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Number of comparisons: All pairs
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Reflexivity of Similarity
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Symmetry of Similarity
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Blocking by ZIP
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Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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The Sorted Neighborhood Method

■ Input: 
□ Table with N tuples
□ Similarity measure

■ Output: 
□ Classes (clusters) of equivalent tuples (duplicates)

■ Problem: Many tuples
□ Comparing each tuple-pair is inefficient
□ Large table may not fit in main memory (scalability)

■ Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large databases. In 
Proceedings of the ACM International Conference on Management of Data (SIGMOD), 1995.

■ Mauricio A. Hernandez and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the 
merge/purge problem. Data Mining and Knowledge Discovery, 2(1), 1998
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Sorted Neighborhood
[Hernandez Stolfo 1998]

■ Idea
□ Sort tuples so that similar tuples are close to each other.
□ Only compare tuples within a small neighborhood (window).

1. Generate key
□ E.g.: SSN+“first 3 letters of name“ + ...
□ Effectiveness strongly depends on choice of key
□ Key is only virtual and not unique (“sorting key”)

2. Sort by key
□ Similar tuples end up close to each other.

3. Slide window over sorted tuples
□ Compare all pairs of tuples within window.

■ Problems
□ Choice of key
□ Choice of window size

■ Complexity: At least 3 passes over data
□ Sorting!
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SNM – Example

ID Title Year Genre

17 Mask of Zorro 1998 Adventure

18 Addams Family 1991 Comedy

25 Rush Hour 1998 Comedy

31 Matrix 1999 Sci-Fi

52 Return of Dschafar 1994 Children

113 Adams Family 1991 Comedie

207 Return of Djaffar 1995 Children
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RTRCH95207

DMSCO91113

RTRCH9452

MTRSC9931

RSHCO9825

DDMCO9118

MSKAD9817

KeyID

1.

Create
key

RTRCH95207

RTRCH9452

RSHCO9825

MTRSC9931

MSKAD9817

DMSCO91113

DDMCO9118

KeyID

2. Sort

RTRCH95207

RTRCH9452

RSHCO9825

MTRSC9931

MSKAD9817

DMSCO91113

DDMCO9118

KeyID

3.

Merge

classify(18,113)  duplicates

classify(52,207)  duplicates



SNM by ZIP (window size 4)
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Sorted Neighborhood – Complexity

■ N: Number of tuples
■ w: Window size
■ Computational complexity: 

□ O(N) + O(N logN) + O(w N) = O(N logN) 
◊ if w < logN; O(wN) else

■ IO complexity
□ Linear in N
□ Three passes over table on disk

◊ Create key, sort, window
□ Sorting: e.g. TPMMS
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Sorted Neighborhood – Configuration

■ Choice of key
□ Formulierung durch Experten
□ Aufwändig
□ Schwer vergleichbare Ergebnisse
□ Für Effektivität entscheidend

■ Choice of window size
□ w = N : O(N²)  max. accuracy & max. Zeit
□ w = 2 : O(N)  min. accuracy & min. Zeit

■ Choice of classification method / similarity measure
□ Hernandez and Stolfo suggest „equational theory“
□ Rule set
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Sorted Neighborhood – Multipass 
Approach

■ Problem in choice of key
□ Example: r1: 193456782 und r2: 913456782

■ Solution 1: 
□ Extend window size: w → N

■ Solution 2: 
□ Multiple passes with different keys
□ Can keep w small
□ Transitive closure on results of each pass
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Suggested Extensions

■ Incremental SNM
□ Handle inserts
□ Trivial extension

■ Parallel SNM
□ Each multi-pass in parallel
□ Parallel windows
□ See also current seminar „Large Scale Duplicate Detection“

◊ Final presentations: July 10, 9:15 – 12:30 in ???
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Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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Choice of sorting key(s)

■ General problem: Sortation among same keys is random
■ Idea: 

□ Create inverted index on sorting key
□ Slide (smaller) window over index

◊ w=1 => traditional blocking

■ Peter Christen: A Survey of Indexing Techniques for Scalable Record Linkage and 
Deduplication. IEEE Trans. Knowl. Data Eng. 24(9): 1537-1555 (2012)
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Example
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Further ideas for key

■ Q-Grams

■ Suffix array (up to certain length)
■ Soundex and other phonetic codes
■ Canopy clustering

□ Use cheap clustering approach to form blocks
■ And many more
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Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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One size fits all?

