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Mercury 0.382 0.06 0 no minimal 

Venus 0.949 0.82 0 no CO2, N2 

Earth 1.000 1.00 1 no N2, O2, Ar 

Mars 0.532 0.11 2 no 
CO2, N2, 

Ar 

Jupiter 11.209 317.8 67 yes H2, He 

Saturn 9.449 95.2 62 yes H2, He 

Uranus 4.007 14.6 27 yes H2, He 

Neptune 3.883 17.2 14 yes H2, He 
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U+2609 ☉ Sun 

U+263D ☽ Moon 

U+263E ☾ Moon 

U+263F ☿ Mercury 

U+2640 ♀ Venus 

U+1F728 🜨 Earth 

U+2642 ♂ Mars 

U+2643 ♃ Jupiter 

U+2644 ♄ Saturn 

U+2645 ♅ Uranus 

U+26E2 🜨 Uranus 

U+2646 ♆ Neptune 

≈ U+2641 ♁ Eris 

≈ U+29EC ⧬ Eris 

U+2647 ♇ Pluto 

not present -- Pluto 

... ... ... 

Name Mass 
Orbital 
radius 

Rotation 
period 

Atmosphere 

Mercury 0.06 0.47 58.64 minimal 

Venus 0.82 0.72 −243.02 CO2, N2 

Earth 1.00 1.00 1.00 N2, O2, Ar 

Mars 0.11 1.52 1.03 CO2, N2, Ar 

Jupiter 317.8 5.20 0.41 H2, He 

Saturn 95.2 9.54 0.43 H2, He 

Uranus 14.6 19.22 −0.72 H2, He 

Neptune 17.2 30.06 0.67 H2, He 

 

 

 

 

 

 

 

 

High arity 
techniques to deal 

with high-arity INDs 



■ Unary IND discovery has a complexity of O(n2) (n: number of attributes) 

□ Databases often comprise thousands of columns 

 millions of IND candidates to be checked 

 

■ Checking an IND candidate requires “aligning” the values of the involved 

columns 

□ Databases often comprise millions or billions of tuples 

 huge amounts of data need to be re-organized 

 

■ Call for efficient, robust, and scalable IND discovery strategies. 

BINDER – divide & conquer based IND detection 

Unary IND complexity (Repetition) 
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BINDER – divide & conquer based IND detection 

DeMarchi‘s algorithm (Repetition) 

Sebastian Kruse, 
26th June, 2017 

Advanced IND 
detection methods 

Chart 4 

a
c
a
j
j
i
e
f
h
a 

A 
b
b
c
g
b
c
i
g
i
i 

B 
g
e
g
g
a
f
g
f
a
a 

C 
d
b
b
b
d
d
h
d
d
b 

D 
e
g
b
b
e
g
e
g
b
g 

E 
h
i
c
a
a
j
a
c
c
i 

F G 
c
b
b
c
f
b
c
j
d
d 

Rel. 1 Rel. 2 
a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

A 

B 

A 

B 

A 

A 

B 

A 

A 

A 

C 

D 

B 

D 

C 

C 

C 

D 

B 

F 

F 

E 

F 

G 

E 

G 

E 

F 

F 

G 

G 

G 

F  A 

Needs to fit into main memory! 

All intersections 
are executed, but 
not all are 
necessary! 
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BINDER – divide & conquer based IND detection 

SPIDER algorithm (Repetition) 
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Two Phase Multiway Merge Sort 
needed for larger datasets! 

Attributes are accessed 
individually! 
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F G 
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OS limit on open  
files / sockets! 

Needs to fully sort  
all attributes! X 

attributes 
dataflow 

values 
ignored 



BINDER – divide & conquer based IND detection 

BINDER algorithm – workflow (unary)  

Sebastian Kruse, 
26th June, 2017 

Advanced IND 
detection methods 

Chart 6 

a 
 

A 
 
b 

B 
a 
 

C 
 
b 

D 
 
b 

E 
a 
 

F 
 
b 

G 

c 
 

c 
d 

 
d 

c 
 

c 
d 

e 
f 

e 
f 

e 
 

 
f 

 
h 

g 
 

g 
 

g 
 

 
h 

i 
j 

i 
 

i 
j 

 
j 

 
 

A B C D E F G 

X X 

X X X X 

X X X X 

X X X X X 

F  A 

 
h 

 
 

a
c
a
j
j
i
e
f
h
a 

A 
b
b
c
g
b
c
i
g
i
i 

B 
g
e
g
g
a
f
g
f
a
a 

C 
d
b
b
b
d
d
h
d
d
b 

D 
e
g
b
b
e
g
e
g
b
g 

E 
h
i
c
a
a
j
a
c
c
i 

F G 
c
b
b
c
f
b
c
j
d
d 

Divide 

Rel. 1 Rel. 2 
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attributes 
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ignored 

validation? 

Dynamic Memory 
Handling: 

Spill largest buckets to disk 
if memory is exhausted. 

Lazy Partition 
Refinement: 

Split a partition if it does 
not fit into main memory. 
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BINDER – divide & conquer based IND detection 

BINDER algorithm – validation  
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attr2value 

value2attr 

1 
2 

3 

see DeMarchi’s 
algorithm 

Both indexes fit 
into main 

memory due to 
the partitioning! 

1. Iterate attributes 

2. Iterate values 

3. If value2attr entry exists 

 Intersect candidates with this list 

 Remove value2attr entry 

 If attribute removed from all 
candidates 

 Remove entry from attr2value  



BINDER – divide & conquer based IND detection 

BINDER algorithm – validation example  
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attr2value value2attr 1. Iterate attributes 

2. Iterate values 

3. If value2attr entry exists 

 Intersect candidates with this list 

 Remove value2attr entry 

 If attribute removed from all 
candidates 

 Remove entry from attr2value  

B  A 
C  A 

Never tested!  



BINDER – divide & conquer based IND detection 

BINDER evaluation 
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BINDER – divide & conquer based IND detection 

N-ary IND detection complexity 
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A B C D E 

AB AC AD AE BC BD BE CD CE DE 

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE 

ABCD ABCE ABDE ACDE BCDE 

ABCDE 

A B C D E 

AB AC AD AE BC BD BE CD CE DE 

A B C D E 

AB AC AD AE BC BD BE CD CE DE 

A B C D E 

AB AC AD AE BC BD BE CD CE DE 

A B C D E 

AB AC AD AE BC BD BE CD CE DE AB AC AD AE BC BD BE CD CE DE AB AC AD AE BC BD BE CD CE DE 

A B C D E 

Test combination 
with all other 

combinations of 
same size! 

No n-ary INDs 
here! Why? 

𝑿  𝒀 : 

𝑿 ∩ 𝒀 = ∅ 

𝑛

𝑘
∗

𝑛 − 𝑘

𝑘
∗ 𝑘! 

IