
Search Engines
Chapter 7 – Retrieval Models

21.6.2011
Felix Naumann

The Indexing Process

Felix Naumann | Search Engines | Sommer 2011

2

Document
data store

Text Acquisition Index Creation

Text Transformation

Index
(inverted index)

Identifies and
stores documents
for indexing

Transforms
documents into index
terms or features

Takes index terms and
creates data structures
(indexes) to support fast
searching

Text and metadata for
all documents

The Query Process

Felix Naumann | Search Engines | Sommer 2011

3

Document
data store

User Interaction Ranking
(retrieval model)

Evaluation

Index

Log data

Supports creation and
refinement of query,
display of results

Monitors and measures
effectiveness and efficiency
(primarily offline)

Uses query and indexes
to generate ranked list
of documents

Abstract Model of Ranking

4

Felix Naumann | Search Engines | Sommer 2011

Numerical values generated
by feature functions

Typically ignores
very many features

High value predicts
good match

Final output: Documents
sorted descending by

document score
Plus context features

More Concrete Model

5

Felix Naumann | Search Engines | Sommer 2011

http://www.howard.k12.md.us
/res/aquariums/chichlids.html

Only few;
others are zero

Retrieval Models

■ Provide a mathematical framework for defining the search process

□ Formalize human process of making decisions about
relevance.

◊ Framework should at least correlate well.

□ Basis of many ranking algorithms

□ Can be implicit

■ Progress in retrieval models has corresponded with improvements
in effectiveness.

□ Improvement of 100% in 90s (TREC)

■ Mostly: Theories about relevance

6

Felix Naumann | Search Engines | Sommer 2011

Relevance

■ Complex concept, studied for some time

□ Many factors to consider

□ People often disagree when making relevance judgments.

◊ Inter-annotator disagreement

■ Retrieval models make various assumptions about relevance to
simplify problem.

□ Topical vs. user relevance

◊ Topical relevance: Document is of same topic

◊ User relevance: All other factors
● Some are used in some retrieval models

□ Binary vs. multi-valued relevance

◊ Relevant vs. non-relevant

◊ Relevant vs. unsure vs. non-relevant

◊ Retrieval models usually are more detailed (probability)

7

Felix Naumann | Search Engines | Sommer 2011

Overview

■ Older models

□ Boolean retrieval

□ Vector Space model

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank

Felix Naumann | Search Engines | Sommer 2011

8

Boolean Retrieval

■ Two possible outcomes for query processing

□ TRUE or FALSE

□ “Exact-match” semantics

□ Simplest form of ranking

◊ All matching documents are considered equally relevant.

■ Query usually specified using Boolean operators

□ AND, OR, NOT

□ Textual proximity operators also used

9

Felix Naumann | Search Engines | Sommer 2011

Boolean Retrieval

■ Advantages

□ Results are predictable and relatively easy to explain.

□ Many different features can be incorporated

◊ Date, document type, …

□ Efficient processing since many documents can be eliminated from
search

■ Disadvantages

□ Effectiveness depends entirely on user.

◊ Presentation order not based on relevance
● But arbitrarily on date, size, etc.

□ Simple queries usually don’t work well.

□ Complex queries are difficult to write.

◊ Search intermediaries (e.g. in legal offices)

10

Felix Naumann | Search Engines | Sommer 2011

“Searching by Numbers”

■ Sequence of queries driven by number of retrieved documents
□ Search of news articles for President Lincoln
1. lincoln

◊ Result: cars, places, people
2. president AND lincoln

◊ Result: “Ford Motor Company today announced that Darryl Hazel will
succeed Brian Kelley as president of Lincoln Mercury.”

3. president AND lincoln AND NOT (automobile OR car)
◊ Not in result: “President Lincoln’s body departs Washington in a nine-

car funeral train.”
4. president AND lincoln AND biography AND life AND birthplace AND

gettysburg AND NOT (automobile OR car)
◊ Result: Ø

5. president AND lincoln AND (biography OR life OR birthplace OR
gettysburg) AND NOT (automobile OR car)
◊ Top result might be: “President’s Day - Holiday activities –

crafts, mazes, word searches, ... `The Life of Washington´
Read the entire book online! Abraham Lincoln Research Site”

Felix Naumann | Search Engines | Sommer 2011

11

Vector Space Model

■ Very popular model, even today

□ Simple, intuitive

□ Useful for weighting, ranking, and relevance feedback

■ Documents and query represented by a vector of term weights

□ t is number of index terms (i.e., very large)

■ Collection represented by a matrix of term weights

12

Felix Naumann | Search Engines | Sommer 2011

Vector Space Model – Example

■ D1: Tropical Freshwater Aquarium Fish.

■ D2: Tropical Fish, Aquarium Care, Tank Setup.

■ D3: Keeping Tropical Fish and Goldfish in Aquariums, and Fish
Bowls.

■ D4: The Tropical Tank Homepage - Tropical Fish and Aquariums.

Felix Naumann | Search Engines | Sommer 2011

13

Rotated

Weights are
term counts

Stopwords
are removed

Query for „tropical fish“
(0 0 0 1 0 0 0 0 0 0 1)

Vector Space Model

■ 3-d pictures useful, but can be misleading for high-dimensional
space

□ Intuition no longer necessarily correct

□ Millions of terms (and dimensions)

14

Felix Naumann | Search Engines | Sommer 2011

Vector Space Model

■ Each document ranked by distance between points representing
query and document

□ Similarity measure more common than a distance or
dissimilarity measure

□ Popular: Cosine correlation

◊ Cosine of angle between document and query vectors

◊ Normalized dot-product

■ As retrieval model: No explicit definition of relevance

□ Implicit: Closer documents are more relevant.