■ Selection of window size w
□ Too small -> some duplicates might be missed
□ Too large -> many unnecessary comparisons
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Cluster sizes for the
Cora Citation Matching data set
(1,879 references of research
papers)



Incrementally Adaptive and 
Accumulative Adaptive-SNM

■ Yan et al. [16] discuss adaptivity of record linkage algorithms using the example of SNM. 
They use the window to build non-overlapping blocks that can contain different numbers of 
records. The pairwise record comparison then takes place within these blocks. The 
hypothesis is that the distance between a record and its successors in the sort sequence is 
monotonically increasing in a small neighborhood, although the sorting is done 
lexicographically and not by distance. They present two algorithms and compare them with 
the basic SNM. 

■ Incrementally Adaptive-SNM (IA-SNM) is an algorithm that incrementally increases the 
window size as long as the distance of the first and the last element in the current window 
is smaller than a specified threshold. The increase of the window size depends on the 
current window size. 

■ Accumulative Adaptive-SNM (AA-SNM) on the other hand creates windows with one 
overlapping record. By considering transitivity, multiple adjacent windows can then be 
grouped into one block, if the last record of a window is a potential duplicate of the last 
record in the next adjacent window. After the enlargement of the windows both algorithms 
have a retrenchment phase, in which the window is decreased until all records within the 
block are potential duplicates. 

■ We have implemented both IA-SNM and AA-SNM, and compare them to our work in our 
experimental evaluation. However, our experiments do not confirm that IA-SNM and AA-
SNM perform better than SNM.

■ S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive sorted neighborhood methods for 
efficient record linkage,” in Proceedings of the ACM/IEEE-CS joint conference on Digital 
libraries (JCDL), 2007, pp. 185–194.
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Reproducability
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From: Oliver Wonneberg, Entlarvung der 
Adaptive Sorted Neighborhood Method, 
BTW 2009 Studierendenprogramm



Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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Adaptation Idea

■ Vary window size based on detected duplicates
□ Adaptation can increase or reduce number of comparisons

■ The more duplicates of a record are found within a window, the larger 
the window should be

■ If no duplicate of a record within its neighborhood is found, assume 
that there are no duplicates or the duplicates are very far away in the 
sorting order.

■ Each tuple ti is once at the beginning of a window
□ Compare it with w – 1 successors
□ Current window: W(i, i + w – 1)
□ If no duplicate for ti is found, continue as normal
□ If a duplicate is found, increase window

■ Uwe Draisbach, Felix Naumann, Sascha Szott, Oliver Wonneberg. Adaptive Windows for 
Duplicate Detection. In Proceedings of the 28th International Conference on Data 
Engineering (ICDE), Washington, D.C., USA, 2012.
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Basic Duplicate Count Strategy

1. Assign sorting key to each record and sort the records
2. Create window with initial window size w
3. Compare first record with all other records in the window

4. Increase window size while 

5. Slide the window (initial window size w)

6. Calculate transitive closure

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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detected duplicates
comparisons

≥ φ

r2r2 r3r3 r4r4 r5r5 r6r6 r7r7r1r1

r2r2 r3r3 r4r4 r5r5 r6r6 r7r7r1r1

r3r3 r4r4 r5r5 r6r6 r7r7r1r1 r2r2

φ: average
number of 

comparisons per 
duplicate



r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while 
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detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30



r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while 
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detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.33



r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while 
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detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.25



r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Duplicate Count Strategy (DCS)

■ w = initial window size
■ Increase window while
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detected duplicates
comparisons

≥ φ

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.25

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
φ = 0.30
d/c = 0.00



Enhancement of DCS: DCS++

■ Idea 1: In addition to DCS, for each detected duplicate the next 
w-1 records of that duplicate are added to the window.

