

IT Systems Engineering | Universität Potsdam

## Detecting Functional Dependencies

21.5.2013

Felix Naumann

## Overview



2



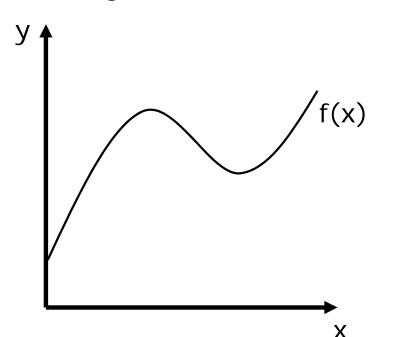
- Functional Dependencies
- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs

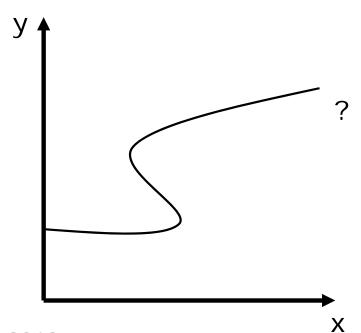




## Definition – Functional Dependency

- $\blacksquare$  "X  $\rightarrow$  A" is a statement about a relation R: When two tuples have same value in attribute set X, the must have same values in attribute A.
- Formally:  $X \to A$  is an FD over R  $(R \models X \to A) \Leftrightarrow$  for all tuples  $t_1, t_2 \in R$ :  $t_1[X] = t_2[X] \Rightarrow t_1[A] = t_2[A]$
- Can generalize to sets:  $X \rightarrow Y \Leftrightarrow X \rightarrow A$  for each  $A \in Y$





#### HPI Hasso Plattner Institut

## Trivial FDs

- Trivial: Attributes on RHS are subset of attributes on LHS
  - □ Street, City → City
  - Any trivial FD holds
- Non-trivial: At least one attribute on RHS does not appear on LHS
  - Street, City → Zip, City
- Completely non-trivial: Attributes on LHS and RHS are disjoint.
  - Street, City → Zip
- Minimal FD: RHS does not depend on any subset of LHS.
- Typical goal: Given a relation R, find all minimal completely nontrivial functional dependencies.

#### HPI Hasso Plattner Institut

## FD Inference Rules

■ R1 Reflexivity  $X \supseteq Y \Rightarrow X \rightarrow Y \text{ (also } X \rightarrow X)$ 

- Trivial FDs
- R2 Accumulation  $\{X \rightarrow Y\} \Rightarrow XZ \rightarrow YZ$ 
  - Aka: Augmentation
- R3 Transitivity  $\{X \rightarrow Y, Y \rightarrow Z\} \Rightarrow X \rightarrow Z$
- R1-R3 known as *Armstrong-Axioms* 
  - Sound and complete
- R4 Decomposition  $\{X \rightarrow YZ\} \Rightarrow X \rightarrow Y$
- R5 Union  $\{X \rightarrow Y, X \rightarrow Z\} \Rightarrow X \rightarrow YZ$
- R6 Pseudotransitivity  $\{X\rightarrow Y, WY\rightarrow Z\} \Rightarrow WX\rightarrow Z$



## FD Discussion

- Schema vs. instance
- Keys as special case for FDs
  - $\square$  X is key of R if X  $\rightarrow$  R\X
- Uses for FDs
  - Schema design and normalization
  - Key discovery
  - Data cleansing (especially conditional FDs)



# Naive Discovery Approach

- Given relation R, detect all minimal, non-trivial FDs  $X \rightarrow A$ .
- For each column combination X
  - For each pair of tuples (t1,t2)
    - $\diamond$  If t1[X\A] = t2[X\A] and t1[A]  $\neq$  t2[A]: Break
- Complexity
  - Exponential in number of attributes
  - times number of rows squared



- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs



## Tane - General Idea



Two elements of approach

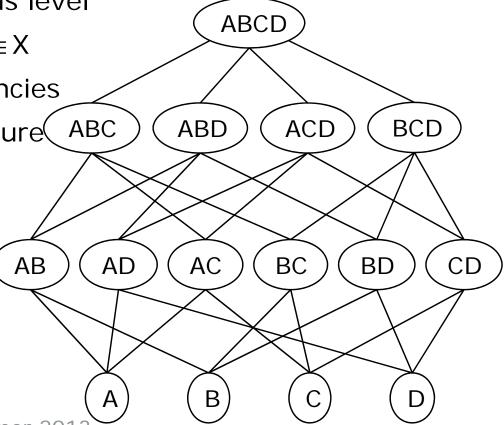
- 1. Reduce column combinations through pruning
  - Reasoning over FDs
- 2. Reduce tuple sets through partitioning
  - Partition data according to attribute values
  - Level-wise increase of size of attribute set
    - Consider sets of tuples whose values agree on that set

Huhtala, Y.; Kärkkäinen, J.; Porkka, P. & Toivonen, H. TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies Computer Journal, 1999, 42, 100-111





- Bottom up traversal through lattice
  - $\Box \Rightarrow$  only minimal dependencies
  - Pruning
  - Re-use results from previous level
- For a set X, test all  $X \setminus A \rightarrow A$ ,  $A \in X$ 
  - □ ⇒ only non-trivial dependencies
  - Test on efficient data structure ABC



Felix Naumann | Profiling & Cleansing | Summer 2013

## Overview



- Functional Dependencies
- TANE



- Candidate sets
- Pruning Algorithm
- Dependency checking
- Approximate FDs
- FD\_Mine
- Conditional FDs



## Candidate Sets



- RHS candidate set C(X)
- Stores only those attributes that might depend on all other attributes of X.
  - I.e., those that still need to be checked
  - □ If  $A \in C(X)$  then A does not depend on any proper subset of X.
- $C(X) = R \setminus \{A \in X \mid X \setminus A \rightarrow A \text{ holds}\}\$
- Example:  $R = \{ABCD\}$ , and  $A \rightarrow C$  and  $CD \rightarrow B$ 
  - $\square$  C(A) = {ABCD}\{} = C(B) = C(C) = C(D)
  - $\Box$  C(AB) = {ABCD}\{}
  - $\Box$  C(AC) = {ABCD}\{C} = {ABD}
  - $\square$  C(CD) = {ABCD}\{}
  - $\square$  C(BCD) = {ABCD}\{B} = {ACD}

# RHS candidate pruning



- For minimality it suffices to test X\A → A where
  - $\square$  A  $\in$  X and A  $\in$  C(X \{B}) for all B  $\in$  X.
  - □ I.e., A is in **all** candidate sets of the subsets.

#### Example

- $\square$  X = {ABC}. Assume we know C  $\rightarrow$  A from previous step.
- $\square$  Need to test three dependencies: AB $\rightarrow$ C, AC $\rightarrow$ B, and BC $\rightarrow$ A
  - $\diamond$  We should not be testing BC $\rightarrow$ A, because we know C $\rightarrow$ A
- Candidate sets:
  - $\diamond$  C(AB) = {ABC}, C(AC)={BC}, C(BC)={ABC}
- □ E.g. BC $\rightarrow$ A does not need to be tested for minimality, because A is not in all three candidate sets: A $\notin$ C(AB) $\cap$ C(AC) $\cap$ C(BC)
- □ AB→C, AC→B need to be tested, because B and C appear in all candidate sets.



## Improved RHS candidate pruning

- Basis: Let  $B \in X$  and let  $X \setminus B \to B$  hold. If  $X \to A$ , then  $X \setminus B \to A$ .
  - $\square$  Example: A  $\rightarrow$  B holds. If AB  $\rightarrow$  C holds, then also A  $\rightarrow$  C.
  - □ Use this to reduce candidate set: If  $X\B \to B$  for some B, then any dependency with X on LHS cannot be minimal.
    - ♦ Just remove B.
- $\mathbb{C}^+(X) = \{A \in R \mid \forall B \in X : X \setminus \{A,B\} \rightarrow B \text{ does not hold} \}$ 
  - $\square$  Special case: A = B corresponds to C(X)
  - $\square$  C(X) = R \ {A \in X \ A \to A holds}
- This definition removes three types of candidates.
  - $\square$  C1 = {A \in X \ A \rightarrow A holds} (as before)
  - $\square$  C2 = {R\X} if  $\exists B \in X: X \setminus B \rightarrow B$
  - $\square$  C3 = {A $\in$ X |  $\exists$ B $\in$ X\A : X\{A,B}  $\rightarrow$  B holds}

