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The Query Process
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Abstract Model of Ranking
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Numerical values generated 
by feature functions

Typically ignores 
very many features

High value predicts 
good match

Final output: Documents 
sorted descending by 

document score
Plus context features



More Concrete Model
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http://www.howard.k12.md.us
/res/aquariums/chichlids.html

Only few; 
others are zero



Retrieval Models

■ Provide a mathematical framework for defining the search process

□ Formalize human process of making decisions about 
relevance.

◊ Framework should at least correlate well.

□ Basis of many ranking algorithms

□ Can be implicit

■ Progress in retrieval models has corresponded with improvements 
in effectiveness.

□ Improvement of 100% in 90s (TREC)

■ Mostly: Theories about relevance
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Relevance

■ Complex concept, studied for some time

□ Many factors to consider 

□ People often disagree when making relevance judgments.

◊ Inter-annotator disagreement

■ Retrieval models make various assumptions about relevance to 
simplify problem.

□ Topical vs. user relevance

◊ Topical relevance: Document is of same topic

◊ User relevance: All other factors
● Some are used in some retrieval models

□ Binary vs. multi-valued relevance

◊ Relevant vs. non-relevant

◊ Relevant vs. unsure vs. non-relevant

◊ Retrieval models usually are more detailed (probability)
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Overview

■ Older models

□ Boolean retrieval

□ Vector Space model

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Boolean Retrieval

■ Two possible outcomes for query processing

□ TRUE or FALSE

□ “Exact-match” semantics

□ Simplest form of ranking

◊ All matching documents are considered equally relevant.

■ Query usually specified using Boolean operators

□ AND, OR, NOT

□ Textual proximity operators also used
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Boolean Retrieval

■ Advantages

□ Results are predictable and relatively easy to explain.

□ Many different features can be incorporated

◊ Date, document type, …

□ Efficient processing since many documents can be eliminated from 
search

■ Disadvantages

□ Effectiveness depends entirely on user.

◊ Presentation order not based on relevance
● But arbitrarily on date, size, etc.

□ Simple queries usually don’t work well.

□ Complex queries are difficult to write.

◊ Search intermediaries (e.g. in legal offices)
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“Searching by Numbers”

■ Sequence of queries driven by number of retrieved documents
□ Search of news articles for President Lincoln
1. lincoln

◊ Result: cars, places, people
2. president AND lincoln

◊ Result: “Ford Motor Company today announced that Darryl Hazel will 
succeed Brian Kelley as president of Lincoln Mercury.”

3. president AND lincoln AND NOT (automobile OR car)
◊ Not in result: “President Lincoln’s body departs Washington in a nine-

car funeral train.”
4. president AND lincoln AND biography AND life AND birthplace AND 

gettysburg AND NOT (automobile OR car)
◊ Result: Ø

5. president AND lincoln AND (biography OR life OR birthplace OR 
gettysburg) AND NOT (automobile OR car)
◊ Top result might be: “President’s Day - Holiday activities –

crafts, mazes, word searches, ... `The Life of Washington´
Read the entire book online! Abraham Lincoln Research Site”
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Vector Space Model

■ Very popular model, even today

□ Simple, intuitive

□ Useful for weighting, ranking, and relevance feedback

■ Documents and query represented by a vector of term weights

□ t is number of index terms (i.e., very large)

■ Collection represented by a matrix of term weights
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Vector Space Model – Example

■ D1: Tropical Freshwater Aquarium Fish.

■ D2: Tropical Fish, Aquarium Care, Tank Setup.

■ D3: Keeping Tropical Fish and Goldfish in Aquariums, and Fish 
Bowls.

■ D4: The Tropical Tank Homepage - Tropical Fish and Aquariums.

Felix Naumann | Search Engines | Sommer 2011

13

Rotated

Weights are 
term counts

Stopwords 
are removed

Query for „tropical fish“
(0 0 0 1 0 0 0 0 0 0 1)



Vector Space Model

■ 3-d pictures useful, but can be misleading for high-dimensional 
space

□ Intuition no longer necessarily correct

□ Millions of terms (and dimensions)
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Vector Space Model

■ Each document ranked by distance between points representing 
query and document

□ Similarity measure more common than a distance or 
dissimilarity measure

□ Popular: Cosine correlation

◊ Cosine of angle between document and query vectors

◊ Normalized dot-product

■ As retrieval model: No explicit definition of relevance

□ Implicit: Closer documents are more relevant.
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Similarity Calculation – Example

■ Consider three documents D1, D2, D3 and a query Q

□ D1 = (0.5, 0.8, 0.3), D2 = (0.9, 0.4, 0.2), D3 = (0, 0.9, 0.1)

□ Q = (1.5, 1.0, 0)