■ Idea 2: Windows for duplicates are skipped to save comparisons
□ In example: Skip window for r3.
□ Use the transitive closure to find additional duplicates.
□ Will not miss any, because window for r1 covers all 

comparisons r3 would have made.
□ Assumes perfect similarity measure… Can be relaxed.
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r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

w-1 records added



DCS++
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r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30



DCS++
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r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30



DCS++
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r1 r2r2 r3 r4r4 r5r5 r6r6 r7r7

Sort order

Example:
w = 4
φ = 0.30
d/c = 0.20

w-1 records added

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
φ = 0.30
d/c = 0.00

r1r1 r2r2 r3r3 r4r4 r5r5 r6r6 r7r7
r3 is duplicate of r1

Calculation of the transitive 
closure will find additional 
duplicates of r3



■ Skipping windows bears the risk to miss duplicates

■ Example: w=4, φ=1/2
□ For w1: d/c = 1/3 > φ
□ Thus: Window is not increased, but w4 is left out.

■ Example: w=4, φ=1/3

DCS++ Evaluation
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r1 r4 r7

W1
W4

r1 r4 r7

W1
W4



DCS++ Evaluation

■ Skipping windows bears the risk to miss duplicates

■ With                no duplicates will be missed due to skipping windows

■ With               DCS++ is at least as efficient as SNM with an

equivalent window size (wSNM = wDCS++)
□ Worst case: same number of comparisons
□ Best case: DCS++ saves w-2 comparisons per duplicate
□ Proof: Next slides
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r1 r4

φ ≤ 1
w −1

φ ≤ 1
w −1

W1
W4

r7



Differences in comparisons

■ Regard window Wi, with d detected duplicates
■ Comparisons within W(i,j): c = j – i 
■ Additional comparisons compared to SNM: a = j – i – (w – 1) 
■ Saved comparisons for skipped windows: s = d (w – 1)
■ We want to show: a – s ≤ 0

■ Case 1: Beginning
window of ti contains
no duplicate

■ Case 2: Beginning
window of ti contains
at least one duplicate
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Differences in comparisons

■ Additional comparisons: a = j – i – (w – 1) 
■ Saved comparisons: s = d (w – 1)
■ Case 1: Beginning window of ti contains no duplicate
■ No duplicates => no window increase => a = 0
■ No duplicates => no skipped windows => s = 0
■ a – s = 0 – 0 ≤ 0
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Differences in comparisons

■ Additional comparisons: a = j – i – (w – 1) 
■ Saved comparisons: s = d (w – 1)
■ Case 2: Beginning window of ti contains at least one duplicate
■ a – s = j – i – (w – 1) – d (w – 1)

= j – i – (d + 1) (w – 1)
■ Window is increased until d/c < φ.
■ For ≤ ⁄ we need at least c = d (w – 1) + 1 comparisons to stop

window increase
■ Worst case: We find duplicate at very last comparison and increase

window without any new duplicates
□ c = d (w – 1) + (w – 1) (= j – i)

■ a – s = j – i – (d + 1) (w – 1)
= d (w – 1) + (w – 1) – (d + 1) (w – 1)
= (d + 1) (w – 1) – (d + 1) (w – 1)
= 0
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Differences in comparisons

■ Worst case: We find duplicate at very last comparison and
increase window without any new duplicates
□ c = d (w – 1) + (w – 1)  (= j – i)

■ Best case: We find duplicate immediately after ti.
□ c = d (w – 1) + 1  (= j – i)

■ a – s = j – i – (d + 1) (w – 1)
= d (w – 1) + 1 – (d + 1) (w – 1)
= 1 – (w – 1)
= 2 – w 

■ Can save up to 2 – w per duplicate compared to SNM
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Experimental Evaluation

■ Perfect classifier (lookup in the gold standard)
■ Algorithms

□ Sorted Neighborhood Method (SNM)
□ Duplicate Count Strategy (DCS / DCS++)
□ Adaptive SNM (AA SNM / IA SNM)  (previous slides)

