
Detecting Inclusion Dependencies

25.4.2013
Felix Naumann



Overview

Felix Naumann | Profiling & Cleansing | Summer 2013

2

■ Dependencies
■ Inclusion Dependencies
■ SQL 
■ De Marchi et al.
■ SPIDER
■ Foreign Key Detection



Constraints in Databases

■ Relational model defines very high level semantics
□ The „relation“

■ But no intended „meaning“ of the stored tuples
■ No implicit metadata

■ Constraints are a form to add such metadata
□ „Integrity constraints“
□ Must be satisfied by all instances of a database schema

■ In general: Any expression from first-order logic
■ Restricted class of constraints: Dependencies

□ More feasible to reason about and validate
■ Important topic in database theory

□ Main question there: logical implication
□ Given a set of dependencies Σ and a dependency σ, if an instance 

satisfies Σ, does it also satisfy σ?
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Many kinds of dependencies
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From Abiteboul, Hull, Vianu: Foundations of Databases, 1995



Some important dependencies

■ Functional dependencies
□ Values of some attributes functionally determine those of 

other attributes.
□ Movies: Title -> Director
□ Showings: Theater, Screen -> Title

■ Key dependency: Special case of FDs
□ Left side of FD implies all (other) attributes
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Some important dependencies

■ Join dependency
□ Multivalued dependencies (MVDs) are a special case
□ Showings(Theater, Screen, Title, Snack)
□ Instance I = πTheater, Screen,Titel(I)⋈πTheater, Snacks(I)

■ …and inclusion dependencies
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Inclusion Dependencies: Definition

■ INDs involve more than one relation.
■ Let D be a relational schema and let I be an instance of D.
■ R[A1, …, An] denotes projection of I on attributes A1, … An, of 

relation R: R[A1, …, An] = πA1, …, An(R)

■ IND σ = R[A1, …, An] ⊆ S[B1, …, Bn], where R, S are (possibly 
identical) relations of D.
□ Projection on R and S must have same number of attributes.

■ An instance I of D satisfies σ if I(R)[A1, …, An] ⊆ I(S)[B1, …, Bn]
■ Values of R: “dependent values”
■ Values of S: “referenced values”
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Example

■ Each Title in Showings should appear as a Title in Movies
□ Showings[Title] ⊆ Movie[Title]

■ Aka. “referential integrity”
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Inference rules for INDs

■ Reflexivity: R[X] ⊆ R[X]

■ Projection: 
□ R[A1, …, An] ⊆ S[B1, …, Bn] 
□ => R[Ai1, …, Aim] ⊆ S[Bi1, …, Bim] for each sequence i1, …,im

of Integers in {1,…,n}

■ Transitivity: 
■ R[X] ⊆ S[Y] and S[Y] ⊆ T[Z]
■ => R[X] ⊆ T[Z]
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IND types

■ Unary INDs
□ INDs on single attributes: R[A] ⊆ S[B] 

■ n-ary INDs
□ INDs on multiple attributes: R[X] ⊆ S[Y] 

■ Partial INDs
□ IND R[A] ⊆ S[B] is satisfied for x% of all tuples in R
□ IND R[A] ⊆ S[B] is satisfied for all but x tuples in R

■ Approximate INDs
□ IND R[A] ⊆ S[B] is satisfied with probability p.
□ Based on sampling or other heuristics
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Examples

■ Unary: R[C] ⊆ S[F]

■ N-ary: R[B,C] ⊆ S[G,F]

■ Partial: R[A] ⊆75% S[F]

■ Approximate:  R[BA] ⊆ S[HG]
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R A B C
1 x 1
2 x 1
3 y 2
5 z 4

S F G H
1 x 1
2 y 3
3 z 4
4 z 4



IND types

■ Prefix/Suffix INDs
□ IND R[A] ⊆ S[B] is satisfied after removing a fixed (or 

variable) prefix/suffix from each value of A.
□ Twist: A dependent value can match multiple referenced 

values

■ Example
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A
bbc

B
b
bb

A ⊆s B
(suffix with variable length)



IND types

■ Conditional INDs
□ Only useful for partial INDs
□ More next week
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EntityID further data
17 abcd…
18 efgh…

ToyDB

EntityID further data
18 abcd…
19 efgh…

FashionDB

Unit cost DBName ProdID
200 USD ToyDB 17
50 EUR ToyDB 18
1000 QAR FashionDB 18

Catalog



Motivation for IND discovery

■ General insight into data
■ Detect unknown foreign keys
■ Example

□ PDB: Protein Data Bank
□ OpenMMS provides relational schema

◊ Parses protein and nucleic acid 
macromolecular structure data 
from the standard mmCIF format.