■ Vector space model reflects term weights and number of matching 
terms (in contrast to Boolean retrieval)

■ But: How to assign term weights?
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Cosine(D3,Q) = 0.55



Term Weights – tf.idf

■ Term frequency weight tf measures importance in document i:

□ Long documents have many words with only one occurrence 
but also many with hundreds of occurrences

□ log(fik) to reduce this impact of frequent words

■ Inverse document frequency idf measures importance in 
collection:

□ Reflects “amount of information” carried by term

■ tfidf by multiplying tf and idf with some heuristic modifications
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Normalization 
usually done by 
cosine similarity

+1 to ensure 
non-zero weight



Relevance Feedback – Rocchio
algorithm

■ Determine Optimal query 
□ Maximizes the difference between average vector representing the 

relevant documents and average vector representing the non-
relevant documents

■ Usually only limited feedback (i.e., not for all documents). Thus, only 
modify query weights:

□ qj is initial term weight
□ Rel is set of relevant documents
□ Nonrel is set of non-relevant documents

◊ Approximate as “all unseen documents”
□ α, β, and γ are parameters to control effect of components

◊ Typical values 8, 16, 4
■ Even query terms with qj = 0 can be modified: New terms may be 

added (usually restricted to 50).
■ And vice versa: Terms may accrue negative weight and are dropped.
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Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Probability Ranking Principle

■ Robertson (1977)

□ “If a reference retrieval system’s response to each request is a 
ranking of the documents in the collection in order of 
decreasing probability of relevance to the user who 
submitted the request, 

□ where the probabilities are estimated as accurately as 
possible on the basis of whatever data have been made 
available to the system for this purpose, 

□ the overall effectiveness of the system to its user will be the 
best that is obtainable on the basis of those data.”

■ Probability theory is a strong foundation for representing and 
manipulating the inherent uncertainty.

■ Problem: How to estimate probability of relevance?

□ Each model has different suggestion
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IR as Classification
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Actually, we just need a ranking



Bayes Classifier

■ Bayes Decision Rule

□ A document D is relevant if P(R|D) > P(NR|D).

■ Estimating probabilities

□ Use Bayes Rule

□ Determining P(D|R) should be easier: Given information about 
the relevant set (e.g. relevant words/query), determine how 
likely it is to see the same properties in D.

■ Example

□ Probability of “president” in relevant set is 0.02.

□ Probability of “lincoln” in relevant set is 0.03.

□ New document with “president” and “lincoln”. Probability of 
observing that combination is 0.0006.
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Bayes Classifier

■ Bayes rule

□ P(R) is apriori probability of relevance (how likely is any 
document to be relevant)

□ P(D) is normalizing constant.

■ Before: D relevant if P(R|D) > P(NR|D).

■ ⇔ P(D|R)P(R) > P(D|NR)P(NR)

■ Now: Classify a document as relevant if

□ lhs is likelihood ratio

■ Classification needs to make decision.

■ Search engine only needs to rank.

□ Rank by likelihood ratio, ignore rhs
Felix Naumann | Search Engines | Sommer 2011

24



Estimating P(D|R)

■ Binary independence model

□ Document represented as combinations of terms:

◊ Vector of binary features indicating term occurrence (or non-
occurrence)

□ Represent R and NR as term-probabilities

◊ pi is probability that term i occurs (i.e., has value 1) in 
relevant document, si is probability of occurrence in non-
relevant document

■ Assume independence (Naïve Bayes assumption)

□ Assumption is obviously incorrect, but successful

■ Example: 

□ Document D contains words 1, 4, and 5: (1,0,0,1,1)

□ Let pi denote probability that term i is in relevant set 

□ Relevance-probability of D is p1 x (1–p2) x (1–p3) x p4 x p5

Felix Naumann | Search Engines | Sommer 2011
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Binary Independence Model

■ Let pi denote probability that term i occurs in relevant set 

■ Let si denote probability that term i occurs in non-relevant set 

■ Reminder: Classify document as relevant if

□ Or rank according to lhs

Felix Naumann | Search Engines | Sommer 2011
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Binary Independence Model

■ Second term is over all documents, thus ignore
■ To avoid accuracy problems, use log
■ Scoring function is

■ Query provides information about relevant documents.
□ Summation only over terms that appear in query and document

■ Simplification
□ If no further information about relevant set, assume pi constant 

(e.g., 0.5)
□ Approximate si by entire collection (because number of relevant 

documents is very small).
□ Get idf-like weight 

◊ No tf-component, 
because binary features

Felix Naumann | Search Engines | Sommer 2011
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Contingency Table

■ If we do have information about term occurrences in relevant and 
non relevant information (through relevance feedback or pseudo-
relevance feedback): Store in contingency table

□ ri is number of relevant documents containing term i.

