AR AR

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Detecting Functional Dependencies

21.5.2013
Felix Naumann

N l
I l WL J\\

I

B
Overview institut

m Functional Dependencies
m TANE
o Candidate sets
o Pruning Algorithm
o Dependency checking
0 Approximate FDs
m FD Mine
m Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
- - - Plattner
Definition — Functional Dependency ﬂ Institut

m X — A“is a statement about a relation R: When two tuples have
same value in attribute set X, the must have same values in
attribute A.

m Formally: X > AisanFDoverR (REX - A)
for all tuples t,,t,eR: t;[X]=,[X] = t;[A] = L[A]
m Can generalize to sets: X - Y & X — A for each AeY

Y4 Y 4

(%) ?

ﬂ Hasso
- . Plattner
Trivial FDs Institut

m Trivial: Attributes on RHS are subset of attributes on LHS
o Street, City — City
o Any trivial FD holds

m Non-trivial: At least one attribute on RHS does not appear on LHS
o Street, City — Zip, City

m Completely non-trivial: Attributes on LHS and RHS are disjoint.
o Street, City — Zip

m Minimal FD: RHS does not depend on any subset of LHS.

m Typical goal: Given a relation R, find all minimal completely non-
trivial functional dependencies.

ﬂ Hasso
FD Inference Rules Institut

m R1 Reflexivity X2Y = XY (also X—X)
o Trivial FDs

@ R2 Accumulation {X-Y} = XZ->YZ
0 Aka: Augmentation

m R3 Transitivity {X=>Y,Y -2} = X->Z

@ R1-R3 known as Armstrong-Axioms
0 Sound and complete

m R4 Decomposition {X—-YZ} = X->Y
m R5 Union {X=>Y, X>Z} = X—>YZ
m R6 Pseudotransitivity {X—Y,WY —-Z} = WX—-Z

ﬂ Hasso
FD Discussion Institut

m Schema vs. instance
m Keys as special case for FDs
o X is key of R if X —» R\X

m Uses for FDs
0 Schema design and normalization
0 Key discovery
o Data cleansing (especially conditional FDs)

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
- - Plattner
Naive Discovery Approach ﬂ Institut

m Given relation R, detect all minimal, non-trivial FDs X — A.

m For each column combination X
o For each pair of tuples (t1,t2)
O If t[X\NA] = t2[X\A] and t1[A] # t2[A]: Break

m Complexity
0 Exponential in number of attributes
o times number of rows squared

Felix Naumann | Profiling & Cleansing | Summer 2013

B
Overview institut

il I

m Functional Dependencies
m TANE
o Candidate sets

T

o Pruning Algorithm
o Dependency checking
0 Approximate FDs

m FD Mine

m Conditional FDs

I I o)

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
Plattner
Institut

Tane — General lIdea

m Two elements of approach
1. Reduce column combinations through pruning
¢ Reasoning over FDs
2. Reduce tuple sets through partitioning
¢ Partition data according to attribute values

¢ Level-wise increase of size of attribute set
e Consider sets of tuples whose values agree on that set

m Huhtala, Y.; Karkkainen, J.; Porkka, P. & Toivonen, H.
TANE: An Efficient Algorithm for Discovering Functional and Approximate

Dependencies
Computer Journal, 1999, 42, 100-111

10

Discovery strategy

m Bottom up traversal through lattice
o = only minimal dependencies
0 Pruning
0 Re-use results from previous level
m For a set X, test all X\A — A, AeX
o = only non-trivial dependencies

0o Test on efficient data structure

Hasso
Plattner
Institut

B
Overview institut

[T

11
m Functional Dependencies

m TANE

‘ o Candidate sets

o Pruning Algorithm

R R

o Dependency checking
0 Approximate FDs

m FD Mine

m Conditional FDs

I

Felix Naumann | Profiling & Cleansing | Summer 2013

ﬂ Hasso
Candidate Sets Inetitut

m RHS candidate set C(X)

m Stores only those attributes that might depend on all other
attributes of X.

o l.e., those that still need to be checked
o If AeC(X) then A does not depend on any proper subset of X.
BE C(X) = R\ {AesX | X\A — A holds}

m Example: R= {ABCD}, and A—-Cand CD —» B
0 C(A) = {ABCD}I\{} = C(B) = C(C) = C(D)
o C(AB) = {ABCD}\{}
o C(AC) = {ABCD}\{C} = {ABD}
o C(CD) = {ABCD}\{}
o C(BCD) = {ABCD}\{B} = {ACD}

. . P f
RHS candidate pruning Institut

13
m For minimality it suffices to test X\A — A where

0 Ae X and AeC(X \{B}) for all Be X.
o l.e., Ais in all candidate sets of the subsets.

m Example
o X = {ABC}. Assume we know C — A from previous step.
0 Need to test three dependencies: AB—C, AC—B, and BC—A
¢ We should not be testing BC—A, because we know C—A

o Candidate sets:
o C(AB) = {ABC}, C(AC)={BC}, C(BC)={ABC}
o E.g. BC—A does not need to be tested for minimality, because
A is not in all three candidate sets: Az C(AB)NC(AC)NC(BC)

o AB—C, AC—B need to be tested, because B and C appear in all
candidate sets.

