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Introduction

Machine Learning
Field of study that gives computers the ability to learn without
being explicitly programmed.

[Arthur Samuel, 1959]

Learning Methods
Supervised learning

Active learning

Unsupervised learning
Semi-supervised learning
Reinforcement learning
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Outline

1 Supervised Learning

2 Semi-Supervised Learning

3 Unsupervised Learning
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Outline

1 Supervised Learning
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Supervised Learning

Renting budget: 1000 e

Size: 180 m2

Age: 2 years 7
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Supervised Learning

size

age

4

7
?7

44

4
4

4

7

7

7

7

7

Saeedeh Momtazi | NLP | 26.04.2012

6



Classification

Training

T1 → C1
T2 → C2
...

Tn → Cn

−−−−→

F1
F2
...

Fn

−−−−→
�� ��Model(F,C)

Testing

Tn+1 →? −−−−→ Fn+1 −−−−→

←
−−
−−
−−
−−

Cn+1
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Applications

Problem Item Category

POS Tagging Word POS
Named Entity Recognition Word Named entity
Word Sense Disambiguation Word The word’s sense
Spam Mail Detection Document Spam/Not spam
Language Identification Document Language
Text Categorization Document Topic
Information Retrieval Document Relevant/Not relevant
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Part Of Speech Tagging

“I saw the man on the roof.”

“ I[PRON] saw[V ] the[DET ] man[N] on[PREP] the[DET ] roof[N]. ”

[PRON] Pronoun
[PREP] Preposition
[DET] Determiner
[V] Verb
[N] Noun
...
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Named Entity Recognition

“Steven Paul Jobs, co-founder of Apple Inc, was born in California.”

“ Steven Paul Jobs
Person

, co-founder of Apple Inc
Organization

, was born in California
Location

.”

Person
Organization
Location
Date
...
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Word Sense Disambiguation

“Jim flew his plane to Texas.”

“Alice destroys the item with a plane.”
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Spam Mail Detection
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Language Identification
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Text Categorization

---------------
---------------
---------------

---------------
---------------
---------------

---------------
---------------
---------------

---------------
---------------
---------------

 
news

---------------
---------------
---------------
---------------
---------------
---------------

? ? ? ?

Culture Sport Politics Business
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Information Retrieval
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Classification

Training

T1 → C1
T2 → C2
...

Tn → Cn

−−−−→

F1
F2
...

Fn

−−−−→
�� ��Model(F,C)

Testing

Tn+1 →? −−−−→ Fn+1 −−−−→

←
−−
−−
−−
−−

Cn+1
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Classification Algorithms

K Nearest Neighbor
Support Vector Machines
Naïve Bayes
Maximum Entropy
Linear Regression
Logistic Regression
Neural Networks
Decision Trees
Boosting
...
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K Nearest Neighbor

?
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K Nearest Neighbor

?
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K Nearest Neighbor

1 Nearest Neighbor
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K Nearest Neighbor

?

3 Nearest Neighbor
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K Nearest Neighbor

3 Nearest Neighbor
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K Nearest Neighbor

But this item is closer

3 Nearest Neighbor
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Support Vector Machines
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Support Vector Machines

Find a hyperplane in the vector space that separates the items
of the two categories
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Support Vector Machines

There might be more than one possible separating hyperplane
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Support Vector Machines

?

There might be more than one possible separating hyperplane
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Support Vector Machines

?

Find the hyperplane with maximum margin
Vectors at the margins are called support vectors
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Support Vector Machines

Find the hyperplane with maximum margin
Vectors at the margins are called support vectors
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Naïve Bayes

Selecting the class with highest probability
⇒ Minimizing the number of items with wrong labels

ĉ = argmaxci
P(ci)

The probability should depend on the to be classified data (d)

P(ci |d)
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Naïve Bayes

ĉ = argmaxci
P(ci)

ĉ = argmaxci
P(ci |d)

ĉ = argmaxci

P(d |ci) · P(ci)

P(d) P(d) has no effect

ĉ = argmaxci
P(d |ci) · P(ci)
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Naïve Bayes

ĉ = argmaxci
P(d |ci) · P(ci)

Likelihood

Probability
Prior

Probability
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Maximum Entropy

Assigning a weight λj to each feature fj
Positive weight: the feature is likely to be effective
Negative weight: the feature is likely to be ineffective

Picking out a subset of data by each feature

Voting for each class based on the sum of weighted features

ĉ = argmaxci
P(ci |d , λ)
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Maximum Entropy

ĉ = argmaxci
P(ci |d , λ)

P(ci |d , λ) =
exp

∑
j λj · fj(c,d)∑

ci
exp

∑
j λj · fj(ci ,d)

The expectation of each feature is calculated as follows:

E(fi) =
∑

(c,d)∈(C,D)

P(c,d) · fi(c,d)
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Classification

Training

T1 → C1
T2 → C2
...

Tn → Cn

−−−−→

F1
F2
...

Fn

−−−−→
�� ��Model(F,C)

Testing

Tn+1 →? −−−−→ Fn+1 −−−−→

←
−−
−−
−−
−−

Cn+1
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Feature Selection

size

age

4

7

44

4
4

4

7

7

7

7

7

Location
Number of rooms
Balcony
...
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Feature Selection

Bag-of-words:
Each document can be represented by the set of words that
appear in the document
Result is a high dimensional feature space
The process is computationally expensive

Solution
Using a feature selection method to select informative words
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Feature Selection Methods

Information Gain
Mutual Information
χ-Square
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Information Gain

Measuring the number of bits required for category prediction
w.r.t. the presence or absence of a term in the document
Removing words whose information gain is less than a
predefined threshold

IG(w) =−
K∑

i=1

P(ci) log P(ci)

+ P(w)
K∑

i=1

P(ci |w) log P(ci |w)

+ P(w)
K∑

i=1

P(ci |w) log P(ci |w)

Saeedeh Momtazi | NLP | 26.04.2012

39



Information Gain

P(ci) =
Ni
N

P(w) = Nw
N P(ci |w) = Niw

Ni

P(w) = Nw
N P(ci |w) = Niw

Ni

N: # docs
Ni : # docs in category ci
Nw : # docs containing w
Nw : # docs not containing w
Niw : # docs in category ci containing w
Niw : # docs in category ci not containing w
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Mutual Information

Measuring the effect of each word in predicting the category
How much does its presence or absence in a document
contribute to category prediction?

MI(w , ci) = log
P(w , ci)

P(w) · P(ci)

Removing words whose mutual information is less than a
predefined threshold

MI(w) = maxiMI(w , ci)

MI(w) =
∑

i

P(ci) ·MI(w , ci)
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χ-square

Measuring the dependencies between words and categories

χ2(w , ci) =
N · (NiwNiw − NiwNiw )

2

(Niw + Niw ) · (Niw + Niw ) · (Niw + Niw ) · (Niw + Niw )

Ranking words based on their χ-square measure

χ2(w) =
K∑

i=1

P(ci) · χ2(w , ci)

Selecting the top words as features
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Feature Selection

These models perform well for document-level classification
Spam Mail Detection
Language Identification
Text Categorization

Word-level Classification might need another types of features
POS Tagging
Named Entity Recognition

(will be discussed later)
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Shortcoming

Data annotation is labor intensive

Solution:
Using a minimum amount of annotated data
Annotating further data by human, if they are very informative

Active Learning
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Active Learning
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Active Learning

Annotating a small amount of data
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Active Learning

M
M

M
M

L
L

L

H H

H

HH

H
M

Annotating a small amount of data

Calculating the confidence score of the classifier on
unlabeled data
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Active Learning

Annotating a small amount of data

Calculating the confidence score of the classifier on
unlabeled data

Finding the informative unlabeled data
(data with lowest confidence)

Annotating the informative data by the human
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Active Learning

Amazon Mechanical Turk
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Outline

1 Supervised Learning

2 Semi-Supervised Learning

3 Unsupervised Learning

Saeedeh Momtazi | NLP | 26.04.2012

50



Semi-Supervised Learning

Problem of data annotation

Solution:
Using minimum amount of annotated data
Annotating further data automatically, if they are easy to predict
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Semi-Supervised Learning

A small amount of labeled data
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Semi-Supervised Learning

A small amount of labeled data

A large amount of unlabeled data
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Semi-Supervised Learning

A small amount of labeled data

A large amount of unlabeled data

Solution
Finding the similarity between the labeled and
unlabeled data
Predicting the labels of the unlabeled data
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Semi-Supervised Learning

Training the classifier using
The labeled data
Predicted labels of
the unlabeled data
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Shortcoming