□ R is number of relevant documents for query.

□ ni is number of documents containing term i.

□ N is total number of documents.

Felix Naumann | Search Engines | Sommer 2011
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Term i is present:
Term i is not present: ni



Contingency Table

■ Idea: Use table to estimate pi and si for scoring function 

■ Obvious choices

□ pi = ri/R

□ si = (ni – ri)/(N – R)

□ Problem if ri = 0

□ Solution: Add 0.5 to counts and 1 to totals

■ Gives scoring function:

Felix Naumann | Search Engines | Sommer 2011
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Discussion

■ Uses only matching query terms

□ But: Relevance  feedback can be used to expand query

■ Not very good in practice

□ Missing tf component lowers effectiveness by 50%

□ I.e., 50% less relevant documents in top 10 compared to tfidf
rankings

■ But: Basis for BM25

□ Best Match variant 25

Felix Naumann | Search Engines | Sommer 2011
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BM25

■ Popular and effective ranking algorithm based on binary independence model

□ Adds document and query term weights

■ Scoring function

□ Summation over all query terms

□ fi is frequency of term i in document

□ qfi is frequency of term i in query

□ k1, k2 and K are parameters whose values are set empirically.

□ Reminders

◊ ri is number of relevant documents containing term i.
● Set to 0, if no relevance information

◊ R is number of relevant documents for query.
● Set to 0, if no relevance information

◊ ni is number of documents containing term i.

◊ N is total number of documents.

Felix Naumann | Search Engines | Sommer 2011
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BM25 – Interpretation

■ k1 determines how tf component of term weight changes as fi
increases
□ k1 = 0: term frequency ignored, only term presence
□ Typical: k1 = 1.2, thus first few occurrences have most impact

■ k2 same for query term frequency
□ Typical: 0 ≤ k2 ≤ 1000
□ Not sensitive, because low 

frequencies
■ K normalizes tf component by 

document length (dl).

□ b regulates length normalization
◊ b = 0: No normalization
◊ b = 1: Full normalization
◊ Typical: b = 0.75
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BM25 Example

■ Query with two terms, “president lincoln”, (qf = 1)

■ No relevance information: r = R = 0

■ N = 500,000 documents

■ “president” occurs in 40,000 documents (n1 = 40, 000)

■ “lincoln” occurs in 300 documents (n2 = 300)

■ “president” occurs 15 times in doc (f1 = 15)

■ “lincoln” occurs 25 times (f2 = 25)

■ Document length is 90% of the average length (dl/avdl = 0.9) 

■ k1 = 1.2, b = 0.75, and k2 = 100

■ K = 1.2 · (0.25 + 0.75 · 0.9) = 1.11
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BM25 Example
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president

lincoln

Without 
relevance, 
first factor is 
similar to idf: 
2.44 for 
president, 
7,42 for 
lincoln.



BM25 Example

■ Effect of term frequencies

■ Even one occurrence of lincoln makes for a large difference in 
score.

□ Occurrence of president less important

■ Document with very many occurrences of one word can be better 
than one with both words.

□ 15.66 > 12.74

Felix Naumann | Search Engines | Sommer 2011
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BM25 – Discussion

■ Seems complicated, but

□ Calculation of term weights at index time

□ With no relevance info, just add weights for matching query 
terms

◊ Plus some additional calculation for multiple query terms 
(qf > 1)

■ Well tuneable to different applications

Felix Naumann | Search Engines | Sommer 2011
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per query



Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Language Model

■ Language model applications
□ Speech recognition, machine translation, handwriting recognition
□ And information retrieval

■ Predicts which word is next in a sequence of words.
■ Unigram language model

□ Probability distribution over the words in a language
□ Generation of text consists of pulling words out of a “bucket” 

according to the probability distribution and replacing them.
□ Next word not dependent on previous word(s).
□ Example for language with 5 words: (.2, .1, .35, .25, .1)

■ N-gram language model
□ Predicts next word based on previous n-1 words.
□ Some applications use bigram and trigram language models 

where probabilities depend on previous words.
■ Bi- and tri-grams expensive – unigram models suffice for search 

applications.
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Language Model

■ A topic in a document can be represented as a language model

□ i.e., as a distribution over words.

□ Words that tend to occur often when discussing a topic will have 
high probabilities in the corresponding language model

□ In general: Distribution over all words, but most (unimportant 
words) will have default probability.

■ Multinomial distribution over words

□ Text is modeled as a finite sequence of words, where there are t 
possible words at each point in the sequence.