# Example for C2



- $C^+(X) = \{A \in R \mid \forall B \in X : X \setminus \{A,B\} \rightarrow B \text{ does not hold}\}$
- $C2 = \{R \setminus X\}$  if  $\exists B \in X: X \setminus B \rightarrow B$
- $\blacksquare$  R = ABCD, X = ABC
- C(X) = ABCD initially
- Discovery of C→B
  - □ Remove B from C(X)
  - □ Additionally remove R\X = D
  - Ok, because remaining combination of LHS contains B and C.
    - ♦ ABC→D is not minimal because C→B
- Together:  $C^+(X) = \{AC\}$

- $C3 = \{A \in X \mid \exists B \in X \setminus A : X \setminus \{A,B\} \rightarrow B \text{ holds}\}$ 
  - Same idea as before, but for subsets
- Assume X has proper subset Y (X $\supset$ Y) such that Y\B  $\rightarrow$  B holds for some B∈Y.
- Then we can remove from C(X) all  $A \in X \setminus Y$ .
- Example X = ABCD and let C→B
- $\blacksquare$  X  $\supset$  Y = BC and X\Y = AD
- Thus can remove all AD.
  - Any remaining combination of LHS contains B and C.
    - ♦ ABC →D and BCD→A
  - □ Again, since C→B any such FD is not minimal.
- Together:  $C^+(X) = \{C\}$



# More pruning of lattice: Key pruning

- Insight: If X is superkey and  $X\setminus B \to B$ , then  $X\setminus B$  is also a superkey.
- Case 1: If X is superkey, no need to test any  $X \rightarrow A$ .
- Case 2:
  - □ If X is superkey and not key, any  $X \to A$  is not minimal (for any  $A \notin X$ ).
  - □ If  $A \in X$  and  $X \setminus A \rightarrow A$  then  $X \setminus A$  is superkey, and no need to test.
- Summary: Can prune all keys and their supersets
- Later: Test for superkey-property based on "key-error" of partition

## Overview



- Functional Dependencies
- TANE
  - Candidate sets
- Pruning Algorithm
- Dependency checking
- Approximate FDs
- FD\_Mine
- Conditional FDs



# TANE Base Algorithm



```
1 L_0 := \{\emptyset\}

2 \mathcal{C}^+(\emptyset) := R

3 L_1 := \{\{A\} \mid A \in R\}

4 \ell := 1

5 while L_\ell \neq \emptyset

6 COMPUTE_DEPENDENCIES(L_\ell)

7 PRUNE(L_\ell)

8 L_{\ell+1} := \text{GENERATE\_NEXT\_LEVEL}(L_\ell)

9 \ell := \ell + 1
```

■ Each level L contains the corresponding nodes of the lattice



# Generating Lattice Levels

- $L_{l+1} = \{X \mid |X| = l+1 \text{ and all subsets } Y \subset X \text{ of size } l \text{ are in } L_l\}$ 
  - General apriori idea
  - □ Can use L<sub>I</sub> to generate L<sub>I+1</sub>

```
1 L_{\ell+1} := \emptyset

2 for each K \in PREFIX\_BLOCKS(L_{\ell}) do

3 for each \{Y, Z\} \subseteq K, Y \neq Z do

4 X := Y \cup Z

5 if for all A \in X, X \setminus \{A\} \in L_{\ell} then

6 L_{\ell+1} := L_{\ell+1} \cup \{X\}

7 return L_{\ell+1}
```

- Prefix blocks: disjoint sets from L<sub>I</sub> with common prefix of size I-1
   All pairs for I = 1
- Line 5: All subsets of new set must appear in lower level

# **Dependency Computation**



for each  $X \in L_{\ell}$  do  $C^{+}(X) := \bigcap_{A \in X} C^{+}(X \setminus \{A\})$ for each  $X \in L_{\ell}$  do

for each  $A \in X \cap C^{+}(X)$  do

if  $X \setminus \{A\} \to A$  is valid then

output  $X \setminus \{A\} \to A$ remove A from  $C^{+}(X)$ remove all B in  $R \setminus X$  from  $C^{+}(X)$ 

