

IT Systems Engineering | Universität Potsdam

Natural Language Processing

Part of Speech Tagging and Named Entity Recognition Potsdam, 3 May 2012

Saeedeh Momtazi Information Systems Group

based on the slides of the course book

Part of Speech Tagging

2 Named Entity Recognition

Sequential Modeling

Outline

Part of Speech Tagging

2 Named Entity Recognition

Sequential Modeling

Parts Of Speech (POS)

- 8 Parts of speech are traditionally used to summarize the linguistic knowledge
 - Noun, Verb, Preposition, Adverb, Article, Interjection, Pronoun, Conjunction
- The modified list is currently used
 - Noun, Verb, Auxiliary, Preposition, Adjective, Adverb, Number, Determiner, Interjection, Pronoun, Conjunction, Particle

Known as:

- Parts of speech
- Lexical categories
- Word classes
- Morphological classes
- Lexical tags

POS Examples

Noun Verb Auxiliary Adjective Adverb Numbers Determiner Conjunction Pronoun Preposition Particle Interjection

book/books, sugar, Germany, Sony eat, wrote can, should, have new, newer, newest well, urgently 872, two, first the, some and, or he, my to, in off, up Ow. Eh

Open vs. Closed Classes

- Closed (limited number of words, do not grow usually)
 - Determiners: the, some, a, an, ...
 - □ Pronouns: she, he, I, ...
 - □ Prepositions: to, in, on, under, over, by, ...
 - □ Auxiliaries: can, should, have, had, ...
 - Conjunctions: and, or
 - Particles: off, up
 - Interjections: Ow, Eh
- Open (unlimited number of words)
 - Nouns
 - Verbs
 - Adjectives
 - Adverbs

- 7
- Speech Synthesis
- Parsing
- Machine Translation
- Information Extraction

8

Speech Synthesis

How to pronounce "lead" ?

9

Machine Translation

POS Tagset

11

- There are so many parts of speech tagsets we can draw
- Choosing a standard tagset is essential
- Tag types
 - Coarse-grained
 - noun
 - verb
 - adjective
 - ...
 - Fine-grained
 - noun-proper-singular, noun-proper-plural, noun-common-mass, ..
 - verb-past, verb-present-3rd, verb-base, ...
 - adjective-simple, adjective-comparative, ...
 - ...

Penn TreeBank

A large annotated corpus of English tagset: 45 tags

Penn TreeBank Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, tha
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, wher
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

POS Tagging

- 13
- Definition
 - $\hfill\square$ The process of assigning a part of speech to each word in a text
- Challenge
 - Words often have more than one POS

On my back_[NN]

The $back_{[JJ]}$ door

Win the voters back[RB]

Promised to back_[VB] the bill

Distribution of Ambiguities

		45-tag	g Treebank Brown
Unambiguous	(1 tag)	38,857	
Ambiguous (2–7 tags)		8844	
Details:	2 tags	6,731	
	3 tags	1621	
	4 tags	357	
	5 tags	90	
	6 tags	32	
	7 tags	6	(well, set, round,
			open, fit, down)
	8 tags	4	('s, half, back, a)
	9 tags	3	(that, more, in)

Plays well with others

Plays	NNS/VBZ
well	UH/JJ/NN/RB
with	IN
others	NNS

*Plays*_[VBZ] *well*_[RB] *with*_[IN] *others*_[NNS]

Performance

16

- Baseline model
 - Tagging unambiguous words with the correct label
 - Tagging ambiguous words with their most frequent label
 - Tagging unknown words as a noun

Already performs around 90%

Outline

Part of Speech Tagging

2 Named Entity Recognition

Sequential Modeling

Motivation

- ¹⁸ Fa
 - Factual information and knowledge are normally expressed by named entities
 - □ Who, Whom, Where, When, ...
 - Question answering systems are looking for named entities to answer users' questions
 - Named entity recognition is the core of the information extraction systems

- Finding the important information of an event from an invitation
 Date, Time, Location, Host, Contact person
- Finding the main information of a company from its reports
 Founder, Board members, Headquarters, Profits
- Finding medical information from medical literature
 Drugs, Genes, Interaction products
- Finding the target of sentiments
 - Products, Celebrities

