
Sorted Neighborhood Methods

2.7.2013
Felix Naumann

Duplicate Detection

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

2

Number of comparisons: All pairs

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

3

400
comparisons

Reflexivity of Similarity

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

4

380
comparisons

Symmetry of Similarity

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

5

190
comparisons

Blocking by ZIP

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

6

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

32
comparisons

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

7

The Sorted Neighborhood Method

■ Input:
□ Table with N tuples
□ Similarity measure

■ Output:
□ Classes (clusters) of equivalent tuples (duplicates)

■ Problem: Many tuples
□ Comparing each tuple-pair is inefficient
□ Large table may not fit in main memory (scalability)

■ Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large databases. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD), 1995.

■ Mauricio A. Hernandez and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, 2(1), 1998

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

8

Sorted Neighborhood
[Hernandez Stolfo 1998]

■ Idea
□ Sort tuples so that similar tuples are close to each other.
□ Only compare tuples within a small neighborhood (window).

1. Generate key
□ E.g.: SSN+“first 3 letters of name“ + ...
□ Effectiveness strongly depends on choice of key
□ Key is only virtual and not unique (“sorting key”)

2. Sort by key
□ Similar tuples end up close to each other.

3. Slide window over sorted tuples
□ Compare all pairs of tuples within window.

■ Problems
□ Choice of key
□ Choice of window size

■ Complexity: At least 3 passes over data
□ Sorting!

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

9

SNM – Example

ID Title Year Genre

17 Mask of Zorro 1998 Adventure

18 Addams Family 1991 Comedy

25 Rush Hour 1998 Comedy

31 Matrix 1999 Sci-Fi

52 Return of Dschafar 1994 Children

113 Adams Family 1991 Comedie

207 Return of Djaffar 1995 Children

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

10

RTRCH95207

DMSCO91113

RTRCH9452

MTRSC9931

RSHCO9825

DDMCO9118

MSKAD9817

KeyID

1.

Create
key

RTRCH95207

RTRCH9452

RSHCO9825

MTRSC9931

MSKAD9817

DMSCO91113

DDMCO9118

KeyID

2. Sort

RTRCH95207

RTRCH9452

RSHCO9825

MTRSC9931

MSKAD9817

DMSCO91113

DDMCO9118

KeyID

3.

Merge

classify(18,113) duplicates

classify(52,207) duplicates

SNM by ZIP (window size 4)

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

11

54
comparisons

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

12

Sorted Neighborhood – Complexity

■ N: Number of tuples
■ w: Window size
■ Computational complexity:

□ O(N) + O(N logN) + O(w N) = O(N logN)
◊ if w < logN; O(wN) else

■ IO complexity
□ Linear in N
□ Three passes over table on disk

◊ Create key, sort, window
□ Sorting: e.g. TPMMS

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

13

Sorted Neighborhood – Configuration

■ Choice of key
□ Formulierung durch Experten
□ Aufwändig
□ Schwer vergleichbare Ergebnisse
□ Für Effektivität entscheidend

■ Choice of window size
□ w = N : O(N²) max. accuracy & max. Zeit
□ w = 2 : O(N) min. accuracy & min. Zeit

■ Choice of classification method / similarity measure
□ Hernandez and Stolfo suggest „equational theory“
□ Rule set

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

14

Sorted Neighborhood – Multipass
Approach

■ Problem in choice of key
□ Example: r1: 193456782 und r2: 913456782

■ Solution 1:
□ Extend window size: w → N

■ Solution 2:
□ Multiple passes with different keys
□ Can keep w small
□ Transitive closure on results of each pass

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

15

Suggested Extensions

■ Incremental SNM
□ Handle inserts
□ Trivial extension

■ Parallel SNM
□ Each multi-pass in parallel
□ Parallel windows
□ See also current seminar „Large Scale Duplicate Detection“

◊ Final presentations: July 10, 9:15 – 12:30 in ???

