Hasso Plattner Institut

IT Systems Engineering | Universität Potsdam

Natural Language Processing
 Language Modeling
 Potsdam, 19 April 2012

Saeedeh Momtazi

Information Systems Group

Outline

(1) Motivation
(2) Estimation
(3) Evaluation
(4) Smoothing

Outline

(1) Motivation
(2) Estimation
(3) Evaluation
(4) Smoothing

Language Modeling

- Finding the probability of a sentence or a sequence of words

$$
P(S)=P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

- Applications:
\square Word prediction
\square Speech recognition
\square Machine translation
\square Spell checker

Applications

- Word Prediction

"natural language ..." $\Rightarrow \quad$| "processing" |
| :---: |
| "management" |

Applications

- Speech recognition
\Rightarrow
"Computers can recognize speech." "Computers can wreck a nice peach."

Applications

- Machine translation
"The cat eats ..."
\Rightarrow
"Die Katze frisst ..."
"Die Katze isst ..."

Applications

- Spell checker
"I want to adver this project." $\quad \Rightarrow \quad$ "advert"

Outline

(2) Estimation
(3) Evaluation
(4) Smoothing

Language Modeling

- Finding the probability of a sentence or a sequence of words

$$
P(S)=P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

P (Computer, can, recognize, speech)

Conditional Probability

$$
\begin{gathered}
P(B \mid A)=\frac{P(A, B)}{P(A)} \\
P(A, B)=P(A) \cdot P(B \mid A) \\
P(A, B, C, D)=P(A) \cdot P(B \mid A) \cdot P(C \mid A, B) \cdot P(D \mid A, B, C)
\end{gathered}
$$

$$
P(S)=P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(w_{3} \mid w_{1}, w_{2}\right) \cdots P\left(w_{n} \mid w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right)
$$

$$
P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)
$$

Conditional Probability

$$
P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)
$$

$P($ Computer, can, recognize, speech $)=$
$P($ Computer $) \cdot P($ can \mid Computer $) \cdot P($ recognize \mid Computer can $) \cdot P($ speech \mid Computer can recognize $)$

Corpus

- Probabilities are based on counting things
- Counting of thing in natural language is based on a corpus (plural: corpora)
- A computer-readable collection of text or speech
\square The Brown Corpus
- A million-word collection of samples
- 500 written texts from different genres (newspaper, fiction, non-fiction, academic, ...)
- Assembled at Brown University in 1963-1964
- The Switchboard Corpus
- A collection of 240 hours of telephony conversations
- 3 million words in 2430 conversations averaging 6 minutes each
- Collected in early 1990s

Corpus

- Text Corpora
- The Brown Corpus
\square Corpus of Contemporary American English
- The British National Corpus
\square The International Corpus of English
\square The Google N-gram Corpus

Word Occurrence

- A language consist of a set of V words (Vocabulary)
- A text is a sequence of the words from the vocabulary
- A word can occur several times in a text
- Word Token: each occurrence of words in text
\square Word Type: each unique occurrence of words in the text

Example:

This is a sample text from a book that is read every day
\# Word Tokens: 13
\# Word Types: 11

Counting

- Brown
\square 1,015,945 word tokens
\square 47,218 word types
- Google N-gram
- 1,024,908,267,229 word tokens
- 13,588,391 word types

That seems like a lot of types...
Even large dictionaries of English have only around 500k types.
Why so many here?
Numbers
Misspellings
Names
Acronyms

Word Frequency

Rank	Word	Count	Freq(\%)
1	The	69970	6.8872
2	of	36410	3.5839
3	and	28854	2.8401
4	to	26154	2.5744
5	a	23363	2.2996
6	in	21345	2.1010
7	that	10594	1.0428
8	is	10102	0.9943
9	was	9815	0.9661
10	He	9542	0.9392
11	for	9489	0.9340
12	it	8760	0.8623
13	with	7290	0.7176
14	as	7251	0.7137
15	his	6996	0.6886
16	on	6742	0.6636
17	be	6376	0.6276
18	at	5377	0.5293
19	by	5307	0.5224
20	l	5180	0.5099

Word Frequency

Rank	Word	Count	Freq(\%)	Freq x Rank
1	The	69970	6.8872	0.06887
2	of	36410	3.5839	0.07167
3	and	28854	2.8401	0.08520
4	to	26154	2.5744	0.10297
5	a	23363	2.2996	0.11498
6	in	21345	2.1010	0.12606
7	that	10594	1.0428	0.07299
8	is	10102	0.9943	0.07954
9	was	9815	0.9661	0.08694
10	He	9542	0.9392	0.09392
11	for	9489	0.9340	0.10274
12	it	8760	0.8623	0.10347
13	with	7290	0.7176	0.09328
14	as	7251	0.7137	0.09991
15	his	6996	0.6886	0.10329
16	on	6742	0.6636	0.10617
17	be	6376	0.6276	0.10669
18	at	5377	0.5293	0.09527
19	by	5307	0.5224	0.09925
20	I	5180	0.5099	0.10198

