

m Idempotence of Mapper and Reducer provides fault tolerance
o Multiple operations on same input gives same output

o In case of hardware failure, that set of tasks is performed
again (on a different machine)

m Backup processes replicate results of slowest machines

47

MapReduce

Input

S

hufﬂe Reduce
\\ Output

Felix Naumann | Search Engines | Summer 2011

Hasso
Plattner
Institut

48

. attner
Credit Card Example Institut

procedure MAPCREDITCARDS(input)
while not input.done() do
record < input.next()
card « record.card
amount «— record.amount
Emit(card, amount)
end while
end procedure

procedure REDUCECREDITCARDS(key, values)
total «— 0
card <+ key
while not values.done() do
amount <« values.next|()
total < total + amount
end while
Emit(card, total)
end procedure

Felix Naumann | Search Engines | Summer 2011

Hasso
Indexing Example ﬂ Institut

49 procedure MAPDOCUMENTSTOPOSTINGS(input)

while not input.done() do
document « input.next()
number < document.number
position «— 0
tokens « Parse(document,) Chapter 4
for each word w in tokens do
Emit(w, document:position)
position = position + 1
end for
end while
end procedure

procedure REDUCEPOSTINGSTOLISTS(key, values)
word «— key

WriteWord(word)
while not values.done() do

EncodePosting(values.next())
e.g. compression
end while - >

end procedure

Felix Naumann | Search Engines | Summer 2011

. P
Updates: Result Merging Institut

50
m Collections of text grow and change

m Index merging is a good strategy for handling updates when they
come in large batches

o Inefficient for small updates: Entire index must be written to
disk each time.

m Result merging for small updates: Create separate index for new
documents, merge results from both searches

0 Separate index in memory, thus fast to update and search
m Deletions handled using delete list

o Before showing result, search engine verifies that no result
element is on delete list.

m Modifications done by insert and delete
o Put old version on delete list
0 Add new version to new documents index

ﬂ Hasso
Overview institut

51
m Abstract model of ranking

m Inverted indexes
m Compression
m Index construction

- = Query Processing

Felix Naumann | Search Engines | Summer 2011

Hasso
. Plattner
Query PrOceSSII’]g w Institut

52
m Document-at-a-time

o Calculates complete scores for documents by processing all
term lists, one document at a time

m Term-at-a-time
o Accumulates scores for documents by processing term lists
one at a time

m Both approaches have optimization techniques that significantly
reduce time required to generate scores

Document-At-A-Time

53
m Query: salt water tropical

m Inverted list with word counts
m Score: Sum of word counts
m One step per document

Step 1 Step2 Step 3

salt 1:1
water 1:1 2:1
tropical 1:2 2:2 3:1
score 1:4 2:3 3:1

Felix Naumann | Search Engines | Summer 2011

Step 4

4:1

4:1

4:2

Hasso
Plattner
Institut

Hasso
Document-At-A-Time ﬂ Inatitut

54
procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)

L «— Array()

R «— PriorityQueue(k) Q Query

for all terms w; in () do I Index
li < InvertedList(w;, I) f, g sets of feature functions
L.add(l;) k number of documents to retrieve

end for

for all doc'uments d,e I dc,’ Should be restricted to documents
for all inverted lists [; in L do that appear at least in one list

m if [; points to d then
sp < sp + g:(Q) fi(l;) > Update the document score

l;. movePastDocument(d)

end if Move cursor (lists are sorted
end for by document number
Radd(SD,D)
end for

Should hold only

return the top k results from R
k documents

end procedure

Felix Naumann | Search Engines | Summer 2011

Hasso
. ﬂ Plattner
Term-At-A-Time Institut
55
m Query: salt water tropical
m Accumulators wlt 11 141
accumulate Step 1
e . . ;
scores for each P partial scores 1:1 || 41
document
m One step per query old partial scores =1l 4:1
term
Step 2 water 1:1 2:1 4:1
new partial scores 2 2:1 4:2
old partial scores 1:2 2:1 4:2
Step 3 tropical 1:2 2:2 3:1
final scores 1:4 2:3 || 3:1 4:2