Hasso
- . Plattner
Improved RHS candidate pruning ﬂ Institut

15
m Basis: Let Be X and let X\B — B hold. If X — A, then X\B — A.

0 Example: A — B holds. If AB — C holds, then also A — C.

0 Use this to reduce candidate set: If X\B — B for some B, then
any dependency with X on LHS cannot be minimal.

< Just remove B.

m C*(X) = {AeR | VBeX: X\{A,B} — B does not hold}
o Special case: A = B corresponds to C(X)
0 C(X) =R\ {AeX | X\A — A holds}

m This definition removes three types of candidates.
0 C1l = {AeX | XNA — A holds} (as before)
0o C2 = {R\X} if dBeX: X\B —» B
0o C3 = {AeX | 3BeX\A : X\{A,B} — B holds}

16

P P
Example for C2 Institut

C*(X) = {AcR | VBeX: X\{A,B} — B does not hold}
C2 = {R\X} if dBeX: X\B —» B

R = ABCD, X = ABC
C(X) = ABCD initially
Discovery of C—B
o Remove B from C(X)
o Additionally remove R\X = D
o Ok, because remaining combination of LHS contains B and C.
¢ ABC—D is not minimal because C—B
Together: C*(X) = {AC}

17

Hasso
Plattner
C 3 Institut

C3 = {AeX | dBe X\A : X\{A,B} — B holds}
m Same idea as before, but for subsets

Assume X has proper subset Y (XoY) such that Y\B — B holds for
some BeY.

Then we can remove from C(X) all Ae X\Y.

Example X = ABCD and let C—B
X>Y =BC and X\Y = AD
Thus can remove all AD.
o Any remaining combination of LHS contains B and C.
& ABC —-D and BCD—A
o Again, since C—B any such FD is not minimal.
Together: C*(X) = {C}

18

Hasso
- - . Plattner
More pruning of lattice: Key pruning ﬂ Institut

Insight: If X is superkey and X\B —B, then X\B is also a superkey.

Case 1: If X is superkey, no need to test any X — A.
Case 2:

o If X is superkey and not key, any X — A is not minimal (for
any Ag X).
o If Ae X and X\A—A then X\A is superkey, and no need to test.

Summary: Can prune all keys and their supersets
Later: Test for superkey-property based on “key-error” of partition

Overview

[T

Hasso
Plattner
Institut

19
m Functional Dependencies

m TANE
0 Candidate sets

‘ o Pruning Algorithm
o Dependency checking

R R

0 Approximate FDs
m FD Mine
m Conditional FDs

I

Felix Naumann | Profiling & Cleansing | Summer 2013

20

TANE Base Algorithm E

m Each level L contains the corresponding nodes of the lattice

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
Plattner
Institut

Hasso
- - Plattner
Generating Lattice Levels ﬂ Institut

21 : :
m L ,={X]| IX] =I+1 and all subsets YcX of size | are in L}

o General apriori idea
o Can use L, to generate L,

m Prefix blocks: disjoint sets from L, with common prefix of size I-1
o All pairs for | =1
m Line 5: All subsets of new set must appear in lower level

Felix Naumann | Profiling & Cleansing | Summer 2013

22

Hasso
- Plattner
Dependency Computation ﬂ Institut

2T 10} [eIALIL

Y
suaddey BuiyioN

—

m Line 2: Create candidate sets; each attribute must appear in all candidate sets
of smaller size

m Line 4: Only test attributes from candidate set
m Line 5: Actual test on data
m Line 7: Reduce candidates by newly found dependent

m Line 8: Reduce candidates by all other attributes: cannot depend on all others,
because any combination involving A and LHS is not minimal
Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
- Plattner
Prur“ng Institut