- Line 2: Create candidate sets; each attribute must appear in all candidate sets of smaller size
- Line 4: Only test attributes from candidate set
- Line 5: Actual test on data
- Line 7: Reduce candidates by newly found dependent
- Line 8: Reduce candidates by all other attributes: cannot depend on all others, because any combination involving A and LHS is not minimal

# Pruning



```
1 for each X \in L_{\ell} do

2 if \mathcal{C}^{+}(X) = \emptyset do

3 delete X from L_{\ell}

4 if X is a (super)key do

5 for each A \in \mathcal{C}^{+}(X) \setminus X do

6 if A \in \bigcap_{B \in X} \mathcal{C}^{+}(X \cup \{A\} \setminus \{B\}) then

7 output X \to A

8 delete X from L_{\ell}
```

- Line 3: Basic pruning
  - Deletion from L<sub>I</sub> ensures that supersets cannot be created during level generation (loops not executed on empty candidate sets)
- Lines 4-8: Key pruning



- $\blacksquare$  R = ABCD, C $\rightarrow$ B and AB $\rightarrow$ D are to be discovered
  - □ Also: AC→D through pseudo-transitivity
- $L_0 = \{\},$ 
  - $\Box$  C<sup>+</sup>({}) = ABCD
  - nothing to do
- $L_1 = \{A\}, \{B\}, \{C\}, \{D\}$ 
  - $\Box$  C+(X) = ABCD for all X $\in$  L<sub>1</sub>
  - Still nothing to do: No FDs can be generated from singletons
  - Thus, no pruning
- $L_2 = AB, AC, AD, BC, BD, CD$ 
  - $\square$  E.g. C +(AB) = C+(AB\A)  $\cap$  C+(AB\B) = ABCD  $\cap$  ABCD
  - $\Box$  C+(X) = ABCD for all X $\in$  L<sub>2</sub>
  - □ Dep. checks for AB: A→B and B→A Nothing happens



- $L_2 = AB, AC, AD, BC, BD, CD$ 
  - $\Box$  C+(X) = ABCD for all X $\in$  L<sub>2</sub>
  - $\square$  Dep. checks for BC: B $\rightarrow$ C (no!) and C $\rightarrow$ B (yes!)
  - □ Output C→B
  - □ Delete B from C+(BC): ACD
  - □ Delete R\BC from C+(BC): C
    - ♦ Note BC→A and BC→D are not minimal
- $L_3 = ABC, ABD, ACD, BCD$ 
  - $\Box$  C+(ABC) = C+(AB)  $\cap$  C+(AC)  $\cap$  C+(BC) = C
  - $\Box$  C+(BCD) = C+(BC)  $\cap$  C+(BD)  $\cap$  C+(CD) = C
  - $\Box$  C+(ABD) = C+(ACD) = ABCD unchanged
  - $\square$  Dep. check for ABC: ABC  $\cap$  C<sup>+</sup>(ABC) are candidates
    - ♦ AB→C no! Did not check BC→A and AC→B



- $L_3 = ABC, ABD, ACD, BCD$ 
  - $\Box$  C+(ABC) = C+(BCD) = C
  - $\Box$  C+(ABD) = C+(ACD) = ABCD
  - $\square$  Dep. check for ABD: ABD  $\cap$  C<sup>+</sup>(ABD) are candidates
    - $\Diamond$  AD $\rightarrow$ B and BD $\rightarrow$ A: no!
    - ♦ AB→D: yes! Output AB→D
    - ♦ Delete D from C+(ABD): ABC
    - ♦ Delete R\ABD from C+(ABD): AB
  - $\square$  Dep. check for BCD: BCD  $\cap$  C<sup>+</sup>(BCD) are candidates
    - ♦ Only need to check BD→C: no!
  - $\square$  Dep. check for ACD: ACD  $\cap$  C<sup>+</sup>(ACD) are candidates
    - ♦ CD→A and AD→C: no!
    - ♦ AC→D: yes! Output AC→D
    - ♦ Delete D from C+(ABD): ABC
    - ♦ Delete R\ACD from C+(ABD): AC



- $L_4 = ABCD$ 
  - $extbf{C}^+(ABCD) = C^+(ABC) \cap C^+(ABD) \cap C^+(ACD) \cap C^+(BCD) = \{\}$
  - Nothing to check
  - Did not need to check
    - ♦ BCD→A: Not minimal because C → B
    - ♦ ACD→B: Not minimal because C → B
    - ♦ ABD→C: Not minimal because AB → D
    - ♦ ABC→D: Not minimal because AB → D