15

Felix Naumann | Search Engines | Sommer 2011

http://www.euclideanspace.com/math
s/geometry/trig/derived/index.htm

Similarity Calculation – Example

■ Consider three documents D1, D2, D3 and a query Q

□ D1 = (0.5, 0.8, 0.3), D2 = (0.9, 0.4, 0.2), D3 = (0, 0.9, 0.1)

□ Q = (1.5, 1.0, 0)

■ Vector space model reflects term weights and number of matching
terms (in contrast to Boolean retrieval)

■ But: How to assign term weights?

16

Felix Naumann | Search Engines | Sommer 2011

Cosine(D3,Q) = 0.55

Term Weights – tf.idf

■ Term frequency weight tf measures importance in document i:

□ Long documents have many words with only one occurrence
but also many with hundreds of occurrences

□ log(fik) to reduce this impact of frequent words

■ Inverse document frequency idf measures importance in
collection:

□ Reflects “amount of information” carried by term

■ tfidf by multiplying tf and idf with some heuristic modifications

Felix Naumann | Search Engines | Sommer 2011

17

Normalization
usually done by
cosine similarity

+1 to ensure
non-zero weight

Relevance Feedback – Rocchio
algorithm

■ Determine Optimal query
□ Maximizes the difference between average vector representing the

relevant documents and average vector representing the non-
relevant documents

■ Usually only limited feedback (i.e., not for all documents). Thus, only
modify query weights:

□ qj is initial term weight
□ Rel is set of relevant documents
□ Nonrel is set of non-relevant documents

◊ Approximate as “all unseen documents”
□ α, β, and γ are parameters to control effect of components

◊ Typical values 8, 16, 4
■ Even query terms with qj = 0 can be modified: New terms may be

added (usually restricted to 50).
■ And vice versa: Terms may accrue negative weight and are dropped.

18

Felix Naumann | Search Engines | Sommer 2011

Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank

Felix Naumann | Search Engines | Sommer 2011

20

Probability Ranking Principle

■ Robertson (1977)

□ “If a reference retrieval system’s response to each request is a
ranking of the documents in the collection in order of
decreasing probability of relevance to the user who
submitted the request,

□ where the probabilities are estimated as accurately as
possible on the basis of whatever data have been made
available to the system for this purpose,

□ the overall effectiveness of the system to its user will be the
best that is obtainable on the basis of those data.”

■ Probability theory is a strong foundation for representing and
manipulating the inherent uncertainty.

■ Problem: How to estimate probability of relevance?

□ Each model has different suggestion

21

Felix Naumann | Search Engines | Sommer 2011

IR as Classification

22

Felix Naumann | Search Engines | Sommer 2011

Actually, we just need a ranking

Bayes Classifier

■ Bayes Decision Rule

□ A document D is relevant if P(R|D) > P(NR|D).

■ Estimating probabilities

□ Use Bayes Rule

□ Determining P(D|R) should be easier: Given information about
the relevant set (e.g. relevant words/query), determine how
likely it is to see the same properties in D.

■ Example

□ Probability of “president” in relevant set is 0.02.

□ Probability of “lincoln” in relevant set is 0.03.

□ New document with “president” and “lincoln”. Probability of
observing that combination is 0.0006.

Felix Naumann | Search Engines | Sommer 2011

23

Bayes Classifier

■ Bayes rule

□ P(R) is apriori probability of relevance (how likely is any
document to be relevant)

□ P(D) is normalizing constant.

■ Before: D relevant if P(R|D) > P(NR|D).

■ ⇔ P(D|R)P(R) > P(D|NR)P(NR)

■ Now: Classify a document as relevant if

□ lhs is likelihood ratio

■ Classification needs to make decision.

■ Search engine only needs to rank.

□ Rank by likelihood ratio, ignore rhs
Felix Naumann | Search Engines | Sommer 2011

24

Estimating P(D|R)

■ Binary independence model

□ Document represented as combinations of terms:

◊ Vector of binary features indicating term occurrence (or non-
occurrence)

□ Represent R and NR as term-probabilities

◊ pi is probability that term i occurs (i.e., has value 1) in
relevant document, si is probability of occurrence in non-
relevant document

■ Assume independence (Naïve Bayes assumption)

□ Assumption is obviously incorrect, but successful

■ Example:

□ Document D contains words 1, 4, and 5: (1,0,0,1,1)

□ Let pi denote probability that term i is in relevant set

□ Relevance-probability of D is p1 x (1–p2) x (1–p3) x p4 x p5

Felix Naumann | Search Engines | Sommer 2011

25

Binary Independence Model

■ Let pi denote probability that term i occurs in relevant set

■ Let si denote probability that term i occurs in non-relevant set

■ Reminder: Classify document as relevant if

□ Or rank according to lhs

Felix Naumann | Search Engines | Sommer 2011

26

Binary Independence Model

■ Second term is over all documents, thus ignore
■ To avoid accuracy problems, use log
■ Scoring function is

■ Query provides information about relevant documents.
□ Summation only over terms that appear in query and document

■ Simplification
□ If no further information about relevant set, assume pi constant

(e.g., 0.5)
□ Approximate si by entire collection (because number of relevant

documents is very small).
□ Get idf-like weight

◊ No tf-component,
because binary features

Felix Naumann | Search Engines | Sommer 2011

27

Contingency Table

■ If we do have information about term occurrences in relevant and
non relevant information (through relevance feedback or pseudo-
relevance feedback): Store in contingency table

□ ri is number of relevant documents containing term i.