23

m Line 3: Basic pruning

o Deletion from L, ensures that supersets cannot be created
during level generation (loops not executed on empty
candidate sets)

m Lines 4-8: Key pruning

Felix Naumann | Profiling & Cleansing | Summer 2013

P P
Example run Institut

24
m R = ABCD, C—B and AB—D are to be discovered

o Also: AC—D through pseudo-transitivity
m Ly ={}
o C*({}) = ABCD
0 nothing to do
m L, = {A}, {B}, {C}, {D}
o C*(X) = ABCD for all Xe L,
o Still nothing to do: No FDs can be generated from singletons
o Thus, no pruning
m L, = AB, AC, AD, BC, BD, CD
0 E.g. C *(AB) = C*(AB\A) n C*(AB\B) = ABCD n ABCD
o C*(X) = ABCD for all Xe L,
o Dep. checks for AB: A—B and B—A Nothing happens

P P
Example run Institut

25
m L, = AB, AC, AD, BC, BD, CD
o C*(X) = ABCD for all Xe L,
o Dep. checks for BC: B—C (no!) and C—B (yes!)
o Output C—B
0 Delete B from C*(BC): ACD
o Delete R\BC from C*(BC): C
¢ Note BC—A and BC—D are not minimal
m L; = ABC, ABD, ACD, BCD
o C*(ABC) =C*(AB) nC*(AC) nC*(BC) =C
o C*(BCD) = C*(BC) nC*(BD) nC*(CD) =C
o C*(ABD) = C*(ACD) = ABCD unchanged
o Dep. check for ABC: ABC n C*(ABC) are candidates
¢ AB—C no! Did not check BC—A and AC—B

P P
Example run Institut

26

m Ly = ABC, ABD, ACD, BCD

O

O

O

O

C*(ABC) = C*(BCD) =C

C+*(ABD) = C*(ACD) = ABCD

Dep. check for ABD: ABD n C*(ABD) are candidates
¢ AD—B and BD—A: no!
& AB—D: yes! Output AB—D
¢ Delete D from C*(ABD): ABC
¢ Delete R\ABD from C*(ABD): AB

Dep. check for BCD: BCD n C*(BCD) are candidates
¢ Only need to check BD—C: no!

Dep. check for ACD: ACD n C*(ACD) are candidates
¢ CD—A and AD—C: no!
o AC—D: yes! Output AC—D
¢ Delete D from C*(ABD): ABC
¢ Delete R\ACD from C*(ABD): AC

27

Example run

= L, = ABCD

Hasso
Plattner
Institut

m C*(ABCD) = C*(ABC) n C*(ABD) n C*(ACD) n C*(BCD) = {}
o Nothing to check

o Did not need to check

& BCD—A:
& ACD—B:
& ABD—C:
& ABC—D:

Not minimal because C — B
Not minimal because C — B
Not minimal because AB — D
Not minimal because AB — D

Overview

[T

Hasso
Plattner
Institut

28
m Functional Dependencies

m TANE
0 Candidate sets

R R

o Pruning Algorithm

‘ o Dependency checking
0 Approximate FDs

m FD Mine
m Conditional FDs

I

Felix Naumann | Profiling & Cleansing | Summer 2013

- .- attner
Notation and Partitions Institut

29

m Tuples t and u are equivalent wrt. attribute set X
If tfA] = u[A] for all AeX.

m Attribute set X partitions R into equivalence classes

o Equivalence class of tuple t:
[tlx = {ueR | VAeX : t[A] = u[A]}

o Partition is set of disjoint sets: ny, = {[t]« | teR}
¢ Each set has unique values for X-values.
o || is number of equivalence classes in m.

30

Partitioning - Example

-ﬂ-“

m It

_ a Flower
1 A Tulip

2 A $ Daffodil
2 A $ Flower
2 b Lily
B 3 b $ Orchid
3 C Flower
m 3 C # Rose

[1]A [2],= {1.2}

= {{1,2}, {3.4,5}, {6,7,8}}

= {11}, {2}, 13,4}, {5}, {6}, {7}, {8}}
= {1147}, {2}, {3}, {5}, 16}, {8}}

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
Plattner
Institut

Partition refinement

31

SSO

Plattner
Institut

m Partition nrefines partition n‘ if every equivalence class in n is a

subset of some equivalence class in nt'.
o nt has a finer partitioning than .
m X —> A & nyrefinesm,
o If ny refines i, then ny , = m,.
O Ty, always refines mn,.
0 = if myya # s then || # [nyoal-

0 = If |ng] = |nyoal then nya = m, -

m Together: X - A & ny refinesn, & || = |nyual
o This implies a simple check for an FD.

