
Detecting Functional Dependencies

21.5.2013
Felix Naumann



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

2



Definition – Functional Dependency

■ „X → A“ is a statement about a relation R: When two tuples have 
same value in attribute set X, the must have same values in 
attribute A.

■ Formally: X → A is an FD over R  (R ⊨ X → A) ⇔
for all tuples t1,t2∈R: t1[X]=t2[X]  t1[A] = t2[A]

■ Can generalize to sets: X → Y ⇔ X → A for each A∈Y

Felix Naumann | Profiling & Cleansing | Summer 2013

3

x

y

f(x)

x

y

?



Trivial FDs

■ Trivial: Attributes on RHS are subset of attributes on LHS
□ Street, City → City
□ Any trivial FD holds

■ Non-trivial: At least one attribute on RHS does not appear on LHS
□ Street, City → Zip, City 

■ Completely non-trivial: Attributes on LHS and RHS are disjoint.
□ Street, City → Zip 

■ Minimal FD: RHS does not depend on any subset of LHS.

■ Typical goal: Given a relation R, find all minimal completely non-
trivial functional dependencies.

Felix Naumann | Profiling & Cleansing | Summer 2013

4



FD Inference Rules

■ R1 Reflexivity X ⊇ Y  X→Y (also X→X)
□ Trivial FDs

■ R2 Accumulation {X→Y}  XZ→YZ
□ Aka: Augmentation

■ R3 Transitivity {X→Y, Y →Z}  X→Z

■ R1-R3 known as Armstrong-Axioms
□ Sound and complete

■ R4 Decomposition {X→YZ}  X→Y
■ R5 Union {X→Y, X→Z}  X→YZ
■ R6 Pseudotransitivity {X→Y,WY →Z}  WX→Z

Felix Naumann | Profiling & Cleansing | Summer 2013

5



FD Discussion

■ Schema vs. instance
■ Keys as special case for FDs

□ X is key of R if X → R\X

■ Uses for FDs
□ Schema design and normalization
□ Key discovery
□ Data cleansing (especially conditional FDs)

Felix Naumann | Profiling & Cleansing | Summer 2013

6



Naive Discovery Approach

■ Given relation R, detect all minimal, non-trivial FDs X → A.

■ For each column combination X
□ For each pair of tuples (t1,t2)

◊ If t1[X\A] = t2[X\A] and t1[A] ≠ t2[A]: Break

■ Complexity
□ Exponential in number of attributes
□ times number of rows squared

Felix Naumann | Profiling & Cleansing | Summer 2013

7



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

8



Tane – General Idea

■ Two elements of approach
1. Reduce column combinations through pruning

◊ Reasoning over FDs
2. Reduce tuple sets through partitioning

◊ Partition data according to attribute values
◊ Level-wise increase of size of attribute set

● Consider sets of tuples whose values agree on that set

■ Huhtala, Y.; Kärkkäinen, J.; Porkka, P. & Toivonen, H.
TANE: An Efficient Algorithm for Discovering Functional and Approximate 
Dependencies
Computer Journal, 1999, 42, 100-111 

Felix Naumann | Profiling & Cleansing | Summer 2013

9



Discovery strategy

■ Bottom up traversal through lattice
□  only minimal dependencies
□ Pruning
□ Re-use results from previous level

■ For a set X, test all X\A → A, A∈X
□  only non-trivial dependencies
□ Test on efficient data structure

Felix Naumann | Profiling & Cleansing | Summer 2013

10

A B C D

AB ACAD BC BD CD

ABC ABD ACD BCD

ABCD



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

11



Candidate Sets

■ RHS candidate set C(X)
■ Stores only those attributes that might depend on all other 

attributes of X.
□ I.e., those that still need to be checked
□ If A∈C(X) then A does not depend on any proper subset of X.