Freq. Rank $\approx c$

Zipf's Law

- The frequency of any word is inversely proportional to its rank in the frequency table
- Given a corpus of natural language utterances, the most frequent word will occur approximately
\square twice as often as the second most frequent word,
\square three times as often as the third most frequent word,
\Rightarrow Rank of a word times its frequency is approximately a constant

$$
\begin{gathered}
\text { Rank } \cdot \text { Freq } \approx c \\
c \approx 0.1 \text { for English }
\end{gathered}
$$

Zipf's Law

Zipf's Law

HPI Hasso

Word Frequency

- Zipf's Law is not very accurate for very frequent and very infrequent words

Rank	Word	Count	Freq(\%)	Freq x Rank
1	The	69970	6.8872	0.06887
2	of	36410	3.5839	0.07167
3	and	28854	2.8401	0.08520
4	to	26154	2.5744	0.10297
5	a	23363	2.2996	0.11498

Word Frequency

■ Zipf's Law is not very accurate for very frequent and very infrequent words

Rank	Word	Count	Freq(\%)	Freq x Rank
1000	current	104	0.0102	0.10200
1001	spent	104	0.0102	0.10210
1002	eight	104	0.0102	0.10220
1003	covered	104	0.0102	0.10230
1004	Negro	104	0.0102	0.10240
1005	role	104	0.0102	0.10251
1006	played	104	0.0102	0.10261
1007	l'd	104	0.0102	0.10271
1008	date	103	0.0101	0.10180
1009	council	103	0.0101	0.10190
1010	race	103	0.0101	0.10201

Maximum Likelihood Estimation

$P($ speech \mid Computer can recognize)

$$
P(\text { speech } \mid \text { Computer can recognize })=\frac{\#(\text { Computer can recognize speech })}{\#(\text { Computer can recognize })}
$$

- Too many phrases

■ Limited text for estimating the probability
\Rightarrow Making a simplification assumption

Markov Assumption

$$
\begin{gathered}
P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right) \\
P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{i-1}\right)
\end{gathered}
$$

$P($ Computer, can, recognize, speech $)=$ $P($ Computer $) \cdot P($ can \mid Computer $) \cdot P($ recognize \mid can $) \cdot P($ speech \mid recognize $)$

$$
P(\text { speech } \mid \text { recognize })=\frac{\#(\text { recognize speech })}{\#(\text { recognize })}
$$

N-gram Model

Unigram $\quad P(S)=\prod_{i=1}^{n} P\left(w_{i}\right)$

Bigram $\quad P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{i-1}\right)$

Trigram $\quad P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
N-gram

$$
P(S)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)
$$

Maximum Likelihood

<s> I saw the boy </s>
$<s>$ the man is working </s>
<s> I walked in the street </s>

Vocab:
I saw the boy man is working walked in street
boy I in is man saw street the walked working

Maximum Likelihood

<s> I saw the boy </s>
<s> the man is working </s>
<s> I walked in the street </s>

boy	1	in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy	I	in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

Maximum Likelihood

<s> I saw the man </s>

boy	I	in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy	I	in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

$$
\begin{aligned}
& P(S)=P(I) \cdot P(\text { saw } \mid I) \cdot P(\text { the } \mid \text { saw }) \cdot P(\text { man } \mid \text { the }) \\
& P(S)=\frac{\#(I)}{\#(<s>)} \cdot \frac{\#(I \text { saw })}{\#(I)} \cdot \frac{\#(\text { saw the })}{\#(\text { saw })} \cdot \frac{\#(\text { the man })}{\#(\text { the })} \\
& P(S)=\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3}
\end{aligned}
$$

Outline

Branching Factor

- Branching factor is the number of possible words that can be used in each position of a text
\square Maximum branching factor for each language is V
\square A good language model should be able to
- minimize this number
- give a higher probability to the words that occur in real texts

John eats an ...

Shannon Game

Shannon's Experiment to Calculate the Entropy of English

http://www.math.ucsd.edu/~crypto/java/ENTROPY/

Can we give the same knowledge to a computer to predict the next character?