## Overview



- Functional Dependencies
- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs







- Tuples t and u are equivalent wrt. attribute set X if t[A] = u[A] for all A∈ X.
- Attribute set X partitions R into equivalence classes
  - Equivalence class of tuple t:

$$[t]_X = \{ u \in R \mid \forall A \in X : t[A] = u[A] \}$$

- □ Partition is set of disjoint sets:  $\pi_X = \{[t]_X \mid t \in R\}$ 
  - Each set has unique values for X-values.
- $\square$   $|\pi|$  is number of equivalence classes in  $\pi$ .

#### HPI Hasso Plattner Institut

## Partitioning - Example

| TupleID | Α | В | С  | D        |  |
|---------|---|---|----|----------|--|
| 1       | 1 | а | \$ | Flower   |  |
| 2       | 1 | Α |    | Tulip    |  |
| 3       | 2 | Α | \$ | Daffodil |  |
| 4       | 2 | Α | \$ | Flower   |  |
| 5       | 2 | b |    | Lily     |  |
| 6       | 3 | b | \$ | Orchid   |  |
| 7       | 3 | С |    | Flower   |  |
| 8       | 3 | С | #  | Rose     |  |

- $\blacksquare$  [1]<sub>A</sub>= [2]<sub>A</sub>= {1,2}
- $\blacksquare \ \pi_A = \{\{1,2\}, \{3,4,5\}, \{6,7,8\}\}$
- $\blacksquare \ \pi_{BC} = \{\{1\}, \{2\}, \{3,4\}, \{5\}, \{6\}, \{7\}, \{8\}\}\}$
- $\blacksquare \ \pi_D = \{\{147\}, \{2\}, \{3\}, \{5\}, \{6\}, \{8\}\}\}$

## Partition refinement



- Partition  $\pi$  refines partition  $\pi$ ' if every equivalence class in  $\pi$  is a subset of some equivalence class in  $\pi$ '.
  - $\square$   $\pi$  has a finer partitioning than  $\pi'$ .
- $X \to A \Leftrightarrow \pi_X \text{ refines } \pi_A$ 
  - $\square$  If  $\pi_X$  refines  $\pi_A$  then  $\pi_{X \cup A} = \pi_A$ .

  - $\square \Rightarrow \text{if } \pi_{X \cup A} \neq \pi_A \text{ then } |\pi_X| \neq |\pi_{X \cup A}|.$
  - $\square \Rightarrow \text{if } |\pi_X| = |\pi_{X \cup A}| \text{ then } \pi_{X \cup A} = \pi_A .$
- Together:  $X \to A \Leftrightarrow \pi_X$  refines  $\pi_A \Leftrightarrow |\pi_X| = |\pi_{X \cup A}|$ □ This implies a simple check for an FD.
- $\pi_A = \{12, 345, 678\}$
- $\pi_{B} = \{12345, 678\}$
- $\pi_{AB} = \{12, 345, 678\}$

|   | Α | В |
|---|---|---|
| 1 | 1 | Α |
| 2 | 1 | Α |
| 3 | 2 | Α |
| 4 | 2 | Α |
| 5 | 2 | Α |
| 6 | 3 | В |
| 7 | 3 | В |
| 8 | 3 | В |

#### HPI Hasso Plattner Institut

## Stripped partitions

- Idea: Remove equivalence classes of size 1 from partitions.
  - Singleton equivalence class cannot violate any FD.
  - Same idea as for position lists
- Problem
  - $\square$  X  $\rightarrow$  A  $\Leftrightarrow$   $|\pi_X| = |\pi_{X \cup A}|$  not true for stripped partitions  $\pi'$
  - $\Rightarrow$ :  $|\pi_C| = |\pi_{CUA}| = 6$  and  $|\pi'_C| = |\pi'_{CUA}| = 2$
  - $\square \Leftarrow : |\pi'_B| = |\pi'_{BUC}| = 2 \text{ but B} \nrightarrow C$
- Solution: Key error
  - e(X) is minimum fraction of tuples to remove for X to be key
  - $= e(X) = 1 |\pi_x|/r$ 
    - $\diamond$  e(B) = 1  $|\pi_B|/r$  = 1 3/8 = 5/8
  - $e(X) = (||\pi'_X|| |\pi'_X|)/r$ 
    - $||\pi'_{X}||$  = sum of sizes of equivalence classes in  $\pi'$
    - $\diamond$  e(B) = ((5+2) 2)/r = 5/8
  - $\square$  X  $\rightarrow$  A  $\Leftrightarrow$  e(X) = e(XUA)