□ R is number of relevant documents for query.

□ ni is number of documents containing term i.

□ N is total number of documents.

Felix Naumann | Search Engines | Sommer 2011

28

Term i is present:
Term i is not present: ni

Contingency Table

■ Idea: Use table to estimate pi and si for scoring function

■ Obvious choices

□ pi = ri/R

□ si = (ni – ri)/(N – R)

□ Problem if ri = 0

□ Solution: Add 0.5 to counts and 1 to totals

■ Gives scoring function:

Felix Naumann | Search Engines | Sommer 2011

29

ni

Discussion

■ Uses only matching query terms

□ But: Relevance feedback can be used to expand query

■ Not very good in practice

□ Missing tf component lowers effectiveness by 50%

□ I.e., 50% less relevant documents in top 10 compared to tfidf
rankings

■ But: Basis for BM25

□ Best Match variant 25

Felix Naumann | Search Engines | Sommer 2011

30

BM25

■ Popular and effective ranking algorithm based on binary independence model

□ Adds document and query term weights

■ Scoring function

□ Summation over all query terms

□ fi is frequency of term i in document

□ qfi is frequency of term i in query

□ k1, k2 and K are parameters whose values are set empirically.

□ Reminders

◊ ri is number of relevant documents containing term i.
● Set to 0, if no relevance information

◊ R is number of relevant documents for query.
● Set to 0, if no relevance information

◊ ni is number of documents containing term i.

◊ N is total number of documents.

Felix Naumann | Search Engines | Sommer 2011

31

BM25 – Interpretation

■ k1 determines how tf component of term weight changes as fi
increases
□ k1 = 0: term frequency ignored, only term presence
□ Typical: k1 = 1.2, thus first few occurrences have most impact

■ k2 same for query term frequency
□ Typical: 0 ≤ k2 ≤ 1000
□ Not sensitive, because low

frequencies
■ K normalizes tf component by

document length (dl).

□ b regulates length normalization
◊ b = 0: No normalization
◊ b = 1: Full normalization
◊ Typical: b = 0.75

Felix Naumann | Search Engines | Sommer 2011

32

0

0,5

1

1,5

2

2,5

1 3 5 7 9
1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

k1 = 1,2 K=1,1

BM25 Example

■ Query with two terms, “president lincoln”, (qf = 1)

■ No relevance information: r = R = 0

■ N = 500,000 documents

■ “president” occurs in 40,000 documents (n1 = 40, 000)

■ “lincoln” occurs in 300 documents (n2 = 300)

■ “president” occurs 15 times in doc (f1 = 15)

■ “lincoln” occurs 25 times (f2 = 25)

■ Document length is 90% of the average length (dl/avdl = 0.9)

■ k1 = 1.2, b = 0.75, and k2 = 100

■ K = 1.2 · (0.25 + 0.75 · 0.9) = 1.11

33

Felix Naumann | Search Engines | Sommer 2011

BM25 Example

34

Felix Naumann | Search Engines | Sommer 2011

president

lincoln

Without
relevance,
first factor is
similar to idf:
2.44 for
president,
7,42 for
lincoln.

BM25 Example

■ Effect of term frequencies

■ Even one occurrence of lincoln makes for a large difference in
score.

□ Occurrence of president less important

■ Document with very many occurrences of one word can be better
than one with both words.

□ 15.66 > 12.74

Felix Naumann | Search Engines | Sommer 2011

35

BM25 – Discussion

■ Seems complicated, but

□ Calculation of term weights at index time

□ With no relevance info, just add weights for matching query
terms

◊ Plus some additional calculation for multiple query terms
(qf > 1)

■ Well tuneable to different applications

Felix Naumann | Search Engines | Sommer 2011

36

Constant
per term

Constant
per query

Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank

Felix Naumann | Search Engines | Sommer 2011

37

Language Model

■ Language model applications
□ Speech recognition, machine translation, handwriting recognition
□ And information retrieval

■ Predicts which word is next in a sequence of words.
■ Unigram language model

□ Probability distribution over the words in a language
□ Generation of text consists of pulling words out of a “bucket”

according to the probability distribution and replacing them.
□ Next word not dependent on previous word(s).
□ Example for language with 5 words: (.2, .1, .35, .25, .1)

■ N-gram language model
□ Predicts next word based on previous n-1 words.
□ Some applications use bigram and trigram language models

where probabilities depend on previous words.
■ Bi- and tri-grams expensive – unigram models suffice for search

applications.

38

Felix Naumann | Search Engines | Sommer 2011

Language Model

■ A topic in a document can be represented as a language model

□ i.e., as a distribution over words.

□ Words that tend to occur often when discussing a topic will have
high probabilities in the corresponding language model

□ In general: Distribution over all words, but most (unimportant
words) will have default probability.

■ Multinomial distribution over words

□ Text is modeled as a finite sequence of words, where there are t
possible words at each point in the sequence.