Perplexity

- Dividing the corpus to two parts

train	test

- Building a language model from the training set
- Estimating the probability of the test set
- Calculate the average branching factor of the test set

Perplexity

$$
P(S)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

$\operatorname{Perplexity}(S)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{N}}=\sqrt[N]{\frac{1}{P\left(w_{1}, w_{2}, \ldots, w_{n}\right)}}$

$$
\operatorname{Perplexity}(S)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)}}
$$

Goal: giving higher probability to frequent texts
\Rightarrow minimizing the perplexity of the frequent texts

Perplexity

- Maximum branching factor for each language is $|V|$

$$
\operatorname{Perplexity}(S)=\left(\prod_{i=1}^{N} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)\right)^{-\frac{1}{N}}
$$

- Example: predicting next characters instead of next words (|V|=26)

$$
\operatorname{Perplexity}(S)=\left(\left(\frac{1}{26}\right)^{5}\right)^{-\frac{1}{5}}=26
$$

Perplexity

- Wall Street Journal
- Training set: 38 million word tokens
\square Test set: 1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Outline

(4) Smoothing

Maximum Likelihood

<s> I saw the man </s>

$$
\begin{aligned}
& P(S)=P(I) \cdot P(\text { saw } \mid I) \cdot P(\text { the } \mid \text { saw }) \cdot P(\text { man } \mid \text { the }) \\
& P(S)=\frac{\#(I)}{\#(\langle s>)} \cdot \frac{\#(I \text { saw })}{\#(I)} \cdot \frac{\#(\text { saw the })}{\#(\text { saw })} \cdot \frac{\#(\text { the man })}{\#(t \text { the })} \\
& P(S)=\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3}
\end{aligned}
$$

Zero Probability

<s> I saw the man in the street </s>

boy	I	in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy	l	in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

$P(S)=P(I) \cdot P($ saw $\mid I) \cdot P($ the \mid saw $) \cdot P($ man \mid the $) \cdot P($ in \mid man $) \cdot P($ the \mid in $) \cdot P($ street \mid the $)$
$P(S)=\frac{\#(I)}{\#(\langle s\rangle)} \cdot \frac{\#(I \text { saw })}{\#(I)} \cdot \frac{\#(\text { saw the })}{\#(\text { saw })} \cdot \frac{\# \text { (the man })}{\#(\text { the })} \cdot \frac{\#(\text { man in })}{\#(\text { man })} \cdot \frac{\#(\text { in the })}{\#(\text { in })} \cdot \frac{\#(\text { the street })}{\#(\text { the })}$
$P(S)=\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{0}{1} \quad \frac{1}{1} \quad \frac{1}{3}$

Smoothing

- Giving a small probability to all as unseen n-grams
\square Laplace Smoothing
- Add one to all counts (Add-one)

	boy	l	in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

Smoothing

- Giving a small probability to all as unseen n-grams
- Laplace Smoothing
- Add one to all counts (Add-one)

	boy	I	in	is	man	saw	street	the	walked	working
boy	1	1	1	1	1	1	1	1	1	1
I	1	1	1	1	1	2	1	1	2	1
in	1	1	1	1	1	1	1	2	1	1
is	1	1	1	1	1	1	1	1	1	2
man	1	1	1	2	1	1	1	1	1	1
saw	1	1	1	1	1	1	1	2	1	1
street	1	1	1	1	1	1	1	1	1	1
the	2	1	1	1	2	1	2	1	1	1
walked	1	1	2	1	1	1	1	1	1	1
working	1	1	1	1	1	1	1	1	1	1

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)} \quad \Rightarrow \quad P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)+1}{\#\left(w_{i-1}\right)+V}
$$

Smoothing

- Giving a small probability to all as unseen n-grams
- Laplace Smoothing
- Add one to all counts (Add-one)
- Interpolation and Back-off Smoothing
- Use a background probability

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)}
$$

Back-off

$$
P\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)} & \text { if } \#\left(w_{i-1}, w_{i}\right)>0 \\ P_{B G} & \text { otherwise }\end{cases}
$$

Smoothing

- Giving a small probability to all as unseen n-grams
- Laplace Smoothing
- Add one to all counts (Add-one)
- Interpolation and Back-off Smoothing
- Use a background probability

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)}
$$

Interpolation

Background Probability

- Lower levels of n-gram can be used as background probability
\square trigram \rightarrow bigram
\square bigram \rightarrow unigram
- unigram \rightarrow zerogram ($\frac{1}{V}$)

Back-off

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)} & \text { if } \#\left(w_{i-1}, w_{i}\right)>0 \\
P\left(w_{i}\right) & \text { otherwise }\end{cases} \\
P\left(w_{i}\right)= \begin{cases}\frac{\#\left(w_{i}\right)}{N} & \text { if } \#\left(w_{i}\right)>0 \\
\frac{1}{V} & \text { otherwise }\end{cases}
\end{gathered}
$$

Background Probability

- Lower levels of n-gram can be used as background probability
\square trigram \rightarrow bigram
\square bigram \rightarrow unigram
- unigram \rightarrow zerogram ($\frac{1}{V}$)

Interpolation

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\lambda_{1} \frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)}+\lambda_{2} P\left(w_{i}\right) \\
P\left(w_{i}\right)=\lambda_{1} \frac{\#\left(w_{i}\right)}{N}+\lambda_{2} \frac{1}{V} \\
P\left(w_{i} \mid w_{i-1}\right)=\lambda_{1} \frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)}+\lambda_{2} \frac{\#\left(w_{i}\right)}{N}+\lambda_{3} \frac{1}{V}
\end{gathered}
$$

Parameter Tuning

- Dataset

Held-out Set (Development Set)
Using different values for parameters and select the best value which minimize the perplexity of the held-out data.

