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Indexes Ingti?s{

m Indexes are data structures designed to make search faster

m Text search has unique requirements, which leads to unique data
structures

m Most common data structure is inverted index
0 General name for a class of structures
¢ Specialized for different ranking function

o “Inverted” because documents are associated with words,
rather than words with documents

m Components of search engine very dependent

o Choice of query processing algorithm depends on retrieval
model and dictates content of index.
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m Indexes are designed to support search
0 Faster response time
0 Supports updates
m Text search engines use a particular form of search: ranking
0 Documents are retrieved in sorted order according to a score
computing using
¢ document representation
¢ query
® ranking algorithm
m What is a reasonable abstract model for ranking?

o Enables discussion of indexes without details of retrieval
model (Chapter 7)
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- m Abstract model of ranking
m Inverted indexes

m Compression
m Index construction
m Query Processing
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Numerical values generated

by feature functions

9.7 fish

4.2 tropical tropical fish

Query High value predicts
good match

Fred's Tropical Fish Shop is )
the best place to find 22.1 tI'OPICle fish

tropical fish at low, low /'
prices.  Whether you're 8.2 seaweed

looking for a little fish or a 4.2 surfboards
big fish, we've got what you

need. We even have fake Topical Features
SeaWeed fO].' Youf ﬁshtan.k
(and little surfboards too). \

14 incominglinks

Ranking Function
Document Score

3 days since last update

Document Quality Features Typically ignores
very many features

Final output: Documents

sorted descending by
document score
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More Concrete Model

R(Q,D) = Z g:(Q) f:(D)
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fi is a document feature function
g; i1s a query feature function

Only few;

others are zero

p fish 5.2

4.2 tropical <

_p tropical 3.4 gi

Fred's Tropical Fish Shop is )
the best place to find 22.1 tl'Oplcal fish -

» tropical fish 9.9

tropical fish at low, low /
prices. Whether you're 8.2 seaweed
4.2 surfboards

looking for a little fish or a
big fish, we've got what you
Topical Features

need. We even have fake
seaweed for your fishtank
(and little surfboards too).

chichlids 1.2
barbs 0.7
tropical fish

Topical Features Query

\ 14 incominglinks q—oo-— incoming links 1.2 /

3 update count

Document Quality Features

303.01

Document Score

» update count 0.9 http://www.howard.k12.md.us

/res/aquariums/chichlids.html

Quality Features
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m Abstract model of ranking
m Inverted indexes

m Compression

m Index construction

m Query Processing
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Inverted Index

m Each index term is associated with an inverted
list
o Contains lists of documents, or lists of

word occurrences in documents, and other
information

o Each entry is called a posting.

o The part of the posting that refers to a
specific document or location is called a
pointer.

o Each document in the collection is given a
unique number.

o Lists are usually document-ordered (sorted
by document number).

¢ Intersect postings
m Analogy: Book index
o Inverted indexes usually not alphabetized
o Hash-table instead

Felix Naumann | Search Engines | Summer 2011
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m Signature files

o Each document converted to signature (set of bits)
0 Query also converted to set of bits
0 Query processing: Comparison of bit patterns
¢ All signatures must be scanned
¢ Comparison is noisy (to keep signature small)
o Generalization for ranked search difficult
m k-d trees
o Each document encoded as point in high-dimensional space
0 Same with query
0 Data structure helps find documents closest to query
o But: Not designed for too many dimensions
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m Four sentences from the Wikipedia entry for tropical fish

m S1: Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

m S2: Fishkeepers often use the term tropical fish to refer only those
requiring fresh water, with saltwater tropical fish referred to as
marine fish.

m S3: Tropical fish are popular aquarium fish, due to their often
bright coloration.

m S4: In freshwater fish, this coloration typically derives from
iridescence, while salt water fish are generally pigmented.
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are popular
13 around refer
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m Each box is a posting. -~ requiring
m Does not record term bright salt
frequency or occurrence coloration saltwater
derives species
o Example: S1 and S2 are due ferm
treated equally for term environments the
“tropical”. fish their
fishkeepers this
m Intersection found those
R fresh to
O Query.. fr"eshwater bt tropical
coloration from typically
0 {1’4}0{3’4} generally use
_ in water
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¢ Can be improved mdi(;e;;z world
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Inverted Index
with counts
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m Matching phrases or words within a window

o e.qg., "tropical fish”, or “find tropical within 5 words of fish”

m Word positions in inverted lists make these types of query
features efficient.