Felix Naumann | Search Engines | Summer 2011

ﬂ Hasso
Term-At-A-Time Inetitat

56 procedure TERMATATIMERETRIEVAL(Q, I, f, g k)
A «— HashTable()
L — Array()
R «— PriorityQueue(k)
for all terms w; in) do
l; «+ InvertedList(w;, I)
L.add(I;)

end for m
for all lists [; € L do
while [; is not finished do
d « l;.getCurrentDocument|()

Ag — Ag+9:(Q)f(Ly)

l;.moveToNextDocument()
end while High memory load

end for

for all accumulators A4 in A do
sp — Ay > Accumulator contains the document score
R.add(sp, D)

end for

return the top £ results from R Advantage: Less disk seeking

end procedure
Felix Naumann | Search Engines | Summer 2011

(each list is read only once)

- . - - attner
Optimization Techniques Institut

o7

m Term-at-a-time uses more memory for accumulators, but accesses
disk more efficiently.

m Two classes of optimization
0 Read less data from inverted lists
¢ e.g., skip lists
¢ Better for simple feature functions
o Calculate scores for fewer documents
¢ e.g., conjunctive processing
¢ Better for complex feature functions

List skipping: w Hasso
Read less data from inverted lists

Institut
58 \

|

skip pointers

n bytes in list, skip pointers after each c bytes, pointer are k long
m Read entire list: O(n)
m Jumping through list: O(kn/c) = O(n)

o But: If c = 100 and kK = 4 we read just 2.5% of total data.
m ¢ should not be arbitrarily large: Need to find p postings

o n/c intervals; posting is halfway into interval: pc/2

o Total: kn/c + pc/2

¢ Assuming p << n/c (otherwise multiple postings within interval)

o Find optimal ¢ using previous queries
m In reality ¢ > 100.000 to observe any improvement

o Disks perform poorly at jumping to arbitrary positions
m And: Skipping reduces decompression load

Inverted list

Conjunctive processing: H Hasso
Calculate scores for fewer documents

Institut

59
m All query terms need to be present in result documents

o Default for most search engines
o Not usful for very long queries (plagiarism)
m Optimizes performance and effectiveness
m Especially helpful with query terms of different frequency
fish [EED

® web-Suche O Suche Seiten auf Deutsch

Ergebnisse 1 - 10 von ungefahr 235.000.000 fir fish.

locomotion | G | Emnveiterte Suche
) Einstellungen

® wWeb-Suche © Suche Seiten auf Deutsch

Ergebnisse 1 - 10 von ungefahr 3.480.000 fir locomotion.

m Can be used for term-at-a-time and document-at-a-time

Felix Naumann | Search Engines | Summer 2011

60

Conjunctive
Term-at-a-Time

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
Skip ahead using)
accumulator table 17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
Runs best if lists .
are sorted by size 28:
29:
30:
31:

procedure TERMATATIMERETRIEVAL(Q, I, f, g, k)
A «— HashTable()
L — Array()
R «— PriorityQueue(k)
for all terms w; in) do
l; < InvertedList(w;, I)
L.add(;)
end for
for all lists [; € L do
while /; is not finished do
if 2 =0 then
d « l;.getCurrentDocument/()
Ag — Aa+ 9:(Q) f(L:)
else
d «— l;.getCurrent Document/()
d — A.getNextDocumentAfter(d)
[;.skipForwardTo(d)
if /;.getCurrentDocument() = d then
Ag — Aq+ g:(Q) f(ls)
else
A.remove(d)
end if
end if
end while
end for
for all accumulators A; in A do
sp «— Ay > Accumulator contains the document score
R.add(sp,D)
end for
return the top k results from R
end procedure

Felix Naumann | Search Engines | Summer 2011

Conjunctive ﬂ Hasso
. Plattner
Document-at-a-Time

Institut

1: procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)

61 2 L — Array()
3 R — PriorityQueue(k)
4: for all terms w; in () do

5: l; — InvertedList(w;, I)

6 L.add(I;)

7 end for

8 while all lists in L are not finished do

9 [for all inverted lists /; in L do

if {;.getCurrentDocument() > d then

d « l;.getCurrentDocument()