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

16

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

17

Choice of sorting key(s)

■ General problem: Sortation among same keys is random
■ Idea:

□ Create inverted index on sorting key
□ Slide (smaller) window over index

◊ w=1 => traditional blocking

■ Peter Christen: A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Trans. Knowl. Data Eng. 24(9): 1537-1555 (2012)

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

18

Example

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

19

Further ideas for key

■ Q-Grams

■ Suffix array (up to certain length)
■ Soundex and other phonetic codes
■ Canopy clustering

□ Use cheap clustering approach to form blocks
■ And many more

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

20

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

21

One size fits all?

■ Selection of window size w
□ Too small -> some duplicates might be missed
□ Too large -> many unnecessary comparisons

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

22

Cluster sizes for the
Cora Citation Matching data set
(1,879 references of research
papers)

Incrementally Adaptive and
Accumulative Adaptive-SNM

■ Yan et al. [16] discuss adaptivity of record linkage algorithms using the example of SNM.
They use the window to build non-overlapping blocks that can contain different numbers of
records. The pairwise record comparison then takes place within these blocks. The
hypothesis is that the distance between a record and its successors in the sort sequence is
monotonically increasing in a small neighborhood, although the sorting is done
lexicographically and not by distance. They present two algorithms and compare them with
the basic SNM.

■ Incrementally Adaptive-SNM (IA-SNM) is an algorithm that incrementally increases the
window size as long as the distance of the first and the last element in the current window
is smaller than a specified threshold. The increase of the window size depends on the
current window size.

■ Accumulative Adaptive-SNM (AA-SNM) on the other hand creates windows with one
overlapping record. By considering transitivity, multiple adjacent windows can then be
grouped into one block, if the last record of a window is a potential duplicate of the last
record in the next adjacent window. After the enlargement of the windows both algorithms
have a retrenchment phase, in which the window is decreased until all records within the
block are potential duplicates.

■ We have implemented both IA-SNM and AA-SNM, and compare them to our work in our
experimental evaluation. However, our experiments do not confirm that IA-SNM and AA-
SNM perform better than SNM.

■ S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive sorted neighborhood methods for
efficient record linkage,” in Proceedings of the ACM/IEEE-CS joint conference on Digital
libraries (JCDL), 2007, pp. 185–194.

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

23

Reproducability

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

25

From: Oliver Wonneberg, Entlarvung der
Adaptive Sorted Neighborhood Method,
BTW 2009 Studierendenprogramm

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

26

Adaptation Idea

■ Vary window size based on detected duplicates
□ Adaptation can increase or reduce number of comparisons

■ The more duplicates of a record are found within a window, the larger
the window should be

■ If no duplicate of a record within its neighborhood is found, assume
that there are no duplicates or the duplicates are very far away in the
sorting order.

■ Each tuple ti is once at the beginning of a window
□ Compare it with w – 1 successors
□ Current window: W(i, i + w – 1)
□ If no duplicate for ti is found, continue as normal
□ If a duplicate is found, increase window

■ Uwe Draisbach, Felix Naumann, Sascha Szott, Oliver Wonneberg. Adaptive Windows for
Duplicate Detection. In Proceedings of the 28th International Conference on Data
Engineering (ICDE), Washington, D.C., USA, 2012.

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

27

Basic Duplicate Count Strategy

1. Assign sorting key to each record and sort the records
2. Create window with initial window size w
3. Compare first record with all other records in the window

4. Increase window size while

5. Slide the window (initial window size w)

6. Calculate transitive closure

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

28

detected duplicates
comparisons

≥ φ

r2r2 r3r3 r4r4 r5r5 r6r6 r7r7r1r1

r2r2 r3r3 r4r4 r5r5 r6r6 r7r7r1r1

r3r3 r4r4 r5r5 r6r6 r7r7r1r1 r2r2

φ: average
number of

comparisons per
duplicate

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

29

detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

30

detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.33

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

31

detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.25

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

32

detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.25

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
φ = 0.30
d/c = 0.00

Enhancement of DCS: DCS++

■ Idea 1: In addition to DCS, for each detected duplicate the next
w-1 records of that duplicate are added to the window.