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

43 Data set Provenance # of records # of dupl. pairs Max. cluster size

Cora real-world 1,879 64,578 238

Febrl synthetic 300,009 101,153 10

Persons synthetic 1,039,776 89,784 2



Results Cora: Comparisons
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recall = # detected duplicates
# real duplicates



Results Cora: Duplicate Provenance
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Detected duplicates
by classifying
created pairs

Additional duplicates
calculated by

transitive closure



Other Variants

■ From Master thesis of Oliver Wonneberg
■ Sorting key strategy

□ Increase window if sorting keys are similar
□ Decrease window size for dissimilar sorting keys
□ Use different sizes of increase (depending on similarity)

■ Similarity strategy
□ Same as before, but based on tuple similarity

■ Difficult to calibrate
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Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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Blocking and Windowing Algorithms

■ Blocking:

■ Sorted Neighborhood Method [HS98]:
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Sorting

Duplicate 
detection 
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Comparing Blocking and Windowing

Sorted Blocks | Draisbach, Naumann | 24. August 2009
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

3
5

Tuples 1 & 5 
are only

compared
using

Blocking

Tuples 16 & 
14 are only
compared
using SNM

SNM
Blocking

Sorted tuples



Comparing Blocking and Windowing
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Increasing window size to approximate Blocking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

5
5

SNM
Blocking

Sorted tuples



Comparing Blocking and Windowing
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Overlapping blocks to approximate Windowing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x

10 x
11 x
12 x
13 x
14 x
15 x
16 x
17 x
18 x
19 x
20 x

Window size:
Block size:

3
5

SNM
Blocking

Sorted tuples



Sorted Blocks Method

■ Generalization of blocking and windowing
■ Approach

1. Sort records and build disjoint partitions
◊ Sorting key might use more attributes than the

partioning predicate
2. Perform complete comparison within partitions
3. Overlap partitions and slide fixed size window across sorted 

records within overlap
4. Calculate transitive closure

■ Overlap
□ Parameter o = number of records from one partition that are 

part of the overlap
□ Overlap size = 2o
□ Size of window = o+1

52

Blocking
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Uwe Draisbach and Felix Naumann. A Generalization of 
Blocking and Windowing Algorithms for Duplicate 
Detection. In Proceedings of the International 
Conference on Data and Knowledge Engineering 
(ICDKE), Milan, Italy, 2011.



Sorted Blocks Method

53
Quadratic
complexityComplete comparison within partitions
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Sorted Blocks Method

54

Linear
complexityComparisons within overlap

Complete comparison within partitions

o = 2
w = o+1=3
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Sorted Blocks Method

55

Comparisons within overlap

Complete comparison within partitions

o = 2
w = o+1=3
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Sorted Blocks Configurations
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Choose o = 1 
for Blocking

Choose o = w
and evalute to
true for SNM



Complexity Analysis

Sorted Blocks | Draisbach, Naumann | 24. August 2009
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■ n = number of tuples
■ b = number of blocks
■ w = window size
■ m = partition size



Sorted Blocks variants

■ Overall execution time for Sorted Blocks is dominated by the 
largest blocks
□ E.g. partitioning by city results in large partitions for Berlin, 

London, etc.

■ Use additional parameter: max. partition size

■ 2 variants with maximum partition size:
1. Create new partition when max. partition size is reached, 

independently of the partition predicate
2. Slide window when max. partition size is reached

◊ Similar to the Sorted Neighborhood Method for large 
partitions

58
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Experimental Evaluation

■ DuDe-toolkit for experiment execution (http://tinyurl.com/dude-toolkit)

■ 8 algorithms
□ Sorted Blocks – basic
□ Sorted Blocks – fixed partition size
□ Sorted Blocks – new partition when max. size is reached
□ Sorted Blocks – slide window when max. size is reached

□ Blocking
□ Sorted Neigborhood Method

□ Incrementally-adaptive SNM (IA-SNM) 1

□ Accumulatively-adaptive SNM (AA-SNM) 1

59

1 Yan et al. (2007), Adaptive sorted neighborhood methods for efficient record linkage
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013