□ Commonly used, but not only possibility

□ Does not model burstiness

◊ Occurrence of a word makes repeated occurrence more likely

□ Not here…

■ The topic of a query can also be represented as language model.

39

Felix Naumann | Search Engines | Sommer 2011

LMs for Retrieval

■ Three possibilities to use language models for retrieval:

1. Probability of generating the query text from a document
language model

2. Probability of generating the document text from a query
language model

3. Comparing the language models representing the query and
document topics

■ Models of topical relevance

□ Query-Likelihood Model

□ Relevance model / document-likelihood model

40

Felix Naumann | Search Engines | Sommer 2011

Query-Likelihood Model

■ Rank documents by the probability that the query could be
generated by the document model

□ Probability that we could pull the query words from the bucket
of document words

□ i.e., same topic

■ Given query, start with P(D|Q)

■ Using Bayes’ Rule, ignoring normalizing constant P(Q)

■ Assuming prior is uniform, unigram model

□ Possible non-uniform prior: Use date or document length

41

Felix Naumann | Search Engines | Sommer 2011

Estimating Probabilities

■ Obvious estimate for unigram probabilities is

■ Maximum likelihood estimate

□ makes the observed value of fqi;D most likely

■ Problems:

□ If 1 query word out of 6 is missing from document, score will
be zero

□ Missing 1 out of 6 query words same as missing 5 out of 6

□ Words associated with topic should have some probability,
even if they do not appear in document.

◊ Assign at least some small probability

■ Thus: Smoothing

42

Felix Naumann | Search Engines | Sommer 2011

Smoothing

■ Document texts are a sample from the language model

□ Missing words should not have zero probability of occurring

■ Smoothing is a technique for estimating probabilities for missing
(or unseen) words.

□ Lower (or discount) the probability estimates for words that
are seen in the document text.

□ Assign that “left-over” probability to the estimates for the
words that are not seen in the text.

◊ Usually based on frequency of words in entire collection of
documents

43

Felix Naumann | Search Engines | Sommer 2011

Estimating Probabilities

■ Estimate for unseen words is αDP(qi|C)
□ P(qi|C) is the probability for query word i in the collection

language model for collection C (background probability)
□ αD is a parameter between 0 and 1

■ Estimate for words that occur is (1 − αD) P(qi|D) + αD P(qi|C)
□ To ensure summation to 1

■ Different forms of estimation come from different αD

■ Example: Only three words in collection w1, w2, w3

□ P(w1|C) = 0.3 P(w2|C) = 0.5 P(w3|C) = 0.2
□ P(w1|D) = 0.5 P(w2|D) = 0.5 P(w3|D) = 0
□ Smoothing

◊ P(w1|D) = (1 − αD) P(w1|D) + αD P(w1|C)
= (1 − αD) 0.5 + αD 0.3

◊ P(w2|D) = (1 − αD) 0.5 + αD 0.5
◊ P(w3|D) = (1 − αD) 0.0 + αD 0.2 (= αD 0.2 > 0 !)
◊ Test: P(w1|D) + P(w2|D) + P(w3|D) = 1

■ Variations based on different choices for αD

44

Felix Naumann | Search Engines | Sommer 2011

Jelinek-Mercer Smoothing

■ Simple choice: αD is a constant, αD = λ

■ Gives estimate of

■ Ranking score

■ Use logs for convenience

□ Due to accuracy problems when multiplying many small numbers

■ Small λ result in less smoothing, closer to Boolean AND

□ λ = 0.1 successful for short queries

■ For high λ relative weighting less important, closer to Boolean OR

□ Coordination level match: Ranks by number of matching query
terms

□ λ = 0.7 successful for very long queries

45

Felix Naumann | Search Engines | Sommer 2011

Where is tf.idf-like weight?

46

Felix Naumann | Search Engines | Sommer 2011

proportional to the
term frequency

inversely proportional to
the collection frequency

Split into words
that occur and
those that do not

Add and subtract

Same for all docu-
ments: Ignore

Dirichlet Smoothing

■ More effective choice: let αD depend on document length:

■ Substituted in (1 − αD) P(qi|D) + αD P(qi|C) gives probability
estimation

■ and document score

■ Small values for μ give more importance to relative term weights.

■ Large values favor number of matching terms.

■ Typical: 1,000 ≤ μ ≤ 2,000

Felix Naumann | Search Engines | Sommer 2011

47

Query Likelihood Example

■ For the term “president”
□ fqi,D = 15, cqi = 160,000

■ For the term “lincoln”
□ fqi,D = 25, cqi = 2,400

■ Number of word occurrences in the document |d| is assumed to be
1,800.

■ Number of word occurrences in the collection is 109.
□ 500,000 documents times an average of 2,000 words

■ μ = 2,000

48

Felix Naumann | Search Engines | Sommer 2011

• Negative number
because summing logs
of small numbers
• Only ranking is
relevant

Query Likelihood Example

49

Felix Naumann | Search Engines | Sommer 2011

QL:

BM25:

Query Likelihood Discussion

■ Simple probabilistic retrieval model

■ Uses probability estimations as term weights

■ QL with Dirichlet smoothing similar to BM25

■ QL with advanced smoothing consistently better than BM25

□ Advanced smoothing: Use only similar documents instead of
entire collection. Later…

■ Disadvantages

□ Difficult to incorporate information about relevant documents
into ranking

□ Difficult to represent the fact that a query is just one of many
possible queries to describe a particular need