Introducing a lot of noisy data to the system

Saeedeh Momtazi | NLP | 26.04.2012

56



Shortcoming

Introducing a lot of noisy data to the system

Solution
Adding unlabeled data to the training set, if the predicted label
has a high confidence
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Semi-Supervised Learning
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Related Books

Semi-Supervised Learning

by O. Chapelle, B. Schölkopf, A. Zien
MIT Press

2006

Semisupervised Learning for
Computational Linguistics

by S. Abney
Chapman & Hall

2007
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Outline

1 Supervised Learning

2 Semi-Supervised Learning

3 Unsupervised Learning
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Unsupervised Learning

area

age

4
44
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Unsupervised Learning

area

age

7
77
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Clustering

Working based on the similarities between the data items

Assigning the similar data items to the same cluster
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Applications

Word Clustering
Speech Recognition
Machine Translation
Named Entity Recognition
Information Retrieval
...

Document Clustering
Information Retrieval
...
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Speech recognition

⇒ “Computers can recognize speech.”

“Computers can wreck a nice peach.”
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Machine Translation

“The cat eats ...” ⇒ “Die Katze frisst ...”
“Die Katze isst ...”
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Language Modeling

Corpus Texts:
“I have a meeting on Monday evening”
“You should work on Wednesday afternoon”
“The next session of the NLP lecture in on Thursday morning”

no observation in the corpus.

⇒ “The talk is on Monday morning.”

“The talk is on Monday molding.”

Monday

Tuesday

Wednesday

Thursday

Sunday

Saturday

Friday

afternoon
morning

evening

night
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Language Modeling

Corpus Texts:
“I have a meeting on Monday evening”
“You should work on Wednesday afternoon”
“The next session of the NLP lecture in on Thursday morning”

⇒ [Week-day] [day-time]

Class-based Language Model
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Information Retrieval

“The first car was invented by Karl Benz.”

“Thomas Edison invented the first commercially practical light.”

“Alexander Graham Bell invented the first practical telephone.”

vehicle
automobile

car
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Information Retrieval
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Information Retrieval

Clustering documents

based on their similarities
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Clustering Algorithms

Flat
K-means

Hierarchical
Top-Down (Divisive)
Bottom-Up (Agglomerative)

Single-link
Complete-link
Average-link
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K-means

The best known clustering algorithm
Works well for many cases
Used as default / baseline for clustering documents

Algorithm
Defining each cluster center as the mean or centroid of the items
in the cluster

~µ =
1
|c|

∑
~x∈c

~x

Minimizing the average squared Euclidean distance of the items
from their cluster centers
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K-means
Initialization: Randomly choose k items as initial centroids
while stopping criterion has not been met do

for each item do
Find the nearest centroid
Assign the item to the cluster associated with the nearest centroid

end for
for each cluster do

Update the centroid of the cluster based on the average of all items in the cluster
end for

end while

Iterating two steps:
Re-assignment

Assigning each vector to its closest centroid

Re-computation

Computing each centroid as the average of the vectors that were assigned to it in re-assignment
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K-means

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/

AppletKM.html
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Hierarchical Agglomerative
Clustering (HAC)

Creating a hierarchy in the form of a binary tree
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Hierarchical Agglomerative
Clustering (HAC)

Initial Mapping: Put a single item in each cluster
while reaching the predefined number of clusters do

for each pair of clusters do
Measure the similarity of two clusters

end for
Merge the two clusters that are most similar

end while

Measuring the similarity in three ways:
Single-link
Complete-link
Average-link
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Hierarchical Agglomerative
Clustering (HAC)

Single-link / single-linkage clustering
Based on the similarity of the most similar members
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Hierarchical Agglomerative
Clustering (HAC)

Complete-link / complete-linkage clustering
Based on the similarity of the most dissimilar members
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Hierarchical Agglomerative
Clustering (HAC)

Average-link / average-linkage clustering
Based on the average of all similarities between the members
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Hierarchical Agglomerative
Clustering (HAC)

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/

AppletH.html
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Further Reading

Introduction to Information Retrieval

C.D. Manning, P. Raghavan, H. Schütze Cambridge

University Press 2008

http://nlp.stanford.edu/IR-book/html/
htmledition/irbook.html

Chapters 13,14,15,16,17

Saeedeh Momtazi | NLP | 26.04.2012

82

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

	Supervised Learning
	Semi-Supervised Learning
	Unsupervised Learning

