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Introduction Inatiut

m Machine Learning
o Field of study that gives computers the ability to learn without
being explicitly programmed.
[Arthur Samuel, 1959]

m Learning Methods
o Supervised learning
o Active learning
o Unsupervised learning
o Semi-supervised learning
o Reinforcement learning
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© Supervised Learning

@ Semi-Supervised Learning

©® Unsupervised Learning
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© Supervised Learning
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Supervised Learning

Renting budget: 1000 €

Size: 180 m?
Age: 2 years X
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Classification

Training

T & Cy F;

T2 ce R (MedeiFo)
Th = Ch F,

Testing

Thi1 =7 —— Fpiq —

Cn+ 1
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Applications
Problem ltem
POS Tagging Word

Named Entity Recognition Word
Word Sense Disambiguation Word

Spam Mail Detection Document
Language |dentification Document
Text Categorization Document
Information Retrieval Document
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Category

POS

Named entity

The word’s sense
Spam/Not spam
Language

Topic

Relevant/Not relevant



Part Of Speech Tagging ﬂ F,{Ei?ﬁﬁ{

‘I saw the man on the roof.” |

“ I[PRON] saw[v] the[DET] man[N] On[pREp] the[DET] I’OOf[N]. ” J

[PRON] Pronoun
[PREP] Preposition
[DET] Determiner
[V] Verb

[N] Noun
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Named Entity Recognition Ea e

Institut

“Steven Paul Jobs, co-founder of Apple Inc, was born in California.” J

“ Steven Paul Jobs, co-founder of Apple Inc, was born in California.”
L ] L 1 | I— |
Person Organization Location

Person
Organization
Location
Date
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O
“Jim flew his plane to Texas.” ) Q‘ o

“Alice destroys the item with a plane.” |

Saeedeh Momtazi | NLP | 26.04.2012



Spam Mail Detection
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Google

Translate s =| [ [ - [
English | Spanish  French Englan  persian [Geman)
This is a sample sentence in English which is translated to German. x Dies ist ein Beispielsatz in englischer Sprache, die auf deutsch Gibersetzt wird.

New! Ciick the words above to view alt
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Culture Sport Politics Business
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oogle

Google Search | I'm Feeling Lucky
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i - Wil the free
en.wikipedia.orgiwiki/Information_technology
Information Technology (IT) is concerned with technology to treat information. The
‘acquisition, processing, storage and dissemination of vocal, pictorial, textual ...
“+ Information systems - Information history - Category:Information technology

ion T — All About ion T¢ -Wh...
about. ITDefinition. htm
Information Technology and IT definition. What information technology actually
means. How information technology is different from computer science.

RIT ion Sciences & T

W ISL it edur

offers bachelors and masters degrees in information technology. a masters degree in
and and an in..

cienceDaily: ion T¢ News
waw. X
1 day ago  Information Technology. Read the latest in IT research from research
institutes around the world. Updated daily, full-text, images, free.

G of India, D of ion T (DIT ..
W, mit.gov.in/

Developing the information technology industry. Includes an organisation chart,
subsidiary bodies.

- Everything You Need to Know

Informationtechnology.net/
What is orIT, is the study,
design, creation, utilization, support, and management of computer-based ...

Information Technology

ibet. asp:
The Indian information technology (IT) industry has played a key role in puitting India
on the global map and is now envisioned o become a US$ 225 billion ...

ion T - WetFeet.com

Information Technology. Overview. E-mail, personal computers, and the Intemet:
These products of the information age have become common currency among ...
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Classification
1 Training
T & Cy F;
T2 ce R (MedeiFo)
Th = Ch F,
Testing
Thi1 =7 —— Fpiq —

Cn+ 1
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Classification Algorithms

m K Nearest Neighbor

m Support Vector Machines
= Naive Bayes

= Maximum Entropy

m Linear Regression

m Logistic Regression

m Neural Networks

m Decision Trees

m Boosting
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K Nearest Neighbor ﬂ:’.{i}‘i{‘:{

20

m 1 Nearest Neighbor
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m 3 Nearest Neighbor
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m 3 Nearest Neighbor
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m 3 Nearest Neighbor
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Support Vector Machines
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Support Vector Machines ﬂ e

m Find a hyperplane in the vector space that separates the items
of the two categories
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Support Vector Machines ﬂ e

m There might be more than one possible separating hyperplane
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Support Vector Machines ﬂ e

m There might be more than one possible separating hyperplane
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Support Vector Machines ﬂ e

m Find the hyperplane with maximum margin
m Vectors at the margins are called support vectors
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. Hasso
Support Vector Machines ﬂ e

m Find the hyperplane with maximum margin
m Vectors at the margins are called support vectors

Saeedeh Momtazi | NLP | 26.04.2012



30

. Hasso
Naive Bayes natitet

m Selecting the class with highest probability
= Minimizing the number of items with wrong labels