|   | Α | В | С |
|---|---|---|---|
| 1 | 1 | Α | а |
| 2 | 1 | Α | b |
| 3 | 2 | Α | С |
| 4 | 2 | Α | С |
| 5 | 2 | Α | d |
| 6 | 3 | В | е |
| 7 | 3 | В | е |
| 8 | 3 | D | f |

# Computing partitions



- Compute partition  $\pi_A$  for each  $A \in R$ 
  - Directly from database
  - Only store tuples ID (Integers)
- Product  $\pi 1 \cdot \pi 2$ : Least refined partition that refines both  $\pi 1$  and  $\pi 2$ 
  - $\square$   $\pi_{\mathsf{X}} \cdot \pi_{\mathsf{Y}} = \pi_{\mathsf{X} \cup \mathsf{Y}}$
  - □ Partitions  $\pi_X$  computed as product of two partitions of size |X|-1.
  - Algorithm on next slide
- Dependency checking: X\A → A
  - □ Calculate  $e(X) = (||\pi'_X|| |\pi'_X|)/r$  and  $e(X \setminus A) = ...$
  - $\Box$  Check  $e(X) = e(X \setminus A)$
- Also key pruning: X is key if e(X) = 0.



return  $\widehat{\pi}$ 



Input: Stripped partitions  $\widehat{\pi'} = \{c'_1, \dots, c'_{|\widehat{\pi'}|}\}$  and  $\widehat{\pi''} = \{c''_1, \dots, c''_{|\widehat{\pi''}|}\}$ .

**Output:** Stripped partition  $\widehat{\pi} = \widehat{\pi'} \cdot \widehat{\pi''}$ .

```
\widehat{\pi} := \emptyset
       for i := 1 to |\widehat{\pi'}| do
           for each t \in c'_i do T[t] := i
           S[i] := \emptyset
       for i := 1 to |\pi''| do
5
           for each t \in c_i'' do
               if T[t] \neq \text{NULL then } S[T[t]] := S[T[t]] \cup \{t\}
           for each t \in c_i'' do
               if |S[T[t]]| \ge 2 then \widehat{\pi} := \widehat{\pi} \cup \{S[T[t]]\}
9
               S[T[t]] := \emptyset
10
       for i := 1 to |\pi'| do
11
           for each t \in c'_i do T[t] := \text{NULL}
12
```

|   | A | В | С |
|---|---|---|---|
| 1 | 0 | 4 | 7 |
| 2 | 1 | 5 | 7 |
| 3 | 1 | 5 | 8 |
| 4 | 2 | 6 | 9 |
| 5 | 2 | 6 | 9 |
| 6 | 3 | 4 | 7 |

 $\pi'_{A\cup B} = \{23, 45\}$  $\pi'_{B\cup C} = \{16, 45\}$ 

Felix Naumann | Profiling & Cleansing | Summer 2013

## Overview



- Functional Dependencies
- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs



# Making TANE approximate



- Definition based on minimum number of tuples to be removed from R for X→A to hold in R.
- Discovery problem:
  - □ Given relation R and threshold  $\epsilon$ , find all minimal non-trivial FDs X→A such that  $e(X \to A) \le \epsilon$ .
- 1. Define error: Fraction of tuples causing FD violation
  - □ Error  $e(X \rightarrow A) = min\{|S| | S \subseteq R, R \setminus S \models X \rightarrow A\} / |R|$
- 2. Specify error threshold ε
- 3. Modify dependency checking algorithm
  - Efficient algorithm to compute error
  - Bounds to avoid error calculation