20

Google	microsoft headquarters
Search	About 19,400,000 results (0.34 seconds)
Everything Images	Best guess for Microsoft Headquarters is One Microsoft Way, Redmond, Washington, 98052 Mentioned on freebase.com - Show details
Maps Videos News	Microsoft - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Microsoft :242-243, 246 Microsoft moved its headquarters to Redmond on February 26, 1986, and on March 13 the company went public; the ensuing rise in the stock
Shopping More	History of Microsoft - List of Microsoft software List of mergers and Windows Microsoft Corporate Office Headquarters www.compretentificebeadquarters.com/2011/02/microsoft html
All results Sites with images	Microsoft's corporate office address and phone number are below: Microsoft Corporate Office Headquarters: One Microsoft Way Redmond, WA 98052-7329
More search tools	Microsoft Visitor Center www.microsoft.com/visitorcenter/location.mspx The Microsoft Visitor Center is located at 15010 NE 36th Street, Redmond, WA 98052, adjacent to the main campus of Microsoft corporate headquarters.

Named Entity Recognition (NER) HPI Hasso Plattner Institut

- 21
- Finding named entities in a text
- Classifying them to the corresponding classes

Named Entity Classes

22

Person

- Person names
- Organization
 - D Companies, Government, Organizations, Committees, ...
- Location
 - □ Cities, Countries, Rivers, ..
- Date and time expression
- Measure
 - Percent, Money, Weight, ...
- Religious
- Book title
- Movie title
- Drug name

NER Task

Assigning a label to each token of the text

Steven	PER		Steven	B-PER	
Paul	PER		Paul	I-PER	
Jobs	PER		Jobs	I-PER	
	0			0	
co-founder	0		co-founder	0	
of	0		of	0	
Apple	ORG		Apple	B-ORG	
Inc	ORG		Inc	I-ORG	
	0		,	0	
was	0		was	0	
born	0		born	0	
in	0		in	0	
California	LOC		California	B-LOC	
	0	T 10		0	1
					-

NER Ambiguity

24

IO vs. IOB Encoding

John Shows Mary Hermann Hesse 's book	B-PER O B-PER B-PER I-PER O O O
•	0

NER Ambiguity

- 25
- Ambiguity between named entities and common words
 May

- Ambiguity between named entity types
 - Washington (Location or Person)

Outline

Part of Speech Tagging

2 Named Entity Recognition

3 Sequential Modeling

Task

Similar to a normal classification task

- Feature Selection
- Algorithm

POS Tagging

28

Features

Word Prefixes Suffixes Lowercased word Capitalization Word shapes

the: the \rightarrow DT unbelievable: un- \rightarrow JJ slowly: -ly \rightarrow RB Importantly: importantly \rightarrow RB Stefan: [CAP] \rightarrow NNP 35-year: d-x \rightarrow JJ

Model

Maximum Entropy
 P(t|w)

Data	Performance
Overall	93.7
Unknown	82.6

NER

Features

WordGermany: GermanyPOS tagWashington: NNPCapitalizationStefan: [CAP]PunctuationSt.: [PUNC]Lowercased wordBook: bookSuffixesSpanish: -ishWord shapes1920-2008: dddd-dddd

List lookup

- Extensive list of names are available via various resources
- Gazetteer: a large list of place names

POS Tagging

More Features?

 $They_{[PRP]} \ left_{[VBD]} \ as_{[IN]} \ soon_{[RB]} \ as_{[IN]} \ he_{[PRP]} \ arrivied_{[VBD]}$

Better Algorithm

Using Sequence Modeling

Sequence Modeling

- 31
- Many of the NLP techniques should deal with data represented as sequence of items
 - □ Characters, Words, Phrases, Lines, ...