m i, = {12, 345, 678}

m g = {12345, 678}

m s — {12, 345, 678}

Felix Naumann | Profiling & Cleansing | Summer 2013

-

www>>>>>ﬂ

W W W NhNDNNDN

- -, - attner
Stripped partitions Institut

32 i i .
m ldea: Remove equivalence classes of size 1 from partitions.

o Singleton equivalence class cannot violate any FD.
0o Same idea as for position lists

AlBIC

m Problem
0o X— Ao |ng| = |ngal Not true for stripped partitions n’ 1 A
0 = Inc| = Incual = 6 and ['c| = [Wcual = 2
0 < |'g] = IWgucl =2 butB » C

m Solution: Key error
o e(X) is minimum fraction of tuples to remove for X to be key
0 e(X) =1— |ny|/r
o eB)=1—|ng|l/r=1-3/8=5/8
5 e(X) = (x| — Ivx)/r
O |'«]] = sum of sizes of equivalence classes in '
o e(B) = ((5+2) —2)/r =5/8
o0 X—>A & e(X) =e(XUA)

BNEESEANEE
=

W W W NN DNNDN
-~ @ ® Q O O T 9

O o wm >» >» >» >

Felix Naumann | Profiling & Cleansing | Summer 2013

P P
- -, - attner
Computing partitions Institut

33
m Compute partition n, for each AeR
o Directly from database
o Only store tuples ID (Integers)
m Product nl-n2: Least refined partition that refines both nl1 and n2
O Ty s Ty= Ty
o Partitions ny, computed as product of two partitions
of size |X]|-1.
o Algorithm on next slide

m Dependency checking: X\A — A
o Calculate e(X) = (|I'«l| — I'])/r and e(X\A) = ...
0 Check e(X) = e(X\A)

m Also key pruning: X is key if e(X) = 0.

34

Partition Product

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
Plattner
Institut

' aug={23, 45}
U guc={16, 45}

B
Overview institut

[T

m Functional Dependencies
m TANE
o Candidate sets

R R

o Pruning Algorithm
o Dependency checking
0 Approximate FDs

m FD Mine

m Conditional FDs

R

Felix Naumann | Profiling & Cleansing | Summer 2013

. _ P F
Making TANE approximate Institut

36

m Definition based on minimum number of tuples to be removed
from R for X—A to hold in R.

m Discovery problem:

0 Given relation R and threshold ¢, find all minimal non-trivial
FDs X—A such thate(X — A) <¢.

1. Define error: Fraction of tuples causing FD violation

0 Errore(X - A) = min{|S| | Sc R, R\SE X — A}/ |R]
2. Specify error threshold ¢
3. Modify dependency checking algorithm

o Efficient algorithm to compute error

0 Bounds to avoid error calculation

37

Approximate Dependency Checking

Hasso
Plattner
Institut

UOIS.IoA 10eX-

\

Felix Naumann | Profiling & Cleansing | Summer 2013

J

Y
SUOIYeDI}IPON

38

P P
Computing error Institut

m Errore(X—>A) =min{|S] | ScR, R\SE X - A}/ |R]

m Any equivalence class c € n, is the union of one or more
equivalence classes cl1',c2f, ...emya

m For each c € n, the tuples in all but one of the c;'s must be
removed for X—A to hold.

m Minimum number to remove: Size of ¢ minus size of largest c;’.

Ycemy max{|c’||c’€mxyanc’cc}

IR|

me(XoA)=1-

m Example: B—A
]
o ng = {1, 234, 56, 78}
0 Mg — {1, 2, 34, 5, 6, 78}
0 |ng| # [mgal
0 e(B—A) =8/8 — (1+2+1+2)/8 = 2/8
m Also possible on stripped partitions — not here.

OOOOOONI\)I\)I—‘I—\H
OOUU>>>QJH

40

Bounding on error

m Computing error is in O(|R])

me(X)—e(XUA) = e(X—A) = e(X)
m l.e., do not calculate FD error if
oeX)—e(XUA) >¢
o e(X) <e

m e(B) =4/8

m e(BUA) =2/8
m e(B—>A) =8/8 — (1+2+1+2)/8 = 2/8

Felix Naumann | Profiling & Cleansing | Summer 2013

SSO

Plattner
Institut

OOOOOONI\)NI—‘I—\H
OOUD‘)>J>J>QJE

41

il I

e —.