Felix Naumann | Search Engines | Sommer 2011

50

Relevance Models

■ Represent topic of query as language model

□ Call this the relevance model – language model representing
information need

□ Query: Very small sample generated from this model

□ Relevant documents: Larger samples from same model

■ P(D|R) - probability of generating the text in a document given a
relevance model

□ Document likelihood model

□ Less effective than query likelihood due to

◊ Large and extremely variable number of words

◊ Difficulties comparing across documents of different lengths
● |Da| = 5; |Db| = 500
● P(Da|R) and P(Db|R) vs. P(Q|Da) and P(Q|Db)

◊ Difficult to obtain relevance model (examples for relevant
documents)

51

Felix Naumann | Search Engines | Sommer 2011

Pseudo-Relevance Feedback

■ Idea:

1. Estimate relevance model from query and top-ranked
documents.

2. Rank documents by similarity of document model to
relevance model

◊ Kullback-Leibler divergence (KL-divergence) is a well-
known measure of the difference between two probability
distributions

52

Felix Naumann | Search Engines | Sommer 2011

KL-Divergence

■ Given the true probability distribution P and another distribution Q
that is an approximation to P,

□ Divergence: Large values mean large difference, mean low
similarity.

□ KL(P||Q) ≥ 0

□ Not symmetric: KL(P||Q) ≠ KL(Q||P)

◊ Choice of “true” distribution is important.

■ Use negative KL-divergence for ranking, and assume relevance
model R is the true distribution:

□ Summation over all words in vocabulary

Felix Naumann | Search Engines | Sommer 2011

53

KL-Divergence

■ Second term same for each document: Ignore for ranking

■ Given a simple maximum likelihood estimate for P(w|R), based on
the frequency in the query text, ranking score is

■ This is rank-equivalent to query likelihood score.

□ Non-query words are iterated but contribute zero.

□ Query words with frequency k contribute k times log P(w|D).

■ Query likelihood model is a special case of retrieval based on
relevance model

□ More general model allows more sophisticated estimation
based on other query words. Now…

Felix Naumann | Search Engines | Sommer 2011

54

Estimating the Relevance Model

■ Probability of pulling a word w out of the “bucket” representing
the relevance model depends on the n query words we have just
pulled out

■ By definition

■ P(q1, …, qn) is normalizing constant

■ Now: Estimate P(w,q1, …, qn)

Felix Naumann | Search Engines | Sommer 2011

55

Estimating the Relevance Model

■ Given document set C represented by language models, joint
probability is

■ Assume

■ Gives

Felix Naumann | Search Engines | Sommer 2011

56

Estimating the Relevance Model

■ P(D) usually assumed to be uniform: Ignore

■ is query likelihood score for D.

□ Thus, P(w, q1 . . . qn) is simply a weighted average of the
language model probabilities for w in a set of documents,
where the weights are the query likelihood scores for those
documents.

■ We are adding words to query by smoothing relevance model
using documents that are similar to query.

■ This is precisely a formal model for pseudo-relevance feedback

□ Used as query expansion technique: Words with zero weight in
relevance model will now have non-zero weights

57

Felix Naumann | Search Engines | Sommer 2011

Pseudo-Feedback Algorithm

1. Rank documents using the query likelihood score for query Q.
□ Use Dirichlet-smoothing for P(w|D)

2. Select number of the top-ranked documents to be the set C.
□ Using entire collection including low-ranked documents would not

be helpful. Also: Faster calculation
3. Calculate the relevance model

probabilities P(w|R) using

□ P(q1 . . . qn) is used as a normalizing constant and is calculated as
before as

4. Rank documents again using
the KL-divergence score:
□ Use Dirichlet-smoothing for P(w|D)
□ Iterate only over highest-probability words for efficiency

Felix Naumann | Search Engines | Sommer 2011

58

Example from Top 10 Docs

59

Felix Naumann | Search Engines | Sommer 2011

16 highest-probability words from relevance model

Strong focus on source type (news)
This will reflect results of pseudo-
relevance feedback

Example from Top 50 Docs

60

Felix Naumann | Search Engines | Sommer 2011

16 highest-probability words from relevance model

More general, because larger
variety of topics in documents

Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ (Learning to Rank)

Felix Naumann | Search Engines | Sommer 2011

61

Combining Evidence

■ Effective retrieval requires the combination of many pieces of
evidence about a document’s potential relevance.
□ Until now: focus on simple word-based evidence
□ Many other types of evidence

◊ Words: Structure, proximity of word, relationships among
words

◊ Metadata: PageRank, publication date, document type
◊ Scores from different models

■ Variant 1: Adapt BM25 or Query Likelihood with additional factors
□ Difficult to maintain, understand and tune

■ Variant 2: Inference network model is one approach to combining
evidence
□ Probabilistic model
□ Uses Bayesian network formalism
□ Mechanism to define and evaluate operators in a query language

◊ Operators to specify evidence
◊ Operators to combine evidence

62

Felix Naumann | Search Engines | Sommer 2011

Bayesian Networks

■ Probabilistic model

■ Specifies set of events and dependencies between them

■ Modeled as DAG – directed acyclic graph

□ Nodes: Events

◊ Here: Observing a particular document or piece of
evidence or some combination of evidences

◊ All binary

□ Arcs: probabilistic dependencies between events

Felix Naumann | Search Engines | Sommer 2011

63

Inference Network

64

Felix Naumann | Search Engines | Sommer 2011

Document node

Evidence
about location

Evidence about
document features
(terms, proximity) One language model for each

significant document structure
(title, body, heading)

Query nodes qi
combine evidence

Representation
nodes ri

Information need node I

Inference Network

■ Document node (D) corresponds to the event that a document is
observed.