■ Idea 2: Windows for duplicates are skipped to save comparisons
□ In example: Skip window for r3.
□ Use the transitive closure to find additional duplicates.
□ Will not miss any, because window for r1 covers all

comparisons r3 would have made.
□ Assumes perfect similarity measure… Can be relaxed.

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

33

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

w-1 records added

DCS++

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

34

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30

DCS++

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

35

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30

DCS++

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

36

r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.20

w-1 records added

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
φ = 0.30
d/c = 0.00

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
r3 is duplicate of r1

Calculation of the transitive
closure will find additional
duplicates of r3

■ Skipping windows bears the risk to miss duplicates

■ Example: w=4, φ=1/2
□ For w1: d/c = 1/3 > φ
□ Thus: Window is not increased, but w4 is left out.

■ Example: w=4, φ=1/3

DCS++ Evaluation

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

37

r1 r4 r7

W1
W4

r1 r4 r7

W1
W4

DCS++ Evaluation

■ Skipping windows bears the risk to miss duplicates

■ With no duplicates will be missed due to skipping windows

■ With DCS++ is at least as efficient as SNM with an

equivalent window size (wSNM = wDCS++)
□ Worst case: same number of comparisons
□ Best case: DCS++ saves w-2 comparisons per duplicate
□ Proof: Next slides

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

38

r1 r4

φ ≤ 1
w −1

φ ≤ 1
w −1

W1
W4

r7

Differences in comparisons

■ Regard window Wi, with d detected duplicates
■ Comparisons within W(i,j): c = j – i
■ Additional comparisons compared to SNM: a = j – i – (w – 1)
■ Saved comparisons for skipped windows: s = d (w – 1)
■ We want to show: a – s ≤ 0

■ Case 1: Beginning
window of ti contains
no duplicate

■ Case 2: Beginning
window of ti contains
at least one duplicate

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

39

Differences in comparisons

■ Additional comparisons: a = j – i – (w – 1)
■ Saved comparisons: s = d (w – 1)
■ Case 1: Beginning window of ti contains no duplicate
■ No duplicates => no window increase => a = 0
■ No duplicates => no skipped windows => s = 0
■ a – s = 0 – 0 ≤ 0

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

40

Differences in comparisons

■ Additional comparisons: a = j – i – (w – 1)
■ Saved comparisons: s = d (w – 1)
■ Case 2: Beginning window of ti contains at least one duplicate
■ a – s = j – i – (w – 1) – d (w – 1)

= j – i – (d + 1) (w – 1)
■ Window is increased until d/c < φ.
■ For ≤ ⁄ we need at least c = d (w – 1) + 1 comparisons to stop

window increase
■ Worst case: We find duplicate at very last comparison and increase

window without any new duplicates
□ c = d (w – 1) + (w – 1) (= j – i)

■ a – s = j – i – (d + 1) (w – 1)
= d (w – 1) + (w – 1) – (d + 1) (w – 1)
= (d + 1) (w – 1) – (d + 1) (w – 1)
= 0

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

41

Differences in comparisons

■ Worst case: We find duplicate at very last comparison and
increase window without any new duplicates
□ c = d (w – 1) + (w – 1) (= j – i)

■ Best case: We find duplicate immediately after ti.
□ c = d (w – 1) + 1 (= j – i)

■ a – s = j – i – (d + 1) (w – 1)
= d (w – 1) + 1 – (d + 1) (w – 1)
= 1 – (w – 1)
= 2 – w

■ Can save up to 2 – w per duplicate compared to SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

42

Experimental Evaluation

■ Perfect classifier (lookup in the gold standard)
■ Algorithms

□ Sorted Neighborhood Method (SNM)
□ Duplicate Count Strategy (DCS / DCS++)
□ Adaptive SNM (AA SNM / IA SNM) (previous slides)