□ Commonly used, but not only possibility

□ Does not model burstiness

◊ Occurrence of a word makes repeated occurrence more likely

□ Not here…

■ The topic of a query can also be represented as language model.
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LMs for Retrieval

■ Three possibilities to use language models for retrieval:

1. Probability of generating the query text from a document 
language model

2. Probability of generating the document text from a query 
language model

3. Comparing the language models representing the query and 
document topics

■ Models of topical relevance

□ Query-Likelihood Model

□ Relevance model / document-likelihood model

40
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Query-Likelihood Model

■ Rank documents by the probability that the query could be 
generated by the document model 

□ Probability that we could pull the query words from the bucket 
of document words

□ i.e., same topic

■ Given query, start with P(D|Q)

■ Using Bayes’ Rule, ignoring normalizing constant P(Q) 

■ Assuming prior is uniform, unigram model

□ Possible non-uniform prior: Use date or document length
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Estimating Probabilities

■ Obvious estimate for unigram probabilities is 

■ Maximum likelihood estimate

□ makes the observed value of fqi;D most likely

■ Problems: 

□ If 1 query word out of 6 is missing from document, score will 
be zero

□ Missing 1 out of 6 query words same as missing 5 out of 6

□ Words associated with topic should have some probability, 
even if they do not appear in document.

◊ Assign at least some small probability

■ Thus: Smoothing
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Smoothing

■ Document texts are a sample from the language model

□ Missing words should not have zero probability of occurring

■ Smoothing is a technique for estimating probabilities for missing 
(or unseen) words.

□ Lower (or discount) the probability estimates for words that 
are seen in the document text.

□ Assign that “left-over” probability to the estimates for the 
words that are not seen in the text.

◊ Usually based on frequency of words in entire collection of 
documents
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Estimating Probabilities

■ Estimate for unseen words is αDP(qi|C)
□ P(qi|C) is the probability for query word i in the collection

language model for collection C (background probability)
□ αD is a parameter between 0 and 1

■ Estimate for words that occur is (1 − αD) P(qi|D) + αD P(qi|C)
□ To ensure summation to 1

■ Different forms of estimation come from different αD

■ Example: Only three words in collection w1, w2, w3

□ P(w1|C) = 0.3 P(w2|C) = 0.5 P(w3|C) = 0.2
□ P(w1|D) = 0.5 P(w2|D) = 0.5 P(w3|D) = 0
□ Smoothing

◊ P(w1|D) = (1 − αD) P(w1|D) + αD P(w1|C)
= (1 − αD) 0.5 + αD 0.3

◊ P(w2|D) = (1 − αD) 0.5 + αD 0.5
◊ P(w3|D) = (1 − αD) 0.0 + αD 0.2    ( = αD 0.2 > 0 !)
◊ Test: P(w1|D) + P(w2|D) + P(w3|D) = 1

■ Variations based on different choices for αD
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Jelinek-Mercer Smoothing

■ Simple choice: αD is a constant, αD = λ

■ Gives estimate of

■ Ranking score

■ Use logs for convenience

□ Due to accuracy problems when multiplying many small numbers

■ Small λ result in less smoothing, closer to Boolean AND

□ λ = 0.1 successful for short queries

■ For high λ relative weighting less important, closer to Boolean OR

□ Coordination level match: Ranks by number of matching query 
terms

□ λ = 0.7 successful for very long queries
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Where is tf.idf-like weight?
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proportional to the 
term frequency

inversely proportional to 
the collection frequency

Split into words 
that occur and 
those that do not

Add and subtract

Same for all docu-
ments: Ignore



Dirichlet Smoothing

■ More effective choice: let αD depend on document length:

■ Substituted in (1 − αD) P(qi|D) + αD P(qi|C) gives probability 
estimation

■ and document score

■ Small values for μ give more importance to relative term weights.

■ Large values favor number of matching terms.

■ Typical: 1,000 ≤ μ ≤ 2,000

Felix Naumann | Search Engines | Sommer 2011
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Query Likelihood Example

■ For the term “president”
□ fqi,D = 15, cqi = 160,000

■ For the term “lincoln”
□ fqi,D = 25, cqi = 2,400

■ Number of word occurrences in the document |d| is assumed to be 
1,800.