■ Representation nodes (ri) are document features (evidence)

□ Probabilities associated with those features are based on
language models θ estimated using the parameters μ

□ One language model for each significant document structure

□ ri nodes can represent proximity features, or other types of
evidence, e.g., date

65

Felix Naumann | Search Engines | Sommer 2011

Inference Network

■ Query nodes (qi) are used to combine evidence from
representation nodes and other query nodes

□ Represent the occurrence of more complex evidence and
document features

□ A number of combination operators are available

◊ AND, OR, …

■ Information need node (I) is a special query node that combines
all of the evidence from the other query nodes

□ In all, network computes
P(I|D, μ)

□ = probability that an information
need is met given the document
and the parameters μx

□ Used to rank documents

66

Felix Naumann | Search Engines | Sommer 2011

Inference Network

■ Connections in inference network defined by query and by
representation nodes

■ Probabilities for representation nodes estimated using relevance
model

□ Reflect probability that feature is characteristic of document

◊ Not probability of occurrence

□ Node for „lincoln“ represents binary event that document is
about that topic.

□ Relevance model used to calculate probability that that event
is TRUE.

■ Document is represented by binary vector

Felix Naumann | Search Engines | Sommer 2011

67

Inference Network

■ To calculate probabilities:

□ Same as before – Dirichlet smoothing

□ fi,D is number of times feature ri occurs in D

□ P(ri|C) is collection probability for feature ri

□ μ is Dirichlet smoothing parameter

◊ Specific to the document structure of interest

■ Example: fi,D is number of times „lincoln“ appears in title

□ Collection probability calculated based on all collection titles

□ μ is title-specific

Felix Naumann | Search Engines | Sommer 2011

68

Example: AND Combination

■ Query nodes are basis for operators of query language

□ Restricted to combinations that can be efficiently calculated

□ Calculate probability of each outcome (true or false) given all
possible states of parent nodes

■ Example for Boolean AND:

Felix Naumann | Search Engines | Sommer 2011

69

a and b are parent nodes for q

a b

q

Example: AND Combination

■ Combination must consider all possible states of parents

■ Some combinations can be computed efficiently

■ Let pxy denote probability that q is TRUE given state x and y of
parents.

□ pa is probability that a is TRUE

■ Calculate belief value (probability) from an AND combination:

70

Felix Naumann | Search Engines | Sommer 2011

Inference Network Operators

■ Other operators can also be
calculated efficiently.

■ Let q have n parents,

□ each with probability pi

of being true.

Felix Naumann | Search Engines | Sommer 2011

71

wti is weight of
parent to indicate

relative importance

Unary
operator

Galago Query Language

■ Given description of underlying model and combination operators, define a
query language that can be used internally in a search engine to produce
rankings based on complex combinations of evidence.

■ Example here: Galago (galagosearch.org, developed by authors of textbook)
■ Query: „pet therapy“ compiled to Galago query
■ #weight(

0.1 #weight(0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title)

3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1.0 #od1(pet therapy).(anchor)
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body)
1.0 #od1(pet therapy).(heading))

0.1 #weight(
1.0 #uw8(pet therapy).(anchor)
1.0 #uw8(pet therapy).(title)
3.0 #uw8(pet therapy).(body)
1.0 #uw8(pet therapy).(heading))))

72

Felix Naumann | Search Engines | Sommer 2011

Galago Query Language

■ A document is viewed as a sequence of text that may contain
arbitrary tags.

□ HTML tags, XML tags

■ A single context is generated for each unique tag name T.

□ All text and tags that appear within tags of type T.

◊ Examples: <body>, <title>, <h1>, …

□ Context may be nested.

□ Terms can appear in multiple contexts.

□ Tags used beyond mere structure: Entity / feature extraction

■ An extent is a sequence of text that appears within a single
begin/end tag pair of the same type as the context.

73

Felix Naumann | Search Engines | Sommer 2011

Galago Query Language

74

Felix Naumann | Search Engines | Sommer 2011

<html>
<head>
<title>Department Descriptions</title>
</head>
<body>
The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...
</body>
</html>

title context:
<title>Department Descriptions</title>

h1 context:
<h1>Agriculture</h1>
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...

body context:
<body> The following list describes ...
<h1>Agriculture</h1> ...
<h1>Chemistry</h1> ...
<h1>Computer Science</h1> ...
<h1>Electrical Engineering</h1> ...
</body>

Galago Query Language – Terms

■ Term is basic building block

□ Corresponds to representation nodes in inference network

■ Large variety of terms defined

□ Simple, ordered phrase, synonym, …

■ Simple terms:

□ term

◊ term that will be normalized and stemmed.

□ "term"

◊ term is not normalized or stemmed.

□ Examples:

◊ presidents

◊ "NASA"

Felix Naumann | Search Engines | Sommer 2011

75

Galago Query Language – Proximity
Terms

■ #N(...)

□ Ordered window – terms must appear ordered, with at most N-1
terms between each.

■ #od(...)

□ Unlimited ordered window – all terms must appear ordered
anywhere within current context.

■ #uwN(...)