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

43 Data set Provenance # of records # of dupl. pairs Max. cluster size

Cora real-world 1,879 64,578 238

Febrl synthetic 300,009 101,153 10

Persons synthetic 1,039,776 89,784 2

Results Cora: Comparisons

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

44

recall = # detected duplicates
real duplicates

Results Cora: Duplicate Provenance

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

45

Detected duplicates
by classifying
created pairs

Additional duplicates
calculated by

transitive closure

Other Variants

■ From Master thesis of Oliver Wonneberg
■ Sorting key strategy

□ Increase window if sorting keys are similar
□ Decrease window size for dissimilar sorting keys
□ Use different sizes of increase (depending on similarity)

■ Similarity strategy
□ Same as before, but based on tuple similarity

■ Difficult to calibrate

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

46

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

47

Blocking and Windowing Algorithms

■ Blocking:

■ Sorted Neighborhood Method [HS98]:

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

48

T1 T2

T4 T5
T6

T7
T8

T3

T1
T2
T3

T4
T5
T6
T7
T8

Sorting

Duplicate
detection
within
blocks

T5

T1
T2
T3
T4

T6
T7
T8

Slide window
over sorted
tuples

T1
T2
T3
T4
T5
T6
T7
T8

Sorting

Search for
duplicates
within the
windows

T1
T2
T3

T4
T5
T6

T7
T8

T1
T2
T3
T4
T5
T6
T7
T8

Building
disjoint
blocks

T1 T2

T4 T5
T6

T7
T8

T3
T5

T1
T2
T3
T4

T6
T7
T8

Comparing Blocking and Windowing

Sorted Blocks | Draisbach, Naumann | 24. August 2009

49
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

3
5

Tuples 1 & 5
are only

compared
using

Blocking

Tuples 16 &
14 are only
compared
using SNM

SNM
Blocking

Sorted tuples

Comparing Blocking and Windowing

Sorted Blocks | Draisbach, Naumann | 24. August 2009

50

Increasing window size to approximate Blocking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

5
5

SNM
Blocking

Sorted tuples

Comparing Blocking and Windowing

Sorted Blocks | Draisbach, Naumann | 24. August 2009

51

Overlapping blocks to approximate Windowing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

3
5

SNM
Blocking

Sorted tuples

Sorted Blocks Method

■ Generalization of blocking and windowing
■ Approach

1. Sort records and build disjoint partitions
◊ Sorting key might use more attributes than the

partioning predicate
2. Perform complete comparison within partitions
3. Overlap partitions and slide fixed size window across sorted

records within overlap
4. Calculate transitive closure

■ Overlap
□ Parameter o = number of records from one partition that are

part of the overlap
□ Overlap size = 2o
□ Size of window = o+1

52

Blocking

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Uwe Draisbach and Felix Naumann. A Generalization of
Blocking and Windowing Algorithms for Duplicate
Detection. In Proceedings of the International
Conference on Data and Knowledge Engineering
(ICDKE), Milan, Italy, 2011.

Sorted Blocks Method

53
Quadratic
complexityComplete comparison within partitions

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Sorted Blocks Method

54

Linear
complexityComparisons within overlap

Complete comparison within partitions

o = 2
w = o+1=3

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Sorted Blocks Method

55

Comparisons within overlap

Complete comparison within partitions

o = 2
w = o+1=3

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Sorted Blocks Configurations

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

56

Choose o = 1
for Blocking

Choose o = w
and evalute to
true for SNM

Complexity Analysis

Sorted Blocks | Draisbach, Naumann | 24. August 2009

57

■ n = number of tuples
■ b = number of blocks
■ w = window size
■ m = partition size

Sorted Blocks variants

■ Overall execution time for Sorted Blocks is dominated by the
largest blocks
□ E.g. partitioning by city results in large partitions for Berlin,

London, etc.