■ Number of word occurrences in the collection is 109.
□ 500,000 documents times an average of 2,000 words

■ μ = 2,000
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• Negative number 
because summing logs 
of small numbers
• Only ranking is 
relevant



Query Likelihood Example
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BM25:



Query Likelihood Discussion

■ Simple probabilistic retrieval model

■ Uses probability estimations as term weights

■ QL with Dirichlet smoothing similar to BM25

■ QL with advanced smoothing consistently better than BM25

□ Advanced smoothing: Use only similar documents instead of 
entire collection. Later…

■ Disadvantages

□ Difficult to incorporate information about relevant documents 
into ranking

□ Difficult to represent the fact that a query is just one of many 
possible queries to describe a particular need

Felix Naumann | Search Engines | Sommer 2011
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Relevance Models

■ Represent topic of query as language model

□ Call this the relevance model – language model representing 
information need

□ Query: Very small sample generated from this model

□ Relevant documents: Larger samples from same model

■ P(D|R) - probability of generating the text in a document given a 
relevance model

□ Document likelihood model

□ Less effective than query likelihood due to 

◊ Large and extremely variable number of words

◊ Difficulties comparing across documents of different lengths
● |Da| = 5; |Db| = 500
● P(Da|R) and P(Db|R) vs. P(Q|Da) and P(Q|Db)

◊ Difficult to obtain relevance model (examples for relevant 
documents)
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Pseudo-Relevance Feedback

■ Idea: 

1. Estimate relevance model from query and top-ranked 
documents.

2. Rank documents by similarity of document model to 
relevance model

◊ Kullback-Leibler divergence (KL-divergence) is a well-
known measure of the difference between two probability 
distributions
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KL-Divergence

■ Given the true probability distribution P and another distribution Q
that is an approximation to P,

□ Divergence: Large values mean large difference, mean low 
similarity.

□ KL(P||Q) ≥ 0

□ Not symmetric: KL(P||Q) ≠ KL(Q||P)

◊ Choice of “true” distribution is important.

■ Use negative KL-divergence for ranking, and assume relevance 
model R is the true distribution:

□ Summation over all words in vocabulary

Felix Naumann | Search Engines | Sommer 2011
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KL-Divergence

■ Second term same for each document: Ignore for ranking

■ Given a simple maximum likelihood estimate for P(w|R), based on 
the frequency in the query text, ranking score is

■ This is rank-equivalent to query likelihood score.

□ Non-query words are iterated but contribute zero.

□ Query words with frequency k contribute k times log P(w|D).

■ Query likelihood model is a special case of retrieval based on 
relevance model

□ More general model allows more sophisticated estimation 
based on other query words. Now…

Felix Naumann | Search Engines | Sommer 2011
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Estimating the Relevance Model

■ Probability of pulling a word w out of the “bucket” representing 
the relevance model depends on the n query words we have just 
pulled out

■ By definition

■ P(q1, …, qn) is normalizing constant

■ Now: Estimate P(w,q1, …, qn)

Felix Naumann | Search Engines | Sommer 2011

55



Estimating the Relevance Model

■ Given document set C represented by language models, joint 
probability is

■ Assume

■ Gives

Felix Naumann | Search Engines | Sommer 2011
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Estimating the Relevance Model

■ P(D) usually assumed to be uniform: Ignore

■ is query likelihood score for D.

□ Thus, P(w, q1 . . . qn) is simply a weighted average of the 
language model probabilities for w in a set of documents, 
where the weights are the query likelihood scores for those 
documents.

■ We are adding words to query by smoothing relevance model 
using documents that are similar to query.

■ This is precisely a formal model for pseudo-relevance feedback

□ Used as query expansion technique: Words with zero weight in 
relevance model will now have non-zero weights
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Pseudo-Feedback Algorithm

1. Rank documents using the query likelihood score for query Q.
□ Use Dirichlet-smoothing for P(w|D)

2. Select number of the top-ranked documents to be the set C.
□ Using entire collection including low-ranked documents would not 

be helpful. Also: Faster calculation
3. Calculate the relevance model 

probabilities P(w|R) using

□ P(q1 . . . qn) is used as a normalizing constant and is calculated as 
before as

4. Rank documents again using 
the KL-divergence score:
□ Use Dirichlet-smoothing for P(w|D)
□ Iterate only over highest-probability words for efficiency

Felix Naumann | Search Engines | Sommer 2011
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Example from Top 10 Docs
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16 highest-probability words from relevance model

Strong focus on source type (news)
This will reflect results of pseudo-
relevance feedback



Example from Top 50 Docs
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16 highest-probability words from relevance model

More general, because larger 
variety of topics in documents



Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ (Learning to Rank)
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Combining Evidence

■ Effective retrieval requires the combination of many pieces of 
evidence about a document’s potential relevance.
□ Until now: focus on simple word-based evidence
□ Many other types of evidence

◊ Words: Structure, proximity of word, relationships among 
words

◊ Metadata: PageRank, publication date, document type
◊ Scores from different models

■ Variant 1: Adapt BM25 or Query Likelihood with additional factors
□ Difficult to maintain, understand and tune

■ Variant 2: Inference network model is one approach to combining 
evidence
□ Probabilistic model 
□ Uses Bayesian network formalism
□ Mechanism to define and evaluate operators in a query language

◊ Operators to specify evidence
◊ Operators to combine evidence
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Bayesian Networks

■ Probabilistic model

■ Specifies set of events and dependencies between them

■ Modeled as DAG – directed acyclic graph

□ Nodes: Events

◊ Here: Observing a particular document or piece of 
evidence or some combination of evidences

◊ All binary

□ Arcs: probabilistic dependencies between events
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Inference Network
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about location

Evidence about 
document features
(terms, proximity) One language model for each 

significant document structure 
(title, body, heading)

Query nodes qi
combine evidence

Representation 
nodes ri

Information need node I



Inference Network

■ Document node (D) corresponds to the event that a document is 
observed.