¢ = argmax P(c;)

m The probability should depend on the to be classified data (d)

P(cild)
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P(d) has no effect

c= argmaxcl,P(d|c,-) - P(c)
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Naive Bayes natinut

32

¢ = argmax, P(d|c;) - P(c))
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B0 Assigning a weight ); to each feature f;

o Positive weight: the feature is likely to be effective
o Negative weight: the feature is likely to be ineffective

m Picking out a subset of data by each feature

m Voting for each class based on the sum of weighted features

¢ = argmax, P(c;|d, \)
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Hasso
Maximum Entropy ﬂ Faner
¢ = argmax, P(c;|d, \)

exp ;A - fi(c, d)

Plald,2) = exp> )\ - fi(ci, d)
Cj J

m The expectation of each feature is calculated as follows:

Ef)= Y Ple.d)-f(c.d)

(e, d)e(C,D)
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Classification
% Training
T & Cy F;
T2 ce R (MedeiFo)
Th = Ch F,
Testing
Thi1 =7 —— Fpiq —

Cn+ 1
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Feature Selection
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Feature Selection Inatinut
70 u Bag-of-words:

o Each document can be represented by the set of words that

appear in the document
o Result is a high dimensional feature space

o The process is computationally expensive

= Solution
o Using a feature selection method to select informative words
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Feature Selection Methods

38 . .
m Information Gain

m Mutual Information
m x-Square
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Information Gain ﬂ Institut
i Measuring the number of bits required for category prediction
w.r.t. the presence or absence of a term in the document
m Removing words whose information gain is less than a
predefined threshold

K
IG(w) == P(c;)log P(c;)
i=1 p
+ P(w) > P(cjlw)log P(ci|w)
IT(‘I
+ P(W) ) P(ci[W)log P(ci[w)
i=1

Saeedeh Momtazi | NLP | 26.04.2012



Hasso
Information Gain ﬂ Plattner

Institut
P(c) ="
P(w) =Ty P(cilw) = N
P(W) = P(cilw) = 3
# docs

# docs in category ¢;

# docs containing w

# docs not containing w

# docs in category ¢; containing w

# docs in category ¢; not containing w
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Mutual Information ﬂ et

4 = Measuring the effect of each word in predicting the category

o How much does its presence or absence in a document
contribute to category prediction?

Mi(w, c;) = log Fm

m Removing words whose mutual information is less than a
predefined threshold

Mi(w) = max;Ml(w, c;)

Mi(w) => " P(ci) - Mi(w, c;)
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x-square ﬂ netitat

28 . Measuring the dependencies between words and categories

2(w,¢) = '
x“( i) (Niw + Niw) - (N, + Noip) - (Niw + N;,) - (N + No)

m Ranking words based on their x-square measure

K
(w) =Y P(c) xE(w.c)

i=1

m Selecting the top words as features
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m These models perform well for document-level classification
o Spam Mail Detection
o Language Identification
o Text Categorization

43

m Word-level Classification might need another types of features

o POS Tagging
o Named Entity Recognition

(will be discussed later)
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Shortcoming ﬂ Pl

44 L . .
m Data annotation is labor intensive

. Pen)
‘\:y D 3 Q
= '} 3
=

= Solution:

o Using a minimum amount of annotated data
o Annotating further data by human, if they are very informative
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B Annotating a small amount of data
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B Annotating a small amount of data

m Calculating the confidence score of the classifier on
unlabeled data
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® @
® [
®
O O
O o0
ae ¢
O oXe B Annotating a small amount of data
O o 0O m Calculating the confidence score of the classifier on
A unlabeled data
A ®m Finding the informative unlabeled data
A A A (data with lowest confidence)
A AA ®m Annotating the informative data by the human
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Amazon Mechanical Turk

For Scienfific Experiments Usi Amazon's Mechanical Turk

(@ muf-gar series)

Crowds u‘rjcirgParticipantS
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Outline

@ Semi-Supervised Learning

Saeedeh Momtazi | NLP | 26.04.2012

Hasso
Plattner
Institut



. . . Hasso
Semi-Supervised Learning ﬂ Plattner

Institut
m Problem of data annotation
. )
s PR
=\ '} 3
==

= Solution:

o Using minimum amount of annotated data
o Annotating further data automatically, if they are easy to predict
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m A small amount of labeled data
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[
of ©
O @O
O o OO
o0
O 00 m A small amount of labeled data
O m A large amount of unlabeled data
A O, O
A AA
A
A A
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54
® @
® @
@
L o
L P
® L
o ) Y ® A small amount of labeled data
) m A large amount of unlabeled data
A .A e m Solution
O Finding the similarity between the labeled and
A AA A unlabeled data
A A O Predicting the labels of the unlabeled data
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55
@ @
o. ® o. ®
@ @
O @ 0 ® ®
O O O ) ® o m Training the classifier using
O O A o O The labeled data
O O O A A A A O Predicted labels of
O 0 QO A A A the unlabeled data
st
A A
A % A %
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= Introducing a lot of noisy data to the system
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Shortcoming Plattner
= Introducing a lot of noisy data to the system

m Solution

o Adding unlabeled data to the training set, if the predicted label
has a high confidence
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Semi-Supervised Learning
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Related Books