tropical ||1,1 1,7 2.0 217 3,1

fish ||1,2 [[1,4 2,7 [112,18] 12,23]13,2 |||3,6 | |43 | |4,13
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m Document structure is useful in search: document fields
o Restrict search to certain fields
¢ e.g., date, from:, etc.
o Some fields more important, even for general search
¢ e.g., title, headings
m Options
o Separate inverted lists for each field type
¢ One index for titles, one for headings, one for regular text
¢ Problem: General search must read multiple indexes
o Add information about fields to postings
¢ Multiple fields need extensive representation
o General problem

¢ <author>W. Bruce Croft</author>,
<author>Donald Metzler</author>, and
<author>Trevor Strohman</author>

¢ Search for author ,Croft Donald"
e Both are author words; even appear next to each other

m Better: Extent lists
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m An extent is a contiguous region of a document
0 Represent extents using word positions

o Inverted list records all extents for a given field type

m <author>W. Bruce Croft</author>, =~
<author>Donald Metzler</author>, and =T g
<author>Trevor Strohman</author> S -

o (1,4)(4,6)(7,9)
m Query: “fish” in title
fish |1,2 1,4 2,7 2,18 12,23 |3,2
title | 1:(1,3) 2:(1,5)

\

extent list Title of document 2
does not contain ,fish"

wimmep Geargn

Document 3

has no title

Titel of document 4
starts late and
contains ,fish"
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m Precomputed scores in inverted list

o e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature
value for Document 1

o Moves complexity from query processing (online) to indexing
(offline)

o Improves speed but reduces flexibility
¢ Scoring mechanism cannot be changed

¢ Phrase information is lost here
e But different data structures are possible
m Score-ordered lists (not document-ordered)

o Only for indexes with precomputed scores

0 Query processing engine can focus only on the top part of each
inverted list, where the highest-scoring documents are recorded

o Very efficient for single-word queries
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m Abstract model of ranking

m Inverted indexes
- m Compression

m Index construction

m Query Processing

Felix Naumann | Search Engines | Summer 2011



ﬂ Hasso
Compression Institut

21
m Inverted lists are very large

o e.g., 25-50% of collection for TREC collections using Indri
search engine

o Much higher if n-grams are indexed
m Compression of indexes saves disk and/or memory space
o Typically have to decompress lists to use them

0 Best compression techniques have good compression ratios
and are easy to decompress

o Allows data to move up the memory hierarchy
0 Resuces seek time on disk

m Disadvantage: Decompression time

m Here: Lossless compression — no information lost

0 Lossy compression for images, audio, video with very high
compression ratios



. - attner
Compression savings Institut

22
m Processor can process p inverted list postings per second

m Memory system can supply processor with m postings per second
m Number of postings processed each second: min(m, p).

o If p > m, the processor will spend some of its time waiting for
postings to arrive from memory.

o If m > p, the memory system will sometimes be idle.
m Compression ratio r, decompression factor d

o Memory supplies rm postings per second

0 Processor processes dp postings per second

o Number of postings processed each second: min(rm, dp).
m No compression: r=d =1
m Reasonable: r>1andd< 1

0 Compression useful only if p > m

o Ideal: rm = dp
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m Basic idea: Common data elements use short codes while
uncommon data elements use longer codes

m Inverted lists are lists of numbers
o Example: coding numbers
¢ Number sequence: 0,1,0,3,0,2,0
¢ Possible encoding (2 bits): 00 01 00 10 00 11 00
¢ Encode O using asingle0: 0010100110
¢ Only 10 bits, but looks like:0 01 0100110