■ Representation nodes (ri) are document features (evidence)

□ Probabilities associated with those features are based on 
language models θ estimated using the parameters μ

□ One language model for each significant document structure

□ ri nodes can represent proximity features, or other types of 
evidence, e.g., date
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Inference Network

■ Query nodes (qi) are used to combine evidence from 
representation nodes and other query nodes

□ Represent the occurrence of more complex evidence and 
document features

□ A number of combination operators are available

◊ AND, OR, …

■ Information need node (I) is a special query node that combines 
all of the evidence from the other query nodes

□ In all, network computes 
P(I|D, μ)

□ = probability that an information 
need is met given the document 
and the parameters μx

□ Used to rank documents
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Inference Network

■ Connections in inference network defined by query and by 
representation nodes

■ Probabilities for representation nodes estimated using relevance 
model

□ Reflect probability that feature is characteristic of document

◊ Not probability of occurrence

□ Node for „lincoln“ represents binary event that document is 
about that topic.

□ Relevance model used to calculate probability that that event 
is TRUE.

■ Document is represented by binary vector
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Inference Network

■ To calculate probabilities: 

□ Same as before – Dirichlet smoothing

□ fi,D is number of times feature ri occurs in D

□ P(ri|C) is collection probability for feature ri

□ μ is Dirichlet smoothing parameter

◊ Specific to the document structure of interest

■ Example: fi,D is number of times „lincoln“ appears in title

□ Collection probability calculated based on all collection titles

□ μ is title-specific
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Example: AND Combination

■ Query nodes are basis for operators of query language

□ Restricted to combinations that can be efficiently calculated

□ Calculate probability of each outcome (true or false) given all 
possible states of parent nodes

■ Example for Boolean AND:
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Example: AND Combination

■ Combination must consider all possible states of parents

■ Some combinations can be computed efficiently

■ Let pxy denote probability that q is TRUE given state x and y of 
parents.

□ pa is probability that a is TRUE

■ Calculate belief value (probability) from an AND combination:
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Inference Network Operators

■ Other operators can also be 
calculated efficiently.

■ Let q have n parents,

□ each with probability pi

of being true.
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Galago Query Language

■ Given description of underlying model and combination operators, define a 
query language that can be used internally in a search engine to produce 
rankings based on complex combinations of evidence.

■ Example here: Galago (galagosearch.org, developed by authors of textbook)
■ Query: „pet therapy“ compiled to Galago query
■ #weight(

0.1 #weight( 0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title) 

3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1.0 #od1(pet therapy).(anchor) 
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body) 
1.0 #od1(pet therapy).(heading))

0.1 #weight(
1.0 #uw8(pet therapy).(anchor) 
1.0 #uw8(pet therapy).(title)
3.0 #uw8(pet therapy).(body) 
1.0 #uw8(pet therapy).(heading))))
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Galago Query Language

■ A document is viewed as a sequence of text that may contain 
arbitrary tags.

□ HTML tags, XML tags

■ A single context is generated for each unique tag name T.

□ All text and tags that appear within tags of type T.

◊ Examples: <body>, <title>, <h1>, …

□ Context may be nested.

□ Terms can appear in multiple contexts.

□ Tags used beyond mere structure: Entity / feature extraction

■ An extent is a sequence of text that appears within a single 
begin/end tag pair of the same type as the context.
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Galago Query Language
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<html>
<head>
<title>Department Descriptions</title>
</head>
<body>
The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...
</body>
</html>

title context:
<title>Department Descriptions</title>

h1 context:
<h1>Agriculture</h1>
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...

body context:
<body> The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...
</body>



Galago Query Language – Terms

■ Term is basic building block

□ Corresponds to representation nodes in inference network

■ Large variety of terms defined

□ Simple, ordered phrase, synonym, …

■ Simple terms:

□ term

◊ term that will be normalized and stemmed.

□ "term"

◊ term is not normalized or stemmed.

□ Examples:

◊ presidents

◊ "NASA"
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Galago Query Language – Proximity 
Terms

■ #N( ... )

□ Ordered window – terms must appear ordered, with at most N-1 
terms between each.

■ #od( ... )

□ Unlimited ordered window – all terms must appear ordered 
anywhere within current context.