59

Semi-Supervised Learning

Semi-Supervised Learning Semisupervised Learning for
Computational Linguistics
by O. Chapelle, B. Schélkopf, A. Zien by S. Abney
MIT Press Chapman & Hall
2006 2007

Saeedeh Momtazi | NLP | 26.04.2012



60

Outline

© Unsupervised Learning
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Unsupervised Learning

3 o
S 5
© <
S
©
Y
I T e T T B E I o
1 1 1 1 1 1 | 1 1 =
||1||_||_||...||_||_|VA.||_||1|| —
1 1 1 1 1 1 1 N
||r|L||_||._.||_||*|._|V|A.|r| m
1 1 1 1 1 1 1 1 1 g

1 1 1 1 1 1 1 | 1
||_|||_||_||4X||_|||_||XI_II 5
1 1 1 1 1 1 1 1 1 3
||r||_||¢|+||_||_||..||_||r| o
1 b 1 1 1 1 _X_ )

1 1 | ! 1
1

1
1
4
1
4
1
1
1
1




Hasso
Plattner
Institut

Unsupervised Learning

area
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e Working based on the similarities between the data items

m Assigning the similar data items to the same cluster
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s Word Clustering

o Speech Recognition
Machine Translation
Named Entity Recognition
Information Retrieval

64

O ooo

m Document Clustering

o Information Retrieval
o ...
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Speech recognition et

@ = “Computers can recognize speech.”

“Computers can wreck a nice peach.”
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66

“The cat eats ...” = “Die Katze frisst ...”
“Die Katze isst...”
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Corpus Texts:

“I have a meeting on Monday evening”
“You should work on Wednesday afternoon”

“The next session of the NLP lecture in on Thursday morning”

no observation in the corpus.

= “The talk is on Monday morning.”

“The talk is on Monday molding.”

Saturday

Wednesday afternoon

Monday

evening morning
Th
Tuesday ursday

night
riday Sunday, J
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Corpus Texts:

“I have a meeting on Monday evening”
“You should work on Wednesday afternoon”

“The next session of the NLP lecture in on Thursday morning”

= [Week-day] [day-time]

Saeedeh Momtazi | NLP | 26.04.2012
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69

Who invented the automobile & “

“The first car was invented by Karl Benz.” J
“Thomas Edison invented the first commercially practical light.” J
“Alexander Graham Bell invented the first practical telephone.” J

car )
) automobile
vehicle
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Clustering documents

Remas
e based on their similarities
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m Flat
o K-means

= Hierarchical
o Top-Down (Divisive)
o Bottom-Up (Agglomerative)
o Single-link
o Complete-link
o Average-link

Saeedeh Momtazi | NLP | 26.04.2012
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m The best known clustering algorithm
m Works well for many cases
m Used as default / baseline for clustering documents

Algorithm

o Defining each cluster center as the mean or centroid of the items
in the cluster

o Minimizing the average squared Euclidean distance of the items
from their cluster centers

Saeedeh Momtazi | NLP | 26.04.2012
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Initialization: Randomly choose k items as initial centroids
while stopping criterion has not been met do
for each item do
Find the nearest centroid
Assign the item to the cluster associated with the nearest centroid
end for
for each cluster do
Update the centroid of the cluster based on the average of all items in the cluster
end for
end while

74

m lterating two steps:
O Re-assignment

e Assigning each vector to its closest centroid
O Re-computation

e Computing each centroid as the average of the vectors that were assigned to it in re-assignment
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m Creating a hierarchy in the form of a binary tree

Hierarchical Agglomerative

Clustering (HAC)
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7 Initial Mapping: Put a single item in each cluster

while reaching the predefined number of clusters do
for each pair of clusters do
Measure the similarity of two clusters
end for
Merge the two clusters that are most similar
end while

m Measuring the similarity in three ways:
O Single-link
O Complete-link
O Average-link
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8L u Single-link / single-linkage clustering
o Based on the similarity of the most similar members
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& Complete-link / complete-linkage clustering

o Based on the similarity of the most dissimilar members
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80F o Average-link / average-linkage clustering

o Based on the average of all similarities between the members
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http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html
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Further Reading

Introduction to Information Retrieval

Introduction to

C.D. Manning, P. Raghavan, H. Schiitze Cambridge
University Press 2008

http://nlp.stanford.edu/IR-book/html/
htmledition/irbook.html

Chapters 13,14,15,16,17
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