¢ which encodes: 0,1,1,0,0, 2,0
e Ooops
¢ Better: Unambiguous code 0 0

101
110
111

e 0101011101100
e 2-bit encoding was also unambiguous

W N B~
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m Entropy measures predictability of input

m Word count data is good candidate for compression
o many small numbers and few larger numbers
o encode small numbers with small codes
m Document numbers are less predictable
o Larger documents occur more often in index
o Not large effect

m Idea: Differences between numbers in an ordered list are smaller
and more predictable

m Delta encoding: Encode differences between document numbers
(d-gaps)
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m Inverted list (without counts)

o 1,5,9, 18, 23, 24, 30, 44, 45, 48
m Differences between adjacent numbers (d-gaps)
01,4,4,9,51,6,14,1, 3

o Advantage: Ordered list of (large) numbers turns into list of
small numbers

m Differences for a high-frequency word are easier to compress:
01,1,2,1,5,1,4,1,1, 3, ...
m Differences for a low-frequency word are large:
o 109, 3766, 453, 1867, 992, ...
o Bad: Large numbers
o Nice: List is short
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m Breaks between encoded numbers can occur after any bit position
o Byte-aligned are more favorable to certain operating sytems
m Goal: Small numbers receive small code values
m Unary code
0 Encode k by k 1s followed by 0

o 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

Sl W N~ O

m Others: Elias-y and Elias-0
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m Unary is very efficient for small numbers such as 0 and 1, but
quickly becomes very expensive

0 1023 can be represented in 10 binary bits, but requires 1024
bits in unary

m Binary is more efficient for large numbers, but it may be
ambiguous

% WolframAlpha
0 Not useful to encode '

1023 as binary

B|
small numbers

Input interpretation:

rt 1023 to base 2

Result:

1111111111,
Other base conversions:
33333,
17775
3ff 16
Felix Naumann | Search Engines | Summer 2011



ﬂ Hasso
Elias-y Code Institut

28
m To encode a number k, compute

k, =|log, k | k. =k — 2Lk
0 K4 is number of binary digits
0 K, is k after removing the leftmost 1 of its binary encoding
m Idea: Encode k,as unary and k, as binary (in k; binary digits)
o Unary part tells us how many binary digits to expect

Number (k) | kg | k&, | Code
11 0 010

2 1 0] 100

3 1 11101

6 2 2 | 110 10

5] 3 7| 1110 111

16 | 4 0 | 11110 0000
255 7| 127 | 11111110 1111111
1023 9 | 511 | 1111111110 111111111
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m Elias-y code uses no more bits than unary, many fewer for k > 2

0 1023 takes 19 bits instead of 1024 bits using unary
m In general, takes 2[log,k]|+1 bits

o |log,k]+1 for unary part

o |log,k] for binary part
m To improve coding of large numbers, use Elias-0 code

o Instead of encoding k, in unary, we encode k, + 1
using Elias-y
0 Takes approximately 2 log, log, k + log, k bits
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= Split k, into: Ky, =|log,(k, +1) | K, =K, _ gllog; (kg +1)
0 encode k4 in unary, k,. in binary, and k, in binary

Number (k) | kq kr | kga | kqgr | Code
1 0 0 0 010
2 1 0 1 01000
3 1 1 1 01001
§ 2 2 1 1110110
15 3 7 2 0O 110 00 111
16 4 0 2 1 | 110 01 0000
255 7| 127 3 0| 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

m Sacrifices efficiency for low numbers for smaller encodings of large
numbers

0 Numbers larger than 16 require same space as Elias-y
o Number larger than 32 require less space
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m Variable-length bit encodings can be a problem on processors that
process bytes

m Vv-byte is a popular byte-aligned code
o Similar to Unicode UTF-8
m Short codes for small numbers
o Shortest v-byte code is 1 byte
¢ 8 times longer than Elias-y for number 1

m Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0
otherwise

m Byte-aligned codes compress and decompress faster
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k Number of bytes

k< 2f 1

2 < k<2 |2

21 <k <221 |3

221 <k < 2% | 4
k Binary Code | Hexadecimal
1 1 0000001 81
6 1 0000110 86
127 11111111 FF
128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C AO

High bit of
last byte

Felix Naumann | Search Engines | Summer 2011
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m Original inverted list with positions (docID, position)

o (1001,1) (1001,7) (1002,6) (1002,17) (1002,197) (1003,1)
m Group positions for each document (docID, count, [positions]):
o (1001,2,[1,7]) (1002,3,[6,17,197]) (1003,1,[1])
o Count makes list decipherable even without brackets
¢ 1001,2,1,7,1002,3,6,17,197,1003,1,1

m Delta encode document numbers and positions to make numbers
even smaller:

o (1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])
o Count cannot be delta-encoded.
m Compress 1,2,1,6,1,3,6,11,180,1,1,1 using v-byte:
0 81 82 81 86 81 82 86 8B 01 B4 81 81 81
0 13 Bytes for entire list
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Search involves comparison of inverted lists of different lengths
(intersection)

Can be very inefficient (for 2-word queries)
o Like merge join algorithm (two cursors)
0 Reads almost entire lists of both keywords
¢ Many millions
Example: “animal jaguar”
o animal: 300 million pages; jaguar 1 million pages

0 99% of the time spent processing the 299 million pages that
contain animal but not jaguar.