#### HPI Hasso Plattner Institut

# Approximate Dependency Checking

1 for each  $X \in L_{\ell}$  do 2  $\mathcal{C}^{+}(X) := \bigcap_{A \in X} \mathcal{C}^{+}(X \setminus \{A\})$ 3 for each  $X \in L_{\ell}$  do 4 for each  $A \in X \cap \mathcal{C}^{+}(X)$  do 5 if  $X \setminus \{A\} \to A$  is valid then 6 output  $X \setminus \{A\} \to A$ 7 remove A from  $\mathcal{C}^{+}(X)$ 8 remove all B in  $R \setminus X$  from  $\mathcal{C}^{+}(X)$ 

Exact version

if  $e(X \setminus \{A\} \to A) \le \varepsilon$  then

if  $X \setminus \{A\} \to A$  holds exactly then

remove all B in  $R \setminus X$  from  $C^+(X)$ 

odifications

# Computing error



- Error  $e(X \rightarrow A) = min\{|S| | S \subseteq R, R \setminus S \models X \rightarrow A\} / |R|$
- Any equivalence class  $c \in \pi_X$  is the union of one or more equivalence classes  $c1', c2', ... \in \pi_{X \cup A}$
- For each  $c \in \pi_X$  the tuples in all but one of the  $c_i$ 's must be removed for  $X \rightarrow A$  to hold.
- Minimum number to remove: Size of c minus size of largest c<sub>i</sub>'.

$$\bullet e(X \to A) = 1 - \frac{\sum_{c \in \pi_X} \max\{|c'||c' \in \pi_{X \cup A} \land c' \subseteq c\}}{|R|}$$

■ Example: B→A

$$\square$$
  $\pi_A = \{12, 345, 678\}$ 

$$\square$$
  $\pi_B = \{1, 234, 56, 78\}$ 

$$\square$$
  $\pi_{AB} = \{1, 2, 34, 5, 6, 78\}$ 

$$\square$$
  $|\pi_B| \neq |\pi_{BA}|$ 

$$= e(B \rightarrow A) = 8/8 - (1+2+1+2)/8 = 2/8$$

Also possible on stripped partitions – not here.

|   | Α | В |
|---|---|---|
| 1 | 1 | а |
| 2 | 1 | Α |
| 3 | 2 | Α |
| 4 | 2 | Α |
| 5 | 2 | b |
| 6 | 3 | b |
| 7 | 3 | С |
| 8 | 3 | С |



## Bounding on error

Computing error is in O(|R|)

- $\bullet$   $e(X) e(X \cup A) \le e(X \rightarrow A) \le e(X)$
- I.e., do not calculate FD error if

$$\Box$$
 e(X) – e(X U A) >  $\epsilon$ 

$$\Box$$
 e(X) <  $\epsilon$ 

- e(B) = 4/8
- $\bullet$  e(B U A) = 2/8
- $\bullet$  e(B $\rightarrow$ A) = 8/8 (1+2+1+2)/8 = 2/8

|   | Α | В |
|---|---|---|
| 1 | 1 | а |
| 2 | 1 | Α |
| 3 | 2 | Α |
| 4 | 2 | Α |
| 5 | 2 | b |
| 6 | 3 | b |
| 7 | 3 | С |
| 8 | 3 | С |



- Functional Dependencies
- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs





0

0

4

2

## FD\_Mine: Refinement of TANE

If X → Y and Y → X hold, then X and Y are equivalent candidates,

denoted as  $X \leftrightarrow Y$ .

Make use of additional FD properties

- $\square$  X $\leftrightarrow$ Y and XW  $\rightarrow$  Z  $\Rightarrow$  YW  $\rightarrow$  Z
- $\square$  X $\leftrightarrow$ Y and WZ  $\rightarrow$  X  $\Rightarrow$  WZ  $\rightarrow$  Y
- Example
  - $\square$  A $\rightarrow$ D and D $\rightarrow$ A  $\Rightarrow$  A $\leftrightarrow$ D
  - □ Examination: AB → C and BC → A
  - Inferred:
    - $\diamond$  BD  $\rightarrow$  C (property 1)
    - $\diamond$  BC  $\rightarrow$  D (property 2)
  - D can be removed from table

7 0 0 1 1 0 90000 800000 700000 600000 0 500000 1 00000 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0

4

4

2

3

4

6

0

1

2

3

3

0

0

0

Pairs of UCCs

Hong Yao, Howard J. Hamilton, Cory J. Butz: FD\_Mine: Discovering Functional Dependencies in a Database Using Equivalences. ICDM 2002: 729-732