■ #uwN( ... )

□ Unordered window – all terms must appear within a window of 
length N in any order.

■ #uw( ... )

□ Unlimited unordered window – all terms must appear within 
current context in any order.

■ Examples:
□ #1(white house) – matches “white house” as an exact phrase.
□ #2(white house) – matches “white * house” (where * is any 

word or null).
□ #uw2(white house) – matches “white house” and “house white”.
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Galago Query Language – Synonyms

■ #syn( ... )

□ Treat all listed terms as synonyms

■ #wsyn( ... )

□ Treat all listed terms as synonyms

□ Allows assignment of  weights

■ Examples:

□ #syn(dog canine) – simple synonym based on two terms.

□ #syn( #1(united states) #1(united states of america)) 
– creates a synonym from two proximity terms.

□ #wsyn( 1.0 donald 0.8 don 0.5 donnie ) – weighted 
synonym indicating relative importance of terms.
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Galago Query Language – Anonymous 
Terms

■ #any(.)

□ Used to match extent types

■ Examples:

□ #any(PERSON) – matches any occurrence of a person extent.

□ #1(lincoln died in #any(DATE)) – matches exact phrases 
of the form:“lincoln died in <date>…</date>”.
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Galago Query Language – Context 
Restriction and Evaluation

■ expression.C1,...,CN

□ Matches when the expression appears in all contexts C1 through CN.

■ expression.(C1,...,CN)

□ Evaluates the expression using the language model defined by the 
concatenation of contexts C1...CN within the document.

■ Examples:

□ dog.title – matches the term “dog” appearing in a title extent.

□ #uw(smith jones).author – matches when the two names “smith” and 
“jones” appear in an author extent.

□ dog.(title) – evaluates the term based on the title relevance model for 
the document: Probability of occurrence for dog based on number of times 
word occurs in title field, normalized for number of words in title. 
Smoothing using only title fields in collection

□ #1(abraham lincoln).person.(header) – builds a relevance model from 
all of the “header” text in the document and evaluates #1(abraham
lincoln).person in that context (i.e. matches only the exact phrase 
appearing within a person extent within the header context).
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Galago Query Language – Belief 
Operators

■ Used to combine evidence

■ Weights can specify relative importance of evidence.

■ #combine(...)

□ Normalized version of the beland(q) operator in the inference 
network model.

■ #weight(...)

□ Normalized version of the belwand(q) operator.

■ #filter(...)

□ Similar to #combine, but all terms (simple, proximity, 
synonym, etc.) are evaluated without smoothing. Document 
must contain at least one instance of the term.
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Galago Query Language – Belief 
Operators

■ #combine( #syn(dog canine) training )

□ Rank by two terms, one of which is a synonym.
■ #combine( biography #syn(

#1(president lincoln) #1(abraham lincoln)) )

□ Rank using two terms, one of which is a synonym of “president 
lincoln” and “abraham lincoln”.

■ #weight( 1.0 #1(civil war) 3.0 lincoln 2.0 speech )

□ Rank using three terms, and weight the term “lincoln” as most 
important, followed by “speech”, then “civil war”.

■ #filter( aquarium #combine(tropical fish) )

□ Consider only those documents containing the word “aquarium” 
and rank them according to the query #combine(tropical 
fish).

■ #filter( #weight( 2.0 europe 1.0 travel) 
#1(john smith).author )

□ Rank documents about “europe” and “travel” that have “John 
Smith” in the author context.
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Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Web Search

■ Retrieval models in practice

□ Web search most important, but not only, search application

■ Major differences to TREC news

□ Size of collection

◊ Billions

□ Connections between documents

◊ Links

□ Range of document types

□ Importance of spam

□ Volume of queries

◊ Tens of millions per day

□ Range of query types

◊ Informational, navigational, transactional
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Search Taxonomy

■ Informational

□ Finding information about some topic that may be on one or 
more web pages

□ Topical search

■ Navigational

□ Finding a particular web page that the user has either seen 
before or is assumed to exist

□ Known-item search

■ Transactional

□ Finding a site where a task such as shopping or downloading 
music can be performed
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Web Search

■ For effective navigational and transactional search, need to 
combine features that reflect user relevance.