If d, < d;: Repeatedly skip ahead k documents for animal
until d, =2 d;

o Then search linearly
Determine k using sample queries (100 byte is typical)
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m Compression makes skipping difficult
o Variable size, only d-gaps stored
m Skip pointers are additional data structure to support skipping

m A skip pointer (d, p) contains a document number d and a byte (or
bit) position p

0 Means there is an inverted list posting that starts at position
p, and the posting before it was for document d

\

|

skip pointers

Inverted list



. . attner
Skip Pointers - Example Institut

36
m Inverted list

o 5,11,17, 21, 26, 34, 36, 37, 45, 48, 51, 52, 57, 80, 89, 91, 94, 101, 104,
119

m D-gaps
o 5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2,3,7, 3,15
m Skip pointers
o (17, 3), (34, 6), (45, 9), (52, 12), (89, 15), (101, 18)
m Decode using skip pointer (34,6)
o Move to position 6 in d-gaps list (number 2)
o Add 34 to 2 = document number 36
m Find document number 80
o Move along skip pointers until (89,15), because 52 > 80 > 89
o Start decoding at position 12:
¢ 52+ 5=57
& 57 + 23 =80
m Exercise: Find document 85



- p- attner
Auxiliary Structures Institut

37
m Inverted lists usually stored together in a single file for efficiency.
o Inverted file
o Single file per index term is space inefficient.
m Vocabulary or lexicon

0 Contains a lookup table from index terms to the byte offset of
the inverted list in the inverted file

o Either hash table in memory or B-tree for larger vocabularies
m Term statistics stored at start of inverted lists
m Collection statistics stored in separate file

m Separate system to convert document IDs to URLs, titles,
snippets, etc.

o E.g. BigTable
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m Abstract model of ranking

m Inverted indexes
m Compression

- = Index construction

m Query Processing

Felix Naumann | Search Engines | Summer 2011
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m Simple in-memory indexer for simple inverted list
o No positional information, no count information

procedure BUILDINDEX(D) > D is a set of text documents
I «— HashTable() > Inverted list storage
n «— 0 > Document numbering
for all documents d € D do
n<—mn+1
T« Parse(d) > Parse document into tokens

Remove duplicates from T’
for all tokens t € T' do

if 1 ¢ I then
It « Array()
end if
I, .append(n) Two problems
end for « RAM-based
end for « Sequential execution
return /

end procedure

Felix Naumann | Search Engines | Summer 2011
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m Merging addresses limited memory problem

1. Build the inverted list structure until memory runs out.
2. Then write the partial index to disk, start making a new one.

3. At the end of this process, the disk is filled with many partial
indexes, which are merged.

m Partial lists must be designed so they can be easily merged in
small pieces

o By definition, no two partial indexes can be in memory
simultaneously.

o Solution: Store in alphabetical order
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Index A

Index B

Index A
Index B

Combined index

m Can be generalized to merge many partial lists at once
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aardvark 4|5 | apple |2 |4

aardvark actor | 15 | 42 | 68

aardvark 415 apple | 2 | 4
aardvark 619 actor | 15 | 42 | 68

aardvark 4 |5(619 actor | 15 [ 42 |68 | apple |2 | 4

m Documents may have to be renumbered.

m Minimum space requirement:
two words, one posting, some file pointers

o In practice: Large chunks in memory

Felix Naumann | Search Engines | Summer 2011
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m Distributed processing driven by need to index and analyze huge
amounts of data (i.e., the Web)

o Fast and increasing growth of Web

o Not just search engines but also applications that analyze the
Web.

m Large numbers of inexpensive servers used rather than larger, more
expensive machines

o Smaller machines are sold more often
o Large machines do not develop economy of scale
o Disadvantages
¢ Small servers fail more often
¢ Among many servers, the likelihood that one fails increases.