□ 175 tables with primary key 
constraints

□ 2705 attributes
□ But: Not a single foreign key 

constraint!
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Motivation for IND discovery

■ Ensembl – genome database
□ shipped as MySQL dump files
□ more than 200 tables
□ Not a single foreign key constraint!

■ Why are FKs missing?
□ Lack of support for checking foreign key constraints in the 

host system
◊ Example: Oracle did not support FKs up to v6

□ Fear that checking such constraints would impede database 
performance

□ Lack of database knowledge within the development team
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The JOIN

■ SELECT COUNT(depColumn) AS numDeps

FROM depTable

■ SELECT COUNT(∗) AS matchedDeps
FROM depTable JOIN refTable

ON depTable.depColumn = refTable.refColumn

■ (numDeps = matchedDeps) ⇔ depColumn ⊆ refColumn

■ Missed opportunity
□ DBMS could stop early: As soon as we observe a dependent 

value without a join partner
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The EXCEPT

■ SELECT count(∗) AS unmatchedDeps FROM

((SELECT to char (depColumn)

FROM   depTable

WHERE  depColumn IS NOT NULL

EXCEPT

SELECT to char (refColumn)

FROM   refTable

)

FETCH FIRST 1 ROWS ONLY

)

■ unmatchedDeps = 0 ⇔ depColumn ⊆ refColumn
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The “Antijoin”
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■ SELECT COUNT(∗) AS unmatched
FROM R

WHERE A IS NOT NULL

AND A NOT IN

(SELECT B FROM S)

FETCH FIRST 1 ROWS ONLY

■ depColumn ⊆ refColumn⇔ unmatched = 0

■ SELECT COUNT(∗) AS unmatched
FROM R

WHERE A IS NOT NULL

AND NOT EXISTS

(SELECT * FROM S WHERE R.A=S.B)

FETCH FIRST 1 ROWS ONLY

■ depColumn ⊆ refColumn⇔ unmatched = 0



Measurements (2006)

■ High efficiency of joins in DBMS
■ Inability of DBMS optimizer to move STOP operator into inner queries 
■ Overall problems

□ Still too slow
□ One SQL statement per attribute pair
□ Each attribute joined n times (many sorts/hashes)
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Discussion on data profiling 
experiments

■ What can we assume? What is the scenario?
□ Index every column
□ Statistics for each table and column
□ Where is the data originally

◊ In a database
◊ In files

□ Do I count importing the data?
◊ Could then do statistics on the fly
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Data preprocessing

■ Key idea: For a given domain associate each value with every 
attribute having this value.
□ Create binary relation B ⊆ Values x Attributes 

with (v,A)∈ B iff v ∈ πA(R)
□ Analogy: Inverted index

■ Source: Efficient Algorithms for Mining Inclusion Dependencies, Fabien De 
Marchi, Stéphane Lopes, and Jean-Marc Petit, In: EDBT 2002
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Example
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■ Three domains: int, real, and string
■ Example for domain “int” 

□ Values = {1,2,3,4,6,7,9}
□ Attributes = {A,C,E,G,K}
□ Examples for relation B: (1,A), (1,E), (1,K)

■ Build relation with single full scan of each base relation



Example „Extraction contexts“
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IND discovery

■ Insight: If all values of attribute A can be found in values of B 
(A⊆B), then by construction B will be present in all lines of the 
binary relation containing A.
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IND discovery algorithm
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All attributes are ref candidates

Remove candidates

Generate output



IND discovery algorithm: Example
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■ Step 0: rhs(A) = … = rhs(K) = {A,C,E,G,K}
■ Step 1 (v=1): rhs(A)={A,E,K}, rhs(E)={A,E,K}, rhs(K)={A,E,K}, 

rhs(C) = rhs(G) = {A,C,E,G,K}
■ Step 2 (v=2): unchanged
■ Step 3 (v=3): rhs(C)={C,G}, rhs(G)={C,G}
■ Step 9: rhs(A)={A,E,K}, rhs(C)={C,G}, rhs(E)={E,K}, rhs(G)={G}, 

rhs(K)={K}
■ A ⊆ E, A ⊆ K, C ⊆ G, and E ⊆ K Question: Why

distinguish domains?
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Making use of order

■ Idea: Order each column only once
□ Index in DBMS
□ Sorted columns as individual files

■ Simulate merging procedure (merge join, 
merge sort)
□ Move cursor along both columns
□ Stop after first depedent value that is 

not in referenced attribute
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A
1
3
4
7

B
1
2
3
5



Brute force approach

■ Sequentially check each column pair
■ Re-use order for each attribute

□ For each attribute: SELECT DISTINCT A FROM R ORDER BY A
□ Store result in file

■ Problem: Run through data multiple times
□ A ⊆ C
□ A ⊆ D
□ B ⊆ C
□ B ⊆ D
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A
1
3
4