■ C(X) = R \ {A∈X | X\A → A holds}

■ Example: R= {ABCD}, and A → C and CD → B
□ C(A) = {ABCD}\{} = C(B) = C(C) = C(D)
□ C(AB) = {ABCD}\{}
□ C(AC) = {ABCD}\{C} = {ABD}
□ C(CD) = {ABCD}\{}
□ C(BCD) = {ABCD}\{B} = {ACD}

Felix Naumann | Profiling & Cleansing | Summer 2013

12



RHS candidate pruning

■ For minimality it suffices to test X\A → A where 
□ A∈X and A∈C(X \{B}) for all B∈X.
□ I.e., A is in all candidate sets of the subsets.

■ Example
□ X = {ABC}. Assume we know C → A from previous step.
□ Need to test three dependencies: AB→C, AC→B, and BC→A

◊ We should not be testing BC→A, because we know C→A
□ Candidate sets: 

◊ C(AB) = {ABC}, C(AC)={BC}, C(BC)={ABC}
□ E.g. BC→A does not need to be tested for minimality, because 

A is not in all three candidate sets: A∉C(AB)∩C(AC)∩C(BC)
□ AB→C, AC→B need to be tested, because B and C appear in all 

candidate sets.

Felix Naumann | Profiling & Cleansing | Summer 2013

13



Improved RHS candidate pruning

■ Basis: Let B∈X and let X\B → B hold. If X → A, then X\B → A.
□ Example: A → B holds. If AB → C holds, then also A → C.
□ Use this to reduce candidate set: If X\B → B for some B, then 

any dependency with X on LHS cannot be minimal.
◊ Just remove B.

■ C+(X) = {A∈R | ∀B∈X: X\{A,B} → B does not hold}
□ Special case: A = B corresponds to C(X)
□ C(X) = R \ {A∈X | X\A → A holds}

■ This definition removes three types of candidates.
□ C1 = {A∈X | X\A → A holds}  (as before)
□ C2 = {R\X}  if  ∃B∈X: X\B → B
□ C3 = {A∈X | ∃B∈X\A : X\{A,B} → B holds}

Felix Naumann | Profiling & Cleansing | Summer 2013

15



Example for C2

■ C+(X) = {A∈R | ∀B∈X: X\{A,B} → B does not hold}
■ C2 = {R\X} if  ∃B∈X: X\B → B

■ R = ABCD, X = ABC
■ C(X) = ABCD initially
■ Discovery of C→B

□ Remove B from C(X)
□ Additionally remove R\X = D
□ Ok, because remaining combination of LHS contains B and C.

◊ ABC→D is not minimal because C→B
■ Together: C+(X) = {AC}

Felix Naumann | Profiling & Cleansing | Summer 2013

16



C3

■ C3 = {A∈X | ∃B∈X\A : X\{A,B} → B holds}
■ Same idea as before, but for subsets

■ Assume X has proper subset Y (X⊃Y) such that Y\B → B holds for 
some B∈Y.

■ Then we can remove from C(X) all A∈X\Y.

■ Example X = ABCD and let C→B
■ X ⊃ Y = BC and X\Y = AD
■ Thus can remove all AD.

□ Any remaining combination of LHS contains B and C.
◊ ABC →D  and  BCD→A

□ Again, since C→B any such FD is not minimal.
■ Together: C+(X) = {C}

Felix Naumann | Profiling & Cleansing | Summer 2013

17



More pruning of lattice: Key pruning

■ Insight: If X is superkey and X\B →B, then X\B is also a superkey.

■ Case 1: If X is superkey, no need to test any X → A.
■ Case 2: 

□ If X is superkey and not key, any X → A is not minimal (for 
any A∉X).

□ If A∈X and X\A→A then X\A is superkey, and no need to test.