■ Use additional parameter: max. partition size

■ 2 variants with maximum partition size:
1. Create new partition when max. partition size is reached,

independently of the partition predicate
2. Slide window when max. partition size is reached

◊ Similar to the Sorted Neighborhood Method for large
partitions

58

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Experimental Evaluation

■ DuDe-toolkit for experiment execution (http://tinyurl.com/dude-toolkit)

■ 8 algorithms
□ Sorted Blocks – basic
□ Sorted Blocks – fixed partition size
□ Sorted Blocks – new partition when max. size is reached
□ Sorted Blocks – slide window when max. size is reached

□ Blocking
□ Sorted Neigborhood Method

□ Incrementally-adaptive SNM (IA-SNM) 1

□ Accumulatively-adaptive SNM (AA-SNM) 1

59

1 Yan et al. (2007), Adaptive sorted neighborhood methods for efficient record linkage
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Experimental Evaluation

■ 3 datasets (real-world and artificial)

■ Varying settings for
□ overlap parameter o
□ Partition predicate
□ Max. partition size

60

Dataset Type Records Duplicate pairs

CD 1 real-world 9,763 299

Restaurant 2 real-world 864 112

Address data artificial 1,039,776 89,784
1 http://www.freedb.org
2 http://www.cs.utexas.edu/users/ml/riddle/data.html

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Evaluation CD data

■ Sorting key: first few letters of artist, CD title, and track 01
■ Partition predicate: first 1-9 letters of the sorting key
■ Overlap o: 1-100
■ Max. partition size: 2-1000

61

Dataset Type Records Duplicate pairs

CD real-world 9,763 299

Restaurant real-world 864 112

Address data artificial 1,039,776 89,784

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Evaluation CD data

62

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Evaluation CD data

63

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Sorted Blocks Conclusion

■ Blocking and windowing are competitive approaches to reduce the
number of comparisons
□ Sorted Neighborhood outperforms Blocking slightly

■ Sorted Blocks is a generalization of blocking and windowing
□ Sorted Blocks outperforms Sorted Neighborhood slightly

■ Experimental evaluation shows that it is superior to windowing
and blocking.

■ Configuration is more difficult as it has more parameters than the
other 2 approaches.

64

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

65

Two Ideas for Domain Independence

■ Domain-independent key definition
□ Define key and reverse key
□ Union-find data structure compares only representatives of

each cluster
◊ Relaxation of Christen-idea from before (unique sorting

key)

■ A. E. Monge and C. Elkan, “An efficient domain-independent algorithm for
detecting approximately duplicate database records,” in Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD), 1997

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

66

Two Passes

■ Regard each tuple as a single long string
□ Concatenate all attribute values

■ 1st pass: Key = tuple
■ 2nd pass: Key = reversed tuple

■ “No” dependency on good key choice

■ Similarity measure: Smith-Waterman
□ Suitable for long strings

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

67

Union-find Data Structure

■ Interpret result as graph
□ Connected components represent duplicate clusters
□ Graph is transitive closure

■ Compare next tuple only once with each connected component
■ Union-find data structure (Robert Tarjan, Journal of the ACM, 1975)

□ Collection of disjoint updateable sets
□ Each set is identified by a representative
□ Initialized with |R| singletons

■ Union(x,y)
□ Unions the sets containing tuples x and y to new set, deletes old sets
□ Chooses new prime representative

■ Find(x)
□ Returns unique representative of set containing x

■ For each detected duplicate <u,v>:
□ If Find(u) ≠ Find(v) then Union(u,v)

■ Two nodes u and v are in same connected component ⇔ Find(u) = Find(v)
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

68

Union-find Data Structure

■ Define prime representative for each detected duplicate group
■ Compare records first to the representatives

□ avoiding comparisons that can be derived through transitivity.
■ Similar to Swoosh idea, but records keep their identity
■ If the similarity is high enough (some intermediate threshold),

compare with other members of cluster
■ Slight improvement: Allow multiple representatives

□ To represent large variety of tuples in cluster

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

69

Algorithm

■ Priority Queue: Contains sets of tuples
□ Fixed size (≈ window size)
□ Sorted by recency of addition: Queue represents last few detected

clusters
■ Sort records by key (2 passes)
■ For each record r

□ Test if r already part of a cluster in queue:
◊ Improvement: Ignore step if first pass
◊ Find(r) based on representatives
◊ If successful: move cluster up in queue
◊ If not successful: similarity comparison with all

representatives
● If similar:

» Union(r,x)
» Make r representative if not too similar
» break

□ Else: r is new singleton cluster at top of queue
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

70

Summary

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

71