¢ Difficult to program: Programmers trained for single-threaded
applications, not for multi-threaded, multiprocessor,
networked applications.

e Some help: RPC, CORBA, Java RMI, SOAP, Hadoop
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m Key problem: Place data efficiently among multiple servers / disks

m Given a large text file that contains data about credit card
transactions

o Each line of the file contains a credit card number and an amount
of money.

o Task: Determine the sum of transactions for each unique credit
card number.

m Could use hash table - hash the credit card number
o But: Memory problems
m Same task, but file is sorted by credit card numbers
o Aggregating is simple with sorted file
m Similar with distributed approach
o Distribute small (random) batches - but how to combine?

o Thus: Careful distribution, so that all transactions of one card end
up in same batch: Sorting

o Sorting and placement are crucial
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MapReduce is a distributed programming
framework/paradigm/tool designed for indexing and analysis tasks

0 Focus on data placement and distribution
Functional languages
o Mapper

¢ Generally, transforms a list of items into another list of
items of the same length

0 Reducer
¢ Transforms a list of items into a single item

Definitions for MapReduce not so strict in terms of nhumber of
outputs

Many mapper and reducer tasks on a cluster of machines
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m  http://www.hpi.uni-potsdam.de/naumann/lehre/ss_09/mapreduce_algorithms_on_hadoop.html
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46
m Basic process
o Map stage which transforms data records into pairs
¢ each with a key and a value

0 Shuffle uses a hash function so that all pairs with the same
key end up next to each other and on the same machine

¢ Not implemented by developer

0 Reduce stage processes records in batches, where all pairs
with the same key are processed at the same time

m Idempotence of Mapper and Reducer provides fault tolerance
o Multiple operations on same input gives same output

o In case of hardware failure, that set of tasks is performed
again (on a different machine)

m Backup processes replicate results of slowest machines
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MapReduce

Input

S

hufﬂe Reduce
\\ Output
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Credit Card Example Institut

procedure MAPCREDITCARDS(input)
while not input.done() do
record < input.next()
card « record.card
amount «— record.amount
Emit(card, amount)
end while
end procedure

procedure REDUCECREDITCARDS(key, values)
total «— 0
card <+ key
while not values.done() do
amount <« values.next|()
total < total + amount
end while
Emit(card, total)
end procedure
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49 procedure MAPDOCUMENTSTOPOSTINGS(input)

while not input.done() do
document « input.next()
number < document.number
position «— 0
tokens « Parse(document,) Chapter 4
for each word w in tokens do
Emit(w, document:position)
position = position + 1
end for
end while
end procedure

procedure REDUCEPOSTINGSTOLISTS(key, values)
word «— key

WriteWord(word)
while not values.done() do

EncodePosting(values.next())
e.g. compression
end while - >

end procedure
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50
m Collections of text grow and change

m Index merging is a good strategy for handling updates when they
come in large batches

o Inefficient for small updates: Entire index must be written to
disk each time.

m Result merging for small updates: Create separate index for new
documents, merge results from both searches

0 Separate index in memory, thus fast to update and search
m Deletions handled using delete list

o Before showing result, search engine verifies that no result
element is on delete list.

m Modifications done by insert and delete
o Put old version on delete list
0 Add new version to new documents index
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51
m Abstract model of ranking

m Inverted indexes
m Compression
m Index construction

- = Query Processing
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52
m Document-at-a-time

o Calculates complete scores for documents by processing all
term lists, one document at a time

m Term-at-a-time
o Accumulates scores for documents by processing term lists
one at a time

m Both approaches have optimization techniques that significantly
reduce time required to generate scores



Document-At-A-Time

53
m Query: salt water tropical

m Inverted list with word counts
m Score: Sum of word counts
m One step per document

Step 1 Step2  Step 3

salt 1:1
water 1:1 2:1
tropical 1:2 2:2 3:1
score 1:4 2:3 3:1

Felix Naumann | Search Engines | Summer 2011
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54
procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)

L «— Array()