■ Summary: Can prune all keys and their supersets
■ Later: Test for superkey-property based on “key-error” of partition

Felix Naumann | Profiling & Cleansing | Summer 2013

18



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

19



TANE Base Algorithm

■ Each level L contains the corresponding nodes of the lattice

Felix Naumann | Profiling & Cleansing | Summer 2013

20



Generating Lattice Levels

■ Ll+1={X |  |X| = l+1 and all subsets Y⊂X of size l are in Ll}
□ General apriori idea
□ Can use Ll to generate Ll+1

■ Prefix blocks: disjoint sets from Ll with common prefix of size l-1
□ All pairs for l = 1

■ Line 5: All subsets of new set must appear in lower level
Felix Naumann | Profiling & Cleansing | Summer 2013

21



Dependency Computation

■ Line 2: Create candidate sets; each attribute must appear in all candidate sets 
of smaller size

■ Line 4: Only test attributes from candidate set
■ Line 5: Actual test on data
■ Line 7: Reduce candidates by newly found dependent
■ Line 8: Reduce candidates by all other attributes: cannot depend on all others, 

because any combination involving A and LHS is not minimal
Felix Naumann | Profiling & Cleansing | Summer 2013

22

Trivial for L1: 
N

othing happens



Pruning

■ Line 3: Basic pruning
□ Deletion from Ll ensures that supersets cannot be created 

during level generation (loops not executed on empty 
candidate sets)

■ Lines 4-8: Key pruning
Felix Naumann | Profiling & Cleansing | Summer 2013

23



Example run

■ R = ABCD, C→B and AB→D are to be discovered
□ Also: AC→D through pseudo-transitivity

■ L0 = {}, 
□ C+({}) = ABCD 
□ nothing to do

■ L1 = {A}, {B}, {C}, {D} 
□ C+(X) = ABCD  for all X∈ L1

□ Still nothing to do: No FDs can be generated from singletons
□ Thus, no pruning

■ L2 = AB, AC, AD, BC, BD, CD 
□ E.g. C +(AB) = C+(AB\A) ∩ C+(AB\B) = ABCD ∩ ABCD
□ C+(X) = ABCD  for all X∈ L2

□ Dep. checks for AB: A→B and B→A   Nothing happens
Felix Naumann | Profiling & Cleansing | Summer 2013

24



Example run

■ L2 = AB, AC, AD, BC, BD, CD 
□ C+(X) = ABCD  for all X∈ L2

□ Dep. checks for BC: B→C (no!) and C→B (yes!)
□ Output C→B
□ Delete B from C+(BC): ACD
□ Delete R\BC from C+(BC): C

◊ Note BC→A and BC→D are not minimal
■ L3 = ABC, ABD, ACD, BCD 

□ C+(ABC) = C+(AB) ∩ C+(AC) ∩ C+(BC) = C
□ C+(BCD) = C+(BC) ∩ C+(BD) ∩ C+(CD) = C
□ C+(ABD) = C+(ACD) = ABCD unchanged
□ Dep. check for ABC: ABC ∩ C+(ABC) are candidates

◊ AB→C no! Did not check BC→A and AC→B
Felix Naumann | Profiling & Cleansing | Summer 2013

25



Example run

■ L3 = ABC, ABD, ACD, BCD 
□ C+(ABC) = C+(BCD) = C
□ C+(ABD) = C+(ACD) = ABCD
□ Dep. check for ABD: ABD ∩ C+(ABD) are candidates

◊ AD→B and BD→A: no!
◊ AB→D: yes! Output AB→D
◊ Delete D from C+(ABD): ABC
◊ Delete R\ABD from C+(ABD): AB

□ Dep. check for BCD: BCD ∩ C+(BCD) are candidates
◊ Only need to check BD→C: no!

□ Dep. check for ACD: ACD ∩ C+(ACD) are candidates
◊ CD→A and AD→C: no!
◊ AC→D: yes! Output AC→D
◊ Delete D from C+(ABD): ABC
◊ Delete R\ACD from C+(ABD): AC

Felix Naumann | Profiling & Cleansing | Summer 2013

26



Example run

■ L4 = ABCD 
■ C+(ABCD) = C+(ABC) ∩ C+(ABD) ∩ C+(ACD) ∩ C+(BCD) = {}
□ Nothing to check
□ Did not need to check

◊ BCD→A: Not minimal because C → B
◊ ACD→B: Not minimal because C → B
◊ ABD→C: Not minimal because AB → D
◊ ABC→D: Not minimal because AB → D

Felix Naumann | Profiling & Cleansing | Summer 2013

27



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

28



Notation and Partitions

■ Tuples t and u are equivalent wrt. attribute set X 
if t[A] = u[A] for all A∈X.