Get largest

document currently :
pointed to. 10:
Not guaranteed to ®¥F

contain all terms, en(f?frlf
slls e EElneliekl for all inverted lists /; in L do l;.skipForwardToDocument(d)
15: if /; points to d then
Sq +— sa+ 9:(Q) fi(L;) > Update the document score
_ _ l;.movePastDocument(d)
Try to skip each list else
to that document. 19: break
If fails, use next 20: end if
largest document. [pit end for
22: R.add(sq,d) .
23 end while Runs best if lists

24: return the top k results from R are sorted by size

25: end procedure
Felix Naumann | Search Engines | Summer 2011

Hasso
Threshold Methods w Institat

62

m Threshold methods use limit of top-ranked documents needed (k)
to optimize query processing

0 For most applications, k is small Ergebnisse 1 - 10 von ungefahr 235.000.000 fur fish.

m For any query, there is a minimum score that each document
needs to reach before it can be shown to the user.

o Score of the kth-highest scoring document
o Gives threshold T
o But: Yet unknown
m Optimization methods estimate 7’ to ignore documents
o 77 < 71 for safety

o For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for 77

o For term-at-a-time, have to use kt-largest score in the
accumulator table

Hasso
Plattner
Threshold Methods — MaxScore w Institut

63

m MaxScore method compares the maximum score that remaining
documents could have to 1.

o 77 is lower bound.
o Safe optimization: Ranking will be same without optimization

eucalyptus

tree
m Indexer computes Uy qe

o Maximum score for any document containing just “tree”
m Assume k = 3, 77 is lowest score after first three docs
m Likely that 77 > u;.0
o 77 is the score of a document that contains both query terms
m Can safely skip over all gray postings
m Works for non-conjunctive processing

Hasso
. - . Plattner
Early termination of query processing w Institut

64
m Term-at-a-time
o Ignore high-frequency word lists in
¢ Similar to stop word lists
o Ignore all terms above some constant
¢ For queries with very many terms
¢ Later terms only change the ranking slightly
m Document-at-a-time
o Ignore documents at end of lists
o Works well only if documents are sorted by quality
m In general, early termination is an unsafe optimization

o But: “To be or not to be” is immune to other optimizations,
because it has very long index lists.

o Thus: Early termination is only choice

w Hasso
. - Plattner
List ordering Institut

65
m In general: Document IDs are assigned randomly to web pages

0 Best documents can be at end of lists
o Assignment is unused degree of freedom

m Order inverted lists by quality metric (e.g., PageRank) or by
partial score

o Metric independent of query

o Can compute upper bounds more easily
m Order inverted lists by partial score

o As for one-word queries

0 Works well for term-at-a-time, but read only partial lists until
satisfied.

m Makes unsafe (and fast) optimizations more likely to produce good
documents

68

. . . attner
Distributed Evaluation Institut

m Basic process
o All queries sent to a director machine
o Director then sends messages to many index servers
o Each index server does some portion of the query processing

o Director organizes the results and returns them to the user
m TwOo main approaches

0 Document distribution

¢ by far the most popular
o Term distribution

¢ Much network traffic

Hasso
Plattner
Institut

Distributed Evaluation

69
m Document distribution
o Each index server acts as a search engine for a small fraction
of the total collection

0 Director sends a copy of the query to each of the index
servers, each of which returns the top-k results

o0 Results are merged into a single ranked list by the director
m Collection statistics should be shared for effective ranking

. . . attner
Distributed Evaluation Institut

70
m Term distribution
o Single index is built for the whole cluster of machines

o Each inverted list in that index is then assigned to one index
server

¢ In most cases the data to process a query is not stored on
a single machine

0 One of the index servers is chosen to process the query
¢ Usually the one holding the longest inverted list
o Other index servers send information to that server
o Final results sent to director
m Disk seek time for k terms and n index servers
o Document distribution: O(kn)
o Term distribution: O(k)

w Hasso
. Plattner
CaChIng Institut

71
m Insight: Query distributions similar to Zipf

o About Y2 of queries each day are unique, but some are very
popular

m Caching can significantly improve effectiveness
o Cache popular query results
o Cache common inverted lists

m Inverted list caching can help with unique queries
o And not only one-word queries

m Cache must be refreshed to prevent stale data