■ Commercial web search engines combine evidence from hundreds
of features to generate a ranking score for a web page

□ Page content

□ Page metadata

◊ “Age”, how often it is updated

◊ URL of the page

◊ Domain name of its site

◊ Amount of text content

□ Anchor text

□ Links (e.g., PageRank)

□ User behavior (click logs)
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Search Engine Optimization

■ SEO: Understanding the relative importance of features used in 
search and how they can be manipulated to obtain better search 
rankings for a web page

□ Improve the text used in the title tag

□ Improve the text in heading tags

□ Make sure that the domain name and URL contain important 
keywords

□ Improve the anchor text and link structure

■ Some of these techniques are regarded as not appropriate by 
search engine companies
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Web Search

■ In TREC evaluations, most effective features for navigational 
search are:

□ Text in the title, body, headings (h1, h2, h3, and h4)

□ Anchor text of all links pointing to the document

□ PageRank number and inlink count

■ Given size of Web, many pages will contain all query terms

□ Search engines can use AND semantics

◊ Dangerous for smaller collections
● Site search, news search, …
● TREC: Only 50% of relevant pages contain all search 

terms
□ Ranking algorithm focuses on discriminating between these 

pages

□ Term proximity is important.
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Term Proximity

■ Assumption: Query terms are likely to appear in close proximity within 
relevant documents

□ “Green party political views”

■ Many models have been developed

□ n-grams are commonly used in commercial web search

■ Dependence model based on inference net has been effective in TREC

□ Let SQ be the set of all non-empty subsets of Q (power set)

◊ Every s ∈ SQ that consists of contiguous query terms is likely 
to appear as an exact phrase in a relevant document 
● Represented using the #1 operator

◊ Every s ∈ SQ such that |s| > 1 is likely to appear (ordered or 
unordered) within a reasonably sized window of text in a 
relevant document 
● Represented as #uw8 for |s| = 2 and #uw12 for |s| = 3
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Term Proximity

■ Example query „embryonic stem cells“

□ SQ= {(embryonic),(stem),(cells), (embryonic stem), (stem 
cells), (embryonic cells), (embryonic stem cells)}

■ Compiled to Galago query

□ #weight( 
0.8 #combine( embryonic stem cells )
0.1 #combine( #od1(stem cells) 

#od1(embryonic stem)
#od1(embryonic stem cells) )

0.1 #combine( #uw8(stem cells) 
#uw8(embryonic cells)
#uw8(embryonic stem) 
#uw12(embryonic stem cells) )

)
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Example Web Query

■ Query: „pet therapy“
■ Compiled to Galago query
■ #weight(

0.1 #weight( 0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title) 

3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1.0 #od1(pet therapy).(anchor) 
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body) 
1.0 #od1(pet therapy).(heading))

0.1 #weight(
1.0 #uw8(pet therapy).(anchor) 
1.0 #uw8(pet therapy).(title)
3.0 #uw8(pet therapy).(body) 
1.0 #uw8(pet therapy).(heading))))
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Query types
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■ Insights gained from TREC 
experiments

■ Topical search: 

□ Simple terms and 
proximity features suffice

■ Navigational search: 

□ More evidence is helpful

■ Pseudo-relevance feedback

□ Helps topical search

□ Is detrimental for 
navigational search

■ But: How can we determine 
query type?

■ Other evidence is in general 
useful

□ User behavior: Clicked-on 
pages, dwell time, links 
followed

■ But: How to weight and 
combine more and more 
evidence?

□ Idea: Machine learning



Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank
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Machine Learning and IR

■ Considerable interaction between these fields

□ Rocchio algorithm (60s) is a simple learning approach

□ 80s, 90s: learning ranking algorithms based on user feedback

□ 2000s: text categorization

■ Limited by amount of training data

■ Web query logs have generated new wave of research

□ e.g., “Learning to Rank”
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Generative vs. Discriminative

■ All probabilistic retrieval models presented so far fall into the 
category of generative models.

□ Assume that documents were generated from some underlying 
model

□ Use training data to estimate the parameters of the model.

□ Probability of belonging to a class (i.e. the relevant documents 
for a query) is then estimated using Bayes’ Rule and the 
document model.
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Generative vs. Discriminative

■ A discriminative model estimates the probability of belonging to a 
class directly from the observed features of the document based 
on the training data.

■ Generative models perform well with low numbers of training 
examples.

■ Discriminative models usually have the advantage given enough 
training data.

□ Can also easily incorporate many features
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Discriminative Models for IR

■ Discriminative models can be trained using explicit relevance 
judgments or click data in query logs

□ Click data is much cheaper, more noisy

□ e.g. Ranking Support Vector Machine (SVM) takes as input 
partial rank information for queries

◊ Partial information about which documents should be 
ranked higher than others

□ Partial rank information comes from relevance judgments 
(allows multiple levels of relevance) or click data

◊ e.g., d1, d2 and d3 are the documents in the first, second 
and third rank of the search output, only d3 clicked on →
(d3, d1) and (d3, d2) will be in desired ranking for this 
query
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Summary

■ Best retrieval model depends on application and data available

■ Evaluation corpus (or test collection), training data, and user data 
are all critical resources.

■ Language resources (e.g., thesaurus) can make a big difference
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