警察枪杀了那个逃 BIBIBBB BI

 $I_{[PRP]} saw_{[VBP]} the_{[DT]} man_{[NN]} on_{[IN]} the_{[DT]} roof_{[NN]}.$

Sequence Modeling

- 32
- Making a decision based on the
 - Current Observation
 - Word (*W*₀)
 - Prefix
 - Suffix
 - Lowercased word
 - Capitalization
 - Word shape
 - Surrounding observations
 - W₊₁
 - W_1
 - Maximum Entropy Markov Model (MEMM) Previous decisions
 - T_1 • T_2

Saeedeh Momtazi | NLP | 03.05.2012

Conditional Markov Model (CMM)

Context Words

NER

- Sherwood Forest
- Portobello Street
- Mr Smith
- □ Apple Inc
- □ John earns 3000 €
- John joined IBM

Learning Model

34

Sequence Modeling

- Greedy inference
 - □ Starting from the beginning of the sequence
 - □ Assigning a label to each item using the classifier in that position
 - Using previous decisions as well as the observed data
 - Beam inference
 - □ Keeping the top *k* labels in each position
 - Extending each sequence in each local way
 - □ Finding the best *k* labels for the next position

- 36
- Finding the best sequence of tags (t₁...t_n) that corresponds to the sequence of observations (w₁...w_n)
- Probabilistic View
 - Considering all possible sequences of tags
 - Choosing the tag sequence from this universe of sequences, which is most probable given the observation sequence

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

Using Bayes Rule

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(t_1^n | w_1^n) = \frac{P(w_1^n | t_1^n) \cdot P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} P(w_1^n | t_1^n) \cdot P(t_1^n)$$

Using Markov Assumption

$$\hat{t_1^n} = \operatorname{argmax}_{t_1^n} P(w_1^n | t_1^n) \cdot P(t_1^n)$$

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$
$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} \prod_{i=1}^n P(w_i|t_i) \cdot P(t_i|t_{i-1})$$

Two Probabilities

- The tag transition probabilities: $P(t_i|t_{i-1})$
 - □ Finding the likelihood of a tag to proceed by another tag
 - Similar to the normal bigram model

$$P(t_i|t_{i-1}) = rac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

Two Probabilities

• The word likelihood probabilities: $P(w_i|t_i)$

□ Finding the likelihood of a word to appear given a tag

$${\cal P}({\it w}_i|t_i)=rac{C(t_i,{\it w}_i)}{C(t_i)}$$

 $I_{[PRP]} saw_{[VBP]} the_{[DT]} man_{[NN?]} on_{[]} the_{[]} roof_{[]}.$

$$P([NN]|[DT]) = \frac{C([DT], [NN])}{C([DT])}$$
$$P(man|[NN]) = \frac{C([NN], man)}{C([NN])}$$

42

Secretariat_[NNP] is_[VBZ] expected_[VBN] to_[TO] race_[VB] tomorrow_[NR].

$People_{[NNS]}$ inquire_{[VB]} the_{[DT]} reason_{[NN]} for_{[IN]} the_{[DT]} race_[NN].

Ambiguity

43

Secretariat_[NNP] is_[VBZ] expected_[VBN] to_[TO] race_[VB] tomorrow_[NR].

Ambiguity

44

Secretariat_[NNP] is_[VBZ] expected_[VBN] to_[TO] race_[VB] tomorrow_[NR].

P(VB|TO) = 0.83P(race|VB) = 0.00012P(NR|VB) = 0.0027

P(VB|TO)P(NR|VB)P(race|VB) = 0.00000027

Ambiguity

45

Secretariat_[NNP] is_[VBZ] expected_[VBN] to_[TO] race_[VB] tomorrow_[NR].

P(NN|TO) = 0.00047P(race|NN) = 0.00057P(NR|NN) = 0.0012

P(NN|TO)P(NR|NN)P(race|NN) = 0.0000000032

- A weighted finite-state automaton adds probabilities to the arcs
 The probabilities leaving any arc must sum to one
- An HMM is an extension of a Markov chain in which the input symbols are not the same as the states
- We do not know which state we are in
 - The output symbols are words
 - The hidden states are POS tags

Transition probabilities

48

Word likelihood probabilities

The Viterbi Algorithm

- Creating an array
 - Columns corresponding to inputs
 - Rows corresponding to possible states
 - Sweeping through the array in one pass filling the columns left to right using the transition probabilities and observation probabilities
 - Storing the max probability path to each cell (not all paths) using dynamic programming

The Viterbi Algorithm

Further Reading

- Speech and Language Processing
 - □ Chapter 5: POS Tagging
 - Chapter 6: MaxEnt & HMM
 - □ Chapter 22.1: NER