- Functional Dependencies
- TANE
  - Candidate sets
  - Pruning Algorithm
  - Dependency checking
  - Approximate FDs
- FD\_Mine
- Conditional FDs





## Conditional Functional Dependencies

- Idea similar to CINDs
- Embedded FD plus pattern tableau
- Definition CFD
  - □ Pair  $(X \rightarrow A, T_p)$ 
    - ♦ X→A is embedded FD
    - ♦ T<sub>p</sub> is pattern tableau, made up of pattern tuples t<sub>p</sub>
  - □ Pattern tuple with attributes B∈ X∪A where t<sub>p</sub>[B]
    - Constant in dom(B)
    - Unnamed variable "\_" for values in dom(B)
  - □ Special case:  $T_p[B] = "\_"$  for all B is equivalent to normal FD

## Semantics of CFDs



- a ≈ b (a matches b) if
  - □ either a or b is "\_"
  - □ both a and b are constants and a = b
- DB satisfies (R:  $X \rightarrow Y$ ,  $T_p$ ) iff
  - □ For any tuple  $t_p$  in the pattern tableau  $T_p$  and for any tuples  $t_1$ ,  $t_2$  in DB:
    - $\diamond$  If  $t_1[X] = t_2[X] \approx tp[X]$ , then  $t_1[Y] = t_2[Y] \approx t_p[Y]$
  - □  $t_p[X]$ : identifying the set of tuples on which the constraint  $t_p$  applies: {  $t \mid t[X] \approx t_p[X]$ }





## Example: Violation of CFDs

| id | country | area-code | phone   | street       | city | zip     |
|----|---------|-----------|---------|--------------|------|---------|
| t1 | 44      | 131       | 1234567 | Mayfield     | NYC  | EH4 8LE |
| t2 | 44      | 131       | 3456789 | Crichton     | NYC  | EH8 8LE |
| t3 | 01      | 908       | 3456789 | Mountain Ave | NYC  | 07974   |
| t4 | 01      | 908       | 9876543 | Mainstreet   | NYC  | 07974   |

■  $cust([country, zip] \rightarrow [street], Tp)$ 

| country | zip | street |
|---------|-----|--------|
| 44      | _   | _      |

- Tuples t1 and t2 violate the CFD
  - □ t1[country, zip] = t2[country, zip]  $\approx t_p$ [country, zip]
  - □ But t1[street] ≠ t2[street]
- The CFD applies to t1 and t2 since they match t<sub>p</sub>[country, zip]
- Tuples t3 and t4 do not violate the CFD
  - □ CFD does not apply to t3 and t4

Slide from Wenfei Fan

# Example: Violation of CFD by single tuple



47

| id | country | area-code | phone   | street       | city | zip     |
|----|---------|-----------|---------|--------------|------|---------|
| t1 | 44      | 131       | 1234567 | Mayfield     | NYC  | EH4 8LE |
| t2 | 44      | 131       | 3456789 | Crichton     | NYC  | EH8 8LE |
| t3 | 01      | 908       | 3456789 | Mountain Ave | NYC  | 07974   |
| t4 | 01      | 908       | 9876543 | Mainstreet   | NYC  | 07974   |

- cust([country, zip]  $\rightarrow$  [street], Tp)
- Tuple t1 does not satisfy the CFD.

|     | country | zip | street |
|-----|---------|-----|--------|
| tp1 | 44      | 131 | Edi    |
| tp2 | 01      | 908 | MH     |
| tp3 | _       | _   | _      |

- t1[country, area-code] = t1[country, area-code] ≈ tp1[country, area-code]
- t1[city] = t1[city]; however, t1[city] does not match tp1[city]
- In contrast to traditional FDs, a single tuple may violate a CFD.

## Further literature



#### DepMiner

 Efficient Discovery of Functional Dependencies and Armstrong Relations. Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal.
 EDBT 2000

#### CORDS

□ Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, Ashraf Aboulnaga: CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies. SIGMOD Conference 2004: 647-658

#### FastFDs

Catharine M. Wyss, Chris Giannella, Edward L. Robertson:
 FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining
 Functional Dependencies from Relation Instances. DaWaK 2001:
 101-110

#### CFDs

□ Loreto Bravo, Wenfei Fan, Shuai Ma: Extending Dependencies with Conditions. VLDB 2007: 243-254