■ Attribute set X partitions R into equivalence classes
□ Equivalence class of tuple t: 

[t]X = {u∈R | ∀A∈X : t[A] = u[A]}
□ Partition is set of disjoint sets: πX = {[t]X | t∈R}

◊ Each set has unique values for X-values.
□ |π| is number of equivalence classes in π.

Felix Naumann | Profiling & Cleansing | Summer 2013

29



Partitioning - Example

■ [1]A= [2]A= {1,2}
■ πA = {{1,2}, {3,4,5}, {6,7,8}}
■ πBC = {{1}, {2}, {3,4}, {5}, {6}, {7}, {8}}
■ πD = {{147}, {2}, {3}, {5}, {6}, {8}}

Felix Naumann | Profiling & Cleansing | Summer 2013

30 TupleID A B C D
1 1 a $ Flower
2 1 A Tulip
3 2 A $ Daffodil
4 2 A $ Flower
5 2 b Lily
6 3 b $ Orchid
7 3 C Flower
8 3 C # Rose



Partition refinement

■ Partition π refines partition π‘ if every equivalence class in π is a 
subset of some equivalence class in π‘.
□ π has a finer partitioning than π‘.

■ X → A  ⇔ πX refines πA

□ If πX refines πA then πX⋃A = πA.
□ πX⋃A always refines πA.
□  if πX⋃A ≠ πA then |πX| ≠ |πX⋃A|.
□  if |πX| = |πX⋃A| then πX⋃A = πA .

■ Together: X → A ⇔ πX refines πA ⇔ |πX| = |πX⋃A|
□ This implies a simple check for an FD.

■ πA = {12, 345, 678}
■ πB = {12345, 678}
■ πAB = {12, 345, 678}

Felix Naumann | Profiling & Cleansing | Summer 2013

31

A B
1 1 A
2 1 A
3 2 A
4 2 A
5 2 A
6 3 B
7 3 B
8 3 B



Stripped partitions

■ Idea: Remove equivalence classes of size 1 from partitions.
□ Singleton equivalence class cannot violate any FD.
□ Same idea as for position lists

■ Problem
□ X → A ⇔ |πX| = |πX⋃A| not true for stripped partitions π’

□ : |πC| = |πC⋃A| = 6 and |π’C| = |π’C⋃A| = 2
□ ⇐: |π’B| = |π’B⋃C| = 2 but B ↛ C

■ Solution: Key error
□ e(X) is minimum fraction of tuples to remove for X to be key
□ e(X) = 1 – |πX|/r

◊ e(B) = 1 – |πB|/r = 1 – 3/8 = 5/8
□ e(X) = (||π’X|| – |π’X|)/r

◊ ||π’X|| = sum of sizes of equivalence classes in π’

◊ e(B) = ((5+2) – 2)/r = 5/8
□ X → A  ⇔ e(X) = e(X∪A)

Felix Naumann | Profiling & Cleansing | Summer 2013

32

A B C
1 1 A a
2 1 A b
3 2 A c
4 2 A c
5 2 A d
6 3 B e
7 3 B e
8 3 D f



Computing partitions

■ Compute partition πA for each A∈R
□ Directly from database
□ Only store tuples ID (Integers)

■ Product π1 · π2: Least refined partition that refines both π1 and π2
□ πX · πY= πX∪Y
□ Partitions πX computed as product of two partitions 

of size |X|–1.
□ Algorithm on next slide

■ Dependency checking: X\A → A
□ Calculate e(X) = (||π’X|| – |π’X|)/r and e(X\A) = …
□ Check e(X) = e(X\A)

■ Also key pruning: X is key if e(X) = 0.
Felix Naumann | Profiling & Cleansing | Summer 2013

33



Partition Product

Felix Naumann | Profiling & Cleansing | Summer 2013

34

A B C
1 0 4 7
2 1 5 7
3 1 5 8
4 2 6 9
5 2 6 9
6 3 4 7

π’A⋃B={23, 45}
π’B⋃C={16, 45}



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

35



Making TANE approximate

■ Definition based on minimum number of tuples to be removed 
from R for X→A to hold in R.