□ Unordered window – all terms must appear within a window of
length N in any order.

■ #uw(...)

□ Unlimited unordered window – all terms must appear within
current context in any order.

■ Examples:
□ #1(white house) – matches “white house” as an exact phrase.
□ #2(white house) – matches “white * house” (where * is any

word or null).
□ #uw2(white house) – matches “white house” and “house white”.

Felix Naumann | Search Engines | Sommer 2011

76

Galago Query Language – Synonyms

■ #syn(...)

□ Treat all listed terms as synonyms

■ #wsyn(...)

□ Treat all listed terms as synonyms

□ Allows assignment of weights

■ Examples:

□ #syn(dog canine) – simple synonym based on two terms.

□ #syn(#1(united states) #1(united states of america))
– creates a synonym from two proximity terms.

□ #wsyn(1.0 donald 0.8 don 0.5 donnie) – weighted
synonym indicating relative importance of terms.

Felix Naumann | Search Engines | Sommer 2011

77

Galago Query Language – Anonymous
Terms

■ #any(.)

□ Used to match extent types

■ Examples:

□ #any(PERSON) – matches any occurrence of a person extent.

□ #1(lincoln died in #any(DATE)) – matches exact phrases
of the form:“lincoln died in <date>…</date>”.

Felix Naumann | Search Engines | Sommer 2011

78

Galago Query Language – Context
Restriction and Evaluation

■ expression.C1,...,CN

□ Matches when the expression appears in all contexts C1 through CN.

■ expression.(C1,...,CN)

□ Evaluates the expression using the language model defined by the
concatenation of contexts C1...CN within the document.

■ Examples:

□ dog.title – matches the term “dog” appearing in a title extent.

□ #uw(smith jones).author – matches when the two names “smith” and
“jones” appear in an author extent.

□ dog.(title) – evaluates the term based on the title relevance model for
the document: Probability of occurrence for dog based on number of times
word occurs in title field, normalized for number of words in title.
Smoothing using only title fields in collection

□ #1(abraham lincoln).person.(header) – builds a relevance model from
all of the “header” text in the document and evaluates #1(abraham
lincoln).person in that context (i.e. matches only the exact phrase
appearing within a person extent within the header context).

Felix Naumann | Search Engines | Sommer 2011

79

Galago Query Language – Belief
Operators

■ Used to combine evidence

■ Weights can specify relative importance of evidence.

■ #combine(...)

□ Normalized version of the beland(q) operator in the inference
network model.

■ #weight(...)

□ Normalized version of the belwand(q) operator.

■ #filter(...)

□ Similar to #combine, but all terms (simple, proximity,
synonym, etc.) are evaluated without smoothing. Document
must contain at least one instance of the term.

Felix Naumann | Search Engines | Sommer 2011

80

Galago Query Language – Belief
Operators

■ #combine(#syn(dog canine) training)

□ Rank by two terms, one of which is a synonym.
■ #combine(biography #syn(

#1(president lincoln) #1(abraham lincoln)))

□ Rank using two terms, one of which is a synonym of “president
lincoln” and “abraham lincoln”.

■ #weight(1.0 #1(civil war) 3.0 lincoln 2.0 speech)

□ Rank using three terms, and weight the term “lincoln” as most
important, followed by “speech”, then “civil war”.

■ #filter(aquarium #combine(tropical fish))

□ Consider only those documents containing the word “aquarium”
and rank them according to the query #combine(tropical
fish).

■ #filter(#weight(2.0 europe 1.0 travel)
#1(john smith).author)

□ Rank documents about “europe” and “travel” that have “John
Smith” in the author context.

Felix Naumann | Search Engines | Sommer 2011

81

Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank

Felix Naumann | Search Engines | Sommer 2011

82

Web Search

■ Retrieval models in practice

□ Web search most important, but not only, search application

■ Major differences to TREC news

□ Size of collection

◊ Billions

□ Connections between documents

◊ Links

□ Range of document types

□ Importance of spam

□ Volume of queries

◊ Tens of millions per day

□ Range of query types

◊ Informational, navigational, transactional

83

Felix Naumann | Search Engines | Sommer 2011

Search Taxonomy

■ Informational

□ Finding information about some topic that may be on one or
more web pages

□ Topical search

■ Navigational

□ Finding a particular web page that the user has either seen
before or is assumed to exist

□ Known-item search

■ Transactional

□ Finding a site where a task such as shopping or downloading
music can be performed

84

Felix Naumann | Search Engines | Sommer 2011

Web Search

■ For effective navigational and transactional search, need to
combine features that reflect user relevance.

■ Commercial web search engines combine evidence from hundreds
of features to generate a ranking score for a web page

□ Page content

□ Page metadata

◊ “Age”, how often it is updated

◊ URL of the page

◊ Domain name of its site

◊ Amount of text content

□ Anchor text

□ Links (e.g., PageRank)

□ User behavior (click logs)

85

Felix Naumann | Search Engines | Sommer 2011

Search Engine Optimization

■ SEO: Understanding the relative importance of features used in
search and how they can be manipulated to obtain better search
rankings for a web page

□ Improve the text used in the title tag

□ Improve the text in heading tags

□ Make sure that the domain name and URL contain important
keywords

□ Improve the anchor text and link structure

■ Some of these techniques are regarded as not appropriate by
search engine companies

86

Felix Naumann | Search Engines | Sommer 2011

Web Search

■ In TREC evaluations, most effective features for navigational
search are:

□ Text in the title, body, headings (h1, h2, h3, and h4)

□ Anchor text of all links pointing to the document

□ PageRank number and inlink count

■ Given size of Web, many pages will contain all query terms

□ Search engines can use AND semantics

◊ Dangerous for smaller collections
● Site search, news search, …
● TREC: Only 50% of relevant pages contain all search

terms
□ Ranking algorithm focuses on discriminating between these

pages

□ Term proximity is important.