B
2
3
5

C
1
3
7
8

D
1
2
3
5



Testing a single IND candidate

■ 2 ordered lists of distinct values: depValues and refValues
■ while (depValues has next)

□ currentDep = depValues.next();
□ if (refValues is empty) then return false;
□ while (true)

◊ currentRef = refValues.next();
◊ if (currentDep = currentRef) then break;
◊ else if (currentDep < currentRef) then return false;
◊ else if not(refValues has next) then return false;

■ return true;

Felix Naumann | Profiling & Cleansing | Summer 2013

33

A
1
3
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B
1
2
3
5

C
1
2
3
4
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SPIDER 
Single Pass Inclusion DEpendency Recognition

■ Main ideas
□ Test all IND-candidate pairs in parallel.
□ Read attribute values only once.

□ Stop test of an IND-candidate after first counter-example.
□ Reduce number of value comparisons by specialized data structure.
□ No need to build inverted index.

■ Two steps:
□ Sort and distinct all attribute‘s values and write them to disk

◊ For each attribute: SELECT DISTINCT A FROM R ORDER BY A
□ Test all IND candidate pairs in parallel

■ Sources: 

□ Jana Bauckmann and Ulf Leser and Felix Naumann. Efficiently Computing Inclusion 
Dependencies for Schema Discovery. In Proceedings of the International Conference on Data 
Engineering Workshops (ICDE workshops), 2006.

□ Jana Bauckmann, Ulf Leser, Felix Naumann, Véronique Tietz: Efficiently Detecting Inclusion 
Dependencies. In: ICDE , 2007.



SPIDER

■ Parallel generation and test of all IND candidates
□ Reads each value at most once

■ Challenge: Synchronize reading of values of all attributes
□ Each dependent attribute value influences when a referenced 

attribute value can be read.
□ Each referenced attribute value influences when a dependent 

attribute value can be read.
■ Move cursor r on a referenced file R when all cursors to dependent 

files point to values that are greater than the current value pointed to 
by r. 

■ Move a cursor d on a dependent file D one step further, when d’s 
value is smaller than all values currently pointed to in referenced files.

dep1

1
3
4

dep2

2
3
5

ref1

1
2
3
5

ref2

1
3
7
8
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SPIDER: Idea

■ All values within each attribute are sorted.
■ Attributes themselves are sorted by current minimum value (in a 

min-heap).
■ IND candidates represented as a list for each dependent attribute, 

containing all referenced attributes.

1  3 4

1  2 3 5

2  3 7 8

2  3 5

dep1          …     ref1, ref2

ref1

ref2

dep2          …     ref1, ref2

is IND candidate with…

Attributes

Min-Heap
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SPIDER: Idea

■ In reference list: Distinguish for referenced attribute whether 
current dependent value has
□ been seen in referenced attribute, or 
□ not (yet) been seen in referenced attribute.

■ Simultaneous processing of all attributes with same current value, 
checking all (still valid) IND candidates

1  3 4

1  2 3 5

2  3 7 8

2  3 5

dep1          …     ref1?, ref2?

ref1

ref2

dep2          …     ref1?, ref2?

is IND candidate with…

Attributes

Min-Heap
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SPIDER by example 

■ In each step: Intersect „attributes to process“ with each refs list of 
previous step
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attributes A, B, C

A B C

s s

t t t

x

y y y

z

attributes
to process

dep A 
refs

dep B 
refs

dep C 
refs

Init B,C A,C A,B

Step 1 A,C C A,C A

Step 2 A,B,C C A,C A

Step 3 A ∅ A,C A

Step 4 A,B,C ∅ A,C A

Step 5 C ∅ A,C ∅
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SPIDER results

UniProt TPC-H PDB

DB size 900 MB 1.3 GB 2.8 GB 32GB

# attributes 68 61 1215 1297

# IND cand. 910 477 139,807 157,818

# INDs 36 33 4,972 5,431

join 9m04s 25m02s 16h14m > 7 days

Bell & 
Brockhausen

4m39s - 1h32m -

Marchi et al. 9h 58m - - -

Brute force 2m11s 6m30s 3h29m 19h51m

SPIDER 1m51s 6m25s 23m36s 6h07m



Analysis and Extension

■ Complexity: O(nt log t) comparisons for n attributes and t tuples
□ Sorting all columns: O(nt log t)
□ Insertion into minHeap (of size n): O(log n) for each value

◊ O(nt log n) for all values
□ Popping from heap again O(nt log n)
□ Intersections in constant time (bit vectors), so O(nt) for all
□ Assuming t >> n: O(nt log t)
□ I/O complexity is also dominated by sorting

■ Extension for partial INDs
□ During intersection: 

◊ Count how many times intersection removed and 
attributes. 