Experimental Evaluation

■ 3 datasets (real-world and artificial)

■ Varying settings for
□ overlap parameter o
□ Partition predicate
□ Max. partition size

60

Dataset Type Records Duplicate pairs

CD 1 real-world 9,763 299

Restaurant 2 real-world 864 112

Address data artificial 1,039,776 89,784
1 http://www.freedb.org
2 http://www.cs.utexas.edu/users/ml/riddle/data.html
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Evaluation CD data

■ Sorting key: first few letters of artist, CD title, and track 01
■ Partition predicate: first 1-9 letters of the sorting key
■ Overlap o: 1-100
■ Max. partition size: 2-1000

61

Dataset Type Records Duplicate pairs

CD real-world 9,763 299

Restaurant real-world 864 112

Address data artificial 1,039,776 89,784
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Evaluation CD data

62
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Evaluation CD data

63
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Sorted Blocks Conclusion

■ Blocking and windowing are competitive approaches to reduce the 
number of comparisons
□ Sorted Neighborhood outperforms Blocking slightly

■ Sorted Blocks is a generalization of blocking and windowing
□ Sorted Blocks outperforms Sorted Neighborhood slightly

■ Experimental evaluation shows that it is superior to windowing 
and blocking.

■ Configuration is more difficult as it has more parameters than the 
other 2 approaches.

64
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Overview

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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Two Ideas for Domain Independence

■ Domain-independent key definition
□ Define key and reverse key
□ Union-find data structure compares only representatives of 

each cluster
◊ Relaxation of Christen-idea from before (unique sorting 

key)

■ A. E. Monge and C. Elkan, “An efficient domain-independent algorithm for 
detecting approximately duplicate database records,” in Workshop on 
Research Issues on Data Mining and Knowledge Discovery (DMKD), 1997
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Two Passes

■ Regard each tuple as a single long string
□ Concatenate all attribute values

■ 1st pass: Key = tuple
■ 2nd pass: Key = reversed tuple

■ “No” dependency on good key choice

■ Similarity measure: Smith-Waterman
□ Suitable for long strings
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Union-find Data Structure

■ Interpret result as graph
□ Connected components represent duplicate clusters
□ Graph is transitive closure

■ Compare next tuple only once with each connected component
■ Union-find data structure (Robert Tarjan, Journal of the ACM, 1975)

□ Collection of disjoint updateable sets
□ Each set is identified by a representative
□ Initialized with |R| singletons

■ Union(x,y)
□ Unions the sets containing tuples x and y to new set, deletes old sets
□ Chooses new prime representative

■ Find(x)
□ Returns unique representative of set containing x

■ For each detected duplicate <u,v>: 
□ If Find(u) ≠ Find(v) then Union(u,v)

■ Two nodes u and v are in same connected component ⇔ Find(u) = Find(v)
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Union-find Data Structure

■ Define prime representative for each detected duplicate group
■ Compare records first to the representatives 

□ avoiding comparisons that can be derived through transitivity.
■ Similar to Swoosh idea, but records keep their identity
■ If the similarity is high enough (some intermediate threshold), 

compare with other members of cluster
■ Slight improvement: Allow multiple representatives

□ To represent large variety of tuples in cluster
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Algorithm

■ Priority Queue: Contains sets of tuples
□ Fixed size (≈ window size)
□ Sorted by recency of addition: Queue represents last few detected 

clusters
■ Sort records by key (2 passes)
■ For each record r

□ Test if r already part of a cluster in queue:
◊ Improvement: Ignore step if first pass
◊ Find(r) based on representatives
◊ If successful: move cluster up in queue
◊ If not successful: similarity comparison with all 

representatives
● If similar:

» Union(r,x)
» Make r representative if not too similar
» break

□ Else: r is new singleton cluster at top of queue
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Summary

■ The Original
■ Unique sorting keys
■ Adaptive SNM

□ Part 1
□ Part 2

■ Sorted Blocks
■ Domain-independent SNM
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