R «— PriorityQueue(k) Q Query

for all terms w; in () do I Index
li < InvertedList(w;, I) f, g sets of feature functions
L.add( l; ) k number of documents to retrieve

end for

for all doc'uments d,e I dc,’ Should be restricted to documents
for all inverted lists [; in L do that appear at least in one list

m if [; points to d then
sp < sp + g:(Q) fi(l;) > Update the document score

l;. movePastDocument( d )

end if Move cursor (lists are sorted
end for by document number
Radd( SD,D )
end for

Should hold only

return the top k results from R
k documents

end procedure
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m Query: salt water tropical
m Accumulators wlt 11 141
accumulate Step 1
e . . ;
scores for each P partial scores 1:1 || 41
document
m One step per query old partial scores =1l 4:1
term
Step 2 water 1:1 2:1 4:1
new partial scores 2 2:1 4:2
old partial scores 1:2 2:1 4:2
Step 3 tropical 1:2 2:2 3:1
final scores 1:4 2:3 || 3:1 4:2
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56 procedure TERMATATIMERETRIEVAL(Q, I, f, g k)
A «— HashTable()
L — Array()
R «— PriorityQueue(k)
for all terms w; in ) do
l; «+ InvertedList(w;, I)
L.add( I; )

end for m
for all lists [; € L do
while [; is not finished do
d « l;.getCurrentDocument|()

Ag — Ag+9:(Q)f(Ly)

l;.moveToNextDocument()
end while High memory load

end for

for all accumulators A4 in A do
sp — Ay > Accumulator contains the document score
R.add( sp, D )

end for

return the top £ results from R Advantage: Less disk seeking

end procedure
Felix Naumann | Search Engines | Summer 2011
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o7

m Term-at-a-time uses more memory for accumulators, but accesses
disk more efficiently.

m Two classes of optimization
0 Read less data from inverted lists
¢ e.g., skip lists
¢ Better for simple feature functions
o Calculate scores for fewer documents
¢ e.g., conjunctive processing
¢ Better for complex feature functions
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58 \

|

skip pointers

n bytes in list, skip pointers after each c bytes, pointer are k long
m Read entire list: O(n)
m Jumping through list: O(kn/c) = O(n)

o But: If c = 100 and kK = 4 we read just 2.5% of total data.
m ¢ should not be arbitrarily large: Need to find p postings

o n/c intervals; posting is halfway into interval: pc/2

o Total: kn/c + pc/2

¢ Assuming p << n/c (otherwise multiple postings within interval)

o Find optimal ¢ using previous queries
m In reality ¢ > 100.000 to observe any improvement

o Disks perform poorly at jumping to arbitrary positions
m And: Skipping reduces decompression load

Inverted list
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59
m All query terms need to be present in result documents

o Default for most search engines
o Not usful for very long queries (plagiarism)
m Optimizes performance and effectiveness
m Especially helpful with query terms of different frequency
fish [EED

® web-Suche O Suche Seiten auf Deutsch

Ergebnisse 1 - 10 von ungefahr 235.000.000 fir fish.

locomotion | G | Emnveiterte Suche
) Einstellungen

® wWeb-Suche © Suche Seiten auf Deutsch

Ergebnisse 1 - 10 von ungefahr 3.480.000 fir locomotion.

m Can be used for term-at-a-time and document-at-a-time
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Conjunctive
Term-at-a-Time

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
Skip ahead using )
accumulator table 17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
Runs best if lists .
are sorted by size 28:
29:
30:
31:

procedure TERMATATIMERETRIEVAL(Q, I, f, g, k)
A «— HashTable()
L — Array()
R «— PriorityQueue(k)
for all terms w; in ) do
l; < InvertedList(w;, I)
L.add( ;)
end for
for all lists [; € L do
while /; is not finished do
if 2 =0 then
d « l;.getCurrentDocument/()
Ag — Aa+ 9:(Q) f(L:)
else
d «— l;.getCurrent Document/()
d — A.getNextDocumentAfter(d)
[;.skipForwardTo(d)
if /;.getCurrentDocument() = d then
Ag — Aq+ g:(Q) f(ls)
else
A.remove(d)
end if
end if
end while
end for
for all accumulators A; in A do
sp «— Ay > Accumulator contains the document score
R.add( sp,D )
end for
return the top k results from R
end procedure
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1: procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)