◊ Remove only after k unsuccessful intersections
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Problem: Automatic Determination of 
Foreign Keys

■ Given
□ Relational schema
□ Database instance of that schema
□ Complete set of (observed) inclusion dependencies

◊ Attributes A and B with R[A] ⊆ S[B]  (in short A ⊆ B)
■ Find

□ All foreign key constraints: attributes A and B with A → B

■ Difficulty
□ Foreign keys are not intrinsic to data, but defined by humans
□ Discover semantics

■ An aside: INDs, FKs, and humans: Cannot be „discovered“
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Characterizing foreign keys

■ Find set of characteristic features
□ Easily verifiable
□ Carefully developed
□ Not necessarily independent

■ Notation-reminder
□ FK candidate: A → B

◊ Given IND A ⊆ B
□ Let s(A) denote set of distinct values in attribute A.
□ Let name(A) denote the label of attribute A.

■ Source: Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, 
UlfLeser: A Machine Learning Approach to Foreign Key Discovery. In: WebDB 2009
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Features

■ DependentAndReferenced (F3)
□ Counts how often the dependent attribute A 

appears as referenced attribute in the set of 
all INDs. 

□ Usually, a foreign key is not also a primary 
key that is referenced as foreign key by other 
tables. 

■ MultiDependent (F4)
□ Counts how often A appears as dependent 

attribute in the set of all INDs. 
□ If s(A) is contained in the set of values of 

many other attributes, the likelihood for each 
of these INDs being a FK is decreased. 

■ MultiReferenced (F5)
□ Counts how often B appears as referenced 

attribute in the set of all INDs. 
□ Often, primary keys are referenced by more 

than one foreign key.
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Features

■ DistinctDependentValues (F1)
□ The cardinality of s(A). 
□ Usually, attributes that are foreign keys 

contain at least some different values.

■ ValueLengthDiff (F7)*

□ Difference between the average value length 
(as string) in s(A) and s(B). 

□ Usually, average length of the values is similar 
whenever foreign keys reference a non-biased 
sample of the primary keys. 
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Features

■ Coverage (F2)*

□ The ratio of values in s(B) that are covered by s(A) 
compared to all values in s(B). 

□ Usually, foreign keys cover a considerable number of 
primary key values. 
◊ 60% of FK-attribute values cover all ref-values
◊ Each covers at least 10%

■ OutOfRange (F8)*

□ Percentage of values in s(B) that are not within 
[ min(s(A)), max(s(A)) ]. 

□ Usually, the dependent values should be evenly 
distributed over the referenced values.

□ Mostly, less than 5% of values outside of range 
■ TableSizeRatio (F10)

□ Ratio of number of tuples in A and number of tuples in B. 
□ Usually in life sciences databases, table sizes do not 

differ wildly
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Features

■ ColumnName (F6)*

□ Similarity between name(A) and 
name(B), also considering the 
name of the table of which B is 
an attribute. 

□ Currently: Exact matches or 
complete containment

■ TypicalNameSuffix (F9)
□ Checks whether name(A) ends 

with a substring that indicates a 
foreign key.

□ Currently only „id“, „key“, and 
„nr“ (German for “number”)
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FILMTEXTE.FILMTEXTTYPNR 
→ FILMTEXTTYPEN.FILMTEXTTYPNR

CUSTOMER.C_NATIONKEY
→ NATION.N_NATIONKEY

SG_SEQFEATURE.ENT_OID
→ SG_COMMENT.ENT_OID

COURSE.STUDENT
→ STUDENT.ID

SG_BIOENTRY.TAX_OID
→ SG_TAXON.OID



Learning to classify based on features

■ Four (supervised) machine learning methods
□ Naive Bayes
□ Support Vector Machine
□ J48 decision tree
□ Decision tables

■ Implementation as provided by WEKA
□ http://www.cs.waikato.ac.nz/ml/weka/

■ Cross validation at database level
□ Not at IND level

■ Validation with unknown data source
□ MSD
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F-Measure results

■ Cross-validation
□ Training on all but test database
□ MSD held back completely

■ Results for MSD, trained on all others
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Test database Naive Bayes SVM J48 DecisionTab Avg
UniProt 0.86 0.92 0.84 0.8 0.855

Filmdienst 0.80 0.86 0.86 0.93 0.817
Movielens 0.71 0.71 1.0 0.8 0.805

SCOP 1.0 1.0 1.0 1.0 1.0
TPC-H 0.86 0.90 0.95 0.95 0.915

Average 0.846 0.78 0.930 0.896

Test database Naive Bayes J48 DecisionTab
MSD 0.84 0.78 0.79



Summary
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