[

ﬂ.t'.ai:"
Overview Institut

m Functional Dependencies
m TANE
o Candidate sets
o Pruning Algorithm
o Dependency checking
0 Approximate FDs
m FD Mine
m Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

P f
FD Mine: Refinement of TANE Institut

42

m If X—>YandY — X hold, then X and Y are equivalent candidates,
denoted as X<Y.

m Make use of additional FD properties
0 XeYand XW - Z = YW - Z
o XeYand WZ - X=>WZ - Y
m Example
o A—D and D—A = A<D
o Examination: AB —- C and BC — A

P NN PR
O N M ON O

o Inferred:
o BD — C (property 1)
o BC — D (property 2)

o D can be removed from table {

m Hong Yao, Howard J. Hamilton, Cory J. Butz: FD_Mine: Discovering Functional

Dependencies in a Database Using Equivalences. ICDM 2002: 729-732
Felix Naumann | Profiling & Cleansing | Summer 2013

43

Overview

[T

Hasso
Plattner
Institut

m Functional Dependencies
m TANE
o Candidate sets

R R

o Pruning Algorithm
o Dependency checking
0 Approximate FDs

m FD Mine

‘ m Conditional FDs

R

Felix Naumann | Profiling & Cleansing | Summer 2013

Hasso
. - . Plattner
Conditional Functional Dependencies ﬂ Institut

44
m ldea similar to CINDs
m Embedded FD plus pattern tableau
m Definition CFD
0 Pair (X—A, T),)
O X—A is embedded FD
¢ T, lIs pattern tableau, made up of pattern tuples t,
0 Pattern tuple with attributes Be XUA where t [B]
¢ Constant in dom(B)

¢ Unnamed variable for values in dom(B)

0 Special case: T, [B]="_" for all B is equivalent to normal FD

ﬂ Hasso
Semantics of CFDs Inetitut

45

m a=Db (amatches b) if
0o eitheraorbis “ ”
0 both a and b are constants and a = b

m DB satisfies (R: X = Y, T)) iff

0 For any tuple t, in the pattern tableau T, and for any tuples t,,

t, in DB:
O If t[X] = t,[X] = tp[X], then t;[Y] = t,[Y] = t,[Y]

0 t,[X]: identifying the set of tuples on which the constraint t,
applies: { t | t[X] = t,[X]}

o 4[Y] = t,[Y] = t,[Y]: enforcing the embedded FD, and the
pattern of t,

Slide from Wenfei Fan

46

Example: Violation of CFDs

Hasso
Plattner
Institut

id country area-code phone street city zip

tl |44 131 1234567 | Mayfield NYC | EH4 8LE
t2 |44 131 3456789 | Crichton NYC | EH8 8LE
t3 |01 908 3456789 | Mountain Ave | NYC | 07974
t4 |01 908 9876543 | Mainstreet NYC | 07974
cust([country, zip] — [street], Tp) ‘
Tuples t1 and t2 violate the CFD 44 ‘ _

0 tlfcountry, zip] = t2[country, zip] = t,[country, zip]

0 But tl[street] # t2[street]
The CFD applies to t1 and t2 since they match t,[country, zip]
Tuples t3 and t4 do not violate the CFD

o CFD does not apply to t3 and t4

Slide from Wenfei Fan

Example: Violation of CFD by single ﬂ Hasso
tuple

Institut

id country area-code phone street city zip

tl |44 131 1234567 | Mayfield NYC | EH4 8LE
t2 |44 131 3456789 | Crichton NYC | EH8 8LE
t3 |01 908 3456789 | Mountain Ave | NYC | 07974
t4 |01 908 9876543 | Mainstreet NYC | 07974

m cust(Jcountry, zip] — [street], Tp)

m Tuple t1 does not satisfy the CFD. tpl) 44 |131) Ed

tp2 01 908 MH

tp3 _ | _

m tl[country, area-code] = tl[country, area-code] = tpl[country,
area-code]

m tlfcity] = tl[city]; however, tl][city] does not match tpl[city]
m In contrast to traditional FDs, a single tuple may violate a CFD.

Slide from Wenfei Fan

- attner
Further literature Institut

48
m DepMiner

o Efficient Discovery of Functional Dependencies and Armstrong
Relations. Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal.
EDBT 2000

m CORDS

o Ihab F. llyas, Volker Markl, Peter J. Haas, Paul Brown, Ashraf
Aboulnaga: CORDS: Automatic Discovery of Correlations and Soft
Functional Dependencies. SIGMOD Conference 2004: 647-658

m FastFDs

o Catharine M. Wyss, Chris Giannella, Edward L. Robertson:
FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining
Functional Dependencies from Relation Instances. DaWaK 2001.:
101-110

m CFDs

o Loreto Bravo, Wenfei Fan, Shuai Ma: Extending Dependencies
with Conditions. VLDB 2007: 243-254