61 2 L — Array()
3 R — PriorityQueue(k)
4: for all terms w; in () do

5: l; — InvertedList(w;, I)

6 L.add( I; )

7 end for

8 while all lists in L are not finished do

9 [ for all inverted lists /; in L do

if {;.getCurrentDocument() > d then

d « l;.getCurrentDocument( )

Get largest

document currently :
pointed to. 10:
Not guaranteed to  ®¥F

contain all terms, en(f?frlf
slls e EElneliekl for all inverted lists /; in L do l;.skipForwardToDocument(d)
15: if /; points to d then
Sq +— sa+ 9:(Q) fi(L;) > Update the document score
_ _ l;.movePastDocument( d )
Try to skip each list else
to that document. 19: break
If fails, use next 20: end if
largest document. [pit end for
22: R.add( sq,d ) .
23 end while Runs best if lists

24: return the top k results from R are sorted by size

25: end procedure
Felix Naumann | Search Engines | Summer 2011
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62

m Threshold methods use limit of top-ranked documents needed (k)
to optimize query processing

0 For most applications, k is small Ergebnisse 1 - 10 von ungefahr 235.000.000 fur fish.

m For any query, there is a minimum score that each document
needs to reach before it can be shown to the user.

o Score of the kth-highest scoring document
o Gives threshold T
o But: Yet unknown
m Optimization methods estimate 7’ to ignore documents
o 77 < 71 for safety

o For document-at-a-time processing, use score of lowest-
ranked document in list of top-k documents so far for 77

o For term-at-a-time, have to use kt-largest score in the
accumulator table
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63

m MaxScore method compares the maximum score that remaining
documents could have to 1.

o 77 is lower bound.
o Safe optimization: Ranking will be same without optimization

eucalyptus

tree
m Indexer computes Uy qe

o Maximum score for any document containing just “tree”
m Assume k = 3, 77 is lowest score after first three docs
m Likely that 77 > u;.0
o 77 is the score of a document that contains both query terms
m Can safely skip over all gray postings
m Works for non-conjunctive processing
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64
m Term-at-a-time
o Ignore high-frequency word lists in
¢ Similar to stop word lists
o Ignore all terms above some constant
¢ For queries with very many terms
¢ Later terms only change the ranking slightly
m Document-at-a-time
o Ignore documents at end of lists
o Works well only if documents are sorted by quality
m In general, early termination is an unsafe optimization

o But: “To be or not to be” is immune to other optimizations,
because it has very long index lists.

o Thus: Early termination is only choice
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m In general: Document IDs are assigned randomly to web pages

0 Best documents can be at end of lists
o Assignment is unused degree of freedom

m Order inverted lists by quality metric (e.g., PageRank) or by
partial score

o Metric independent of query

o Can compute upper bounds more easily
m Order inverted lists by partial score

o As for one-word queries

0 Works well for term-at-a-time, but read only partial lists until
satisfied.

m Makes unsafe (and fast) optimizations more likely to produce good
documents
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m Basic process
o All queries sent to a director machine
o Director then sends messages to many index servers
o Each index server does some portion of the query processing

o Director organizes the results and returns them to the user
m TwOo main approaches

0 Document distribution

¢ by far the most popular
o Term distribution

¢ Much network traffic
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Distributed Evaluation

69
m Document distribution
o Each index server acts as a search engine for a small fraction
of the total collection

0 Director sends a copy of the query to each of the index
servers, each of which returns the top-k results

o0 Results are merged into a single ranked list by the director
m Collection statistics should be shared for effective ranking
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70
m Term distribution
o Single index is built for the whole cluster of machines

o Each inverted list in that index is then assigned to one index
server

¢ In most cases the data to process a query is not stored on
a single machine

0 One of the index servers is chosen to process the query
¢ Usually the one holding the longest inverted list
o Other index servers send information to that server
o Final results sent to director
m Disk seek time for k terms and n index servers
o Document distribution: O(kn)
o Term distribution: O(k)
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m Insight: Query distributions similar to Zipf

o About Y2 of queries each day are unique, but some are very
popular

m Caching can significantly improve effectiveness
o Cache popular query results
o Cache common inverted lists

m Inverted list caching can help with unique queries
o And not only one-word queries

m Cache must be refreshed to prevent stale data