Advanced Smoothing

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)+1}{\#\left(w_{i-1}\right)+V} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)+k}{\#\left(w_{i-1}\right)+k V} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)+\mu\left(\frac{1}{V}\right)}{\#\left(w_{i-1}\right)+\mu} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{\#\left(w_{i-1}, w_{i}\right)+\mu P_{B G}}{\#\left(w_{i-1}\right)+\mu}
\end{gathered}
$$

$$
\mu=k V
$$

Bayesian Smoothing with Dirichlet Prior

Advanced Smoothing

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\#\left(w_{i-1}, w_{i}\right)}{\#\left(w_{i-1}\right)} & \text { if } \#\left(w_{i-1}, w_{i}\right)>0 \\
P_{B G} & \text { otherwise }\end{cases} \\
P\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\#\left(w_{i-1}, w_{i}\right)-\delta}{\#\left(w_{i-1}\right)} & \text { if } \#\left(w_{i-1}, w_{i}\right)>0 \\
\alpha P_{B G} & \text { otherwise }\end{cases}
\end{gathered}
$$

Absolute Discounting

Advanced Smoothing

$$
\begin{aligned}
P\left(w_{i} \mid w_{i-1}\right) & =\frac{\#\left(w_{i-1}, w_{i}\right)-\delta}{\#\left(w_{i-1}\right)}+\alpha P_{B G} \\
\alpha & =\frac{\delta}{\#\left(w_{i-1}\right)} \cdot B
\end{aligned}
$$

B : the number of times $\#\left(w_{i-1}, w_{i}\right)>0$
(the number of times that we applied discounting)

Absolute Discounting

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(\#\left(w_{i-1}, w_{i}\right)-\delta, 0\right)}{\#\left(w_{i-1}\right)}+\alpha P_{B G}
$$

Advanced Smoothing

■ Estimation base on the lower-order n-gram
I cannot see without my reading ... $\quad \Rightarrow \quad$ "Francisco" "glasses"

- Observations:
- "Francisco" is more common than "glasses"
\square But "Francisco" always follows "San"
\square "Francisco" is not a novel continuation for a text
- Solution:
\square Instead of $P(w)$: "How likely is w to appear in a text"
$\square P_{\text {continuation }}(w)$: "How likely is w to appear as a novel continuation"
- Count the number of words types that w appears after them

$$
P_{\text {continuation }}(w) \propto\left|w_{i-1}: \#\left(w_{i-1}, w_{i}\right)>0\right|
$$

Advanced Smoothing

- How many times does w appear as a novel continuation

$$
P_{\text {continuation }}(w) \propto\left|w_{i-1}: \#\left(w_{i-1}, w_{i}\right)>0\right|
$$

■ Normalized by the total number of bigram types

$$
P_{\text {continuation }}(w)=\frac{\left|w_{i-1}: \#\left(w_{i-1}, w_{i}\right)>0\right|}{\left|\left(w_{j-1}, w_{j}\right): \#\left(w_{j-1}, w_{j}\right)>0\right|}
$$

- Alternatively: normalized by the number of words preceding all words

$$
P_{\text {continuation }}(w)=\frac{\left|w_{i-1}: \#\left(w_{i-1}, w_{i}\right)>0\right|}{\sum_{w^{\prime}}\left|w_{i-1}^{\prime}: \#\left(w_{i-1}^{\prime}, w_{i}^{\prime}\right)>0\right|}
$$

Advanced Smoothing

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(\#\left(w_{i-1}, w_{i}\right)-\delta, 0\right)}{\#\left(w_{i-1}\right)}+\alpha P_{B G} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(\#\left(w_{i-1}, w_{i}\right)-\delta, 0\right)}{\#\left(w_{i-1}\right)}+\alpha P_{\text {continuation }} \\
\alpha=\frac{\delta}{\#\left(w_{i-1}\right)} \cdot B
\end{gathered}
$$

$$
B: \text { the number of times } \#\left(w_{i-1}, w_{i}\right)>0
$$

Further Reading

- Speech and Language Processing
- Chapter 4