■ Discovery problem: 
□ Given relation R and threshold ε, find all minimal non-trivial 

FDs X→A  such that e(X → A) ≤ ε .

1. Define error: Fraction of tuples causing FD violation
□ Error e(X → A) = min{|S| | S ⊆ R,  R\S ⊨ X → A} / |R|

2. Specify error threshold ε
3. Modify dependency checking algorithm

□ Efficient algorithm to compute error
□ Bounds to avoid error calculation

Felix Naumann | Profiling & Cleansing | Summer 2013

36



Approximate Dependency Checking

Felix Naumann | Profiling & Cleansing | Summer 2013

37

Exact
version

M
odifications



Computing error

■ Error e(X → A) = min{|S| | S ⊆ R,  R\S ⊨ X → A} / |R|
■ Any equivalence class c ∈ πX is the union of one or more 

equivalence classes c1‘,c2‘, …∈πX∪A

■ For each c ∈ πX the tuples in all but one of the ci‘s must be 
removed for X→A to hold. 

■ Minimum number to remove: Size of c minus size of largest ci’.

■ ݁ ܺ → ܣ = 1 − ∑ ୫ୟ୶ ௖ᇲ ௖ᇲ∈గ೉∪ಲ∧௖ᇲ⊆௖೎∈ഏ೉ ோ
■ Example: B→A

□ πA = {12, 345, 678}
□ πB = {1, 234,   56,   78}
□ πAB = {1, 2, 34, 5, 6, 78}
□ |πB| ≠ |πBA| 
□ e(B→A) = 8/8 – (1+2+1+2)/8 = 2/8

■ Also possible on stripped partitions – not here.
Felix Naumann | Profiling & Cleansing | Summer 2013

38

A B
1 1 a

2 1 A

3 2 A

4 2 A

5 2 b

6 3 b

7 3 C

8 3 C



Bounding on error

■ Computing error is in O(|R|)

■ e(X) – e(X ∪ A)  ≤  e(X→A)  ≤ e(X)
■ I.e., do not calculate FD error if 

□ e(X) – e(X ∪ A) > ε
□ e(X) < ε

■ e(B) = 4/8
■ e(B ∪ A) = 2/8
■ e(B→A) = 8/8 – (1+2+1+2)/8 = 2/8

Felix Naumann | Profiling & Cleansing | Summer 2013

40

A B
1 1 a

2 1 A

3 2 A

4 2 A

5 2 b

6 3 b

7 3 C

8 3 C



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

41



FD_Mine: Refinement of TANE

■ If X → Y and Y → X hold, then X and Y are equivalent candidates, 
denoted as X↔Y.

■ Make use of additional FD properties
□ X↔Y and XW → Z  YW → Z
□ X↔Y and WZ → X  WZ → Y

■ Example
□ A→D and D→A  A↔D
□ Examination: AB → C and BC → A
□ Inferred: 

◊ BD → C  (property 1)
◊ BC → D  (property 2)

□ D can be removed from table

■ Hong Yao, Howard J. Hamilton, Cory J. Butz: FD_Mine: Discovering Functional 
Dependencies in a Database Using Equivalences. ICDM 2002: 729-732