87

Felix Naumann | Search Engines | Sommer 2011

Term Proximity

■ Assumption: Query terms are likely to appear in close proximity within
relevant documents

□ “Green party political views”

■ Many models have been developed

□ n-grams are commonly used in commercial web search

■ Dependence model based on inference net has been effective in TREC

□ Let SQ be the set of all non-empty subsets of Q (power set)

◊ Every s ∈ SQ that consists of contiguous query terms is likely
to appear as an exact phrase in a relevant document
● Represented using the #1 operator

◊ Every s ∈ SQ such that |s| > 1 is likely to appear (ordered or
unordered) within a reasonably sized window of text in a
relevant document
● Represented as #uw8 for |s| = 2 and #uw12 for |s| = 3

Felix Naumann | Search Engines | Sommer 2011

88

Term Proximity

■ Example query „embryonic stem cells“

□ SQ= {(embryonic),(stem),(cells), (embryonic stem), (stem
cells), (embryonic cells), (embryonic stem cells)}

■ Compiled to Galago query

□ #weight(
0.8 #combine(embryonic stem cells)
0.1 #combine(#od1(stem cells)

#od1(embryonic stem)
#od1(embryonic stem cells))

0.1 #combine(#uw8(stem cells)
#uw8(embryonic cells)
#uw8(embryonic stem)
#uw12(embryonic stem cells))

)

Felix Naumann | Search Engines | Sommer 2011

89

Ordered window,
distance 1

Unordered window,
distance 8

Example Web Query

■ Query: „pet therapy“
■ Compiled to Galago query
■ #weight(

0.1 #weight(0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(

0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)

3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title)

3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(

1.0 #od1(pet therapy).(anchor)
1.0 #od1(pet therapy).(title)
3.0 #od1(pet therapy).(body)
1.0 #od1(pet therapy).(heading))

0.1 #weight(
1.0 #uw8(pet therapy).(anchor)
1.0 #uw8(pet therapy).(title)
3.0 #uw8(pet therapy).(body)
1.0 #uw8(pet therapy).(heading))))

Felix Naumann | Search Engines | Sommer 2011

90 PageRank and
inlinks calculated at

index time

Proximity can be
index, but increases

index size

Query types

Felix Naumann | Search Engines | Sommer 2011

91

■ Insights gained from TREC
experiments

■ Topical search:

□ Simple terms and
proximity features suffice

■ Navigational search:

□ More evidence is helpful

■ Pseudo-relevance feedback

□ Helps topical search

□ Is detrimental for
navigational search

■ But: How can we determine
query type?

■ Other evidence is in general
useful

□ User behavior: Clicked-on
pages, dwell time, links
followed

■ But: How to weight and
combine more and more
evidence?

□ Idea: Machine learning

Overview

■ Older models

■ Probabilistic models

■ Language models

■ Combining evidence

■ Web search

■ Learning to Rank

Felix Naumann | Search Engines | Sommer 2011

92

Machine Learning and IR

■ Considerable interaction between these fields

□ Rocchio algorithm (60s) is a simple learning approach

□ 80s, 90s: learning ranking algorithms based on user feedback

□ 2000s: text categorization

■ Limited by amount of training data

■ Web query logs have generated new wave of research

□ e.g., “Learning to Rank”

93

Felix Naumann | Search Engines | Sommer 2011

Generative vs. Discriminative

■ All probabilistic retrieval models presented so far fall into the
category of generative models.

□ Assume that documents were generated from some underlying
model

□ Use training data to estimate the parameters of the model.

□ Probability of belonging to a class (i.e. the relevant documents
for a query) is then estimated using Bayes’ Rule and the
document model.

94

Felix Naumann | Search Engines | Sommer 2011

Generative vs. Discriminative

■ A discriminative model estimates the probability of belonging to a
class directly from the observed features of the document based
on the training data.

■ Generative models perform well with low numbers of training
examples.

■ Discriminative models usually have the advantage given enough
training data.

□ Can also easily incorporate many features

95

Felix Naumann | Search Engines | Sommer 2011

Discriminative Models for IR

■ Discriminative models can be trained using explicit relevance
judgments or click data in query logs

□ Click data is much cheaper, more noisy

□ e.g. Ranking Support Vector Machine (SVM) takes as input
partial rank information for queries

◊ Partial information about which documents should be
ranked higher than others

□ Partial rank information comes from relevance judgments
(allows multiple levels of relevance) or click data

◊ e.g., d1, d2 and d3 are the documents in the first, second
and third rank of the search output, only d3 clicked on →
(d3, d1) and (d3, d2) will be in desired ranking for this
query

96

Felix Naumann | Search Engines | Sommer 2011

Summary

■ Best retrieval model depends on application and data available

■ Evaluation corpus (or test collection), training data, and user data
are all critical resources.

■ Language resources (e.g., thesaurus) can make a big difference

107

Felix Naumann | Search Engines | Sommer 2011