Felix Naumann | Profiling & Cleansing | Summer 2013

42

A B C D E
1 0 0 0 1 0
2 0 1 0 1 0
3 0 2 0 1 2
4 0 3 1 1 0
5 4 1 1 2 4
6 4 3 1 2 2
7 0 0 1 1 0

Pairs of UCCs



Overview

■ Functional Dependencies
■ TANE

□ Candidate sets
□ Pruning Algorithm
□ Dependency checking
□ Approximate FDs

■ FD_Mine
■ Conditional FDs

Felix Naumann | Profiling & Cleansing | Summer 2013

43



Conditional Functional Dependencies

■ Idea similar to CINDs
■ Embedded FD plus pattern tableau
■ Definition CFD

□ Pair (X→A, Tp)
◊ X→A is embedded FD
◊ Tp is pattern tableau, made up of pattern tuples tp

□ Pattern tuple with attributes B∈X∪A where tp[B]
◊ Constant in dom(B)
◊ Unnamed variable “_” for values in dom(B)

□ Special case: Tp[B]=“_” for all B is equivalent to normal FD

Felix Naumann | Profiling & Cleansing | Summer 2013

44



Semantics of CFDs

■ a ≈ b (a matches b) if 
□ either a or b is “_” 
□ both a and b are constants and a = b

■ DB satisfies (R: X → Y, Tp) iff 
□ For any tuple tp in the pattern tableau Tp and for any tuples t1, 

t2 in DB:
◊ If t1[X] = t2[X] ≈ tp[X], then t1[Y] = t2[Y] ≈ tp[Y]

□ tp[X]: identifying the set of tuples on which the constraint tp

applies: { t | t[X] ≈ tp[X]} 
□ t1[Y] = t2[Y] ≈ tp[Y]: enforcing the embedded FD, and the 

pattern of  tp

Felix Naumann | Profiling & Cleansing | Summer 2013

45

Slide from Wenfei Fan



Example: Violation of CFDs

■ cust([country, zip] → [street], Tp)
■ Tuples t1 and t2 violate the CFD 

□ t1[country, zip] = t2[country, zip] ≈ tp[country, zip] 
□ But t1[street] ≠ t2[street]

■ The CFD applies to t1 and t2 since they match tp[country, zip] 
■ Tuples t3 and t4 do not violate the CFD

□ CFD does not apply to t3 and t4
Felix Naumann | Profiling & Cleansing | Summer 2013

46
id country area-code phone street city zip

t1 44 131 1234567 Mayfield NYC EH4 8LE

t2 44 131 3456789 Crichton NYC EH8 8LE

t3 01 908 3456789 Mountain Ave NYC 07974

t4 01 908 9876543 Mainstreet NYC 07974

country zip street

44 _ _

Slide from Wenfei Fan



Example: Violation of CFD by single 
tuple

■ cust([country, zip] → [street], Tp)
■ Tuple t1 does not satisfy the CFD.

■ t1[country, area-code] = t1[country, area-code] ≈ tp1[country, 
area-code] 

■ t1[city] = t1[city]; however, t1[city] does not match tp1[city] 
■ In contrast to traditional FDs, a single tuple may violate a CFD.

Felix Naumann | Profiling & Cleansing | Summer 2013

47
id country area-code phone street city zip

t1 44 131 1234567 Mayfield NYC EH4 8LE

t2 44 131 3456789 Crichton NYC EH8 8LE

t3 01 908 3456789 Mountain Ave NYC 07974

t4 01 908 9876543 Mainstreet NYC 07974

country zip street
tp1 44 131 Edi
tp2 01 908 MH
tp3 _ _ _

Slide from Wenfei Fan



Further literature

■ DepMiner
□ Efficient Discovery of Functional Dependencies and Armstrong 

Relations. Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 
EDBT 2000

■ CORDS
□ Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, Ashraf 

Aboulnaga: CORDS: Automatic Discovery of Correlations and Soft 
Functional Dependencies. SIGMOD Conference 2004: 647-658

■ FastFDs
□ Catharine M. Wyss, Chris Giannella, Edward L. Robertson: 

FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining 
Functional Dependencies from Relation Instances. DaWaK 2001: 
101-110

■ CFDs
□ Loreto Bravo, Wenfei Fan, Shuai Ma: Extending Dependencies 

with Conditions. VLDB 2007: 243-254
Felix Naumann | Profiling & Cleansing | Summer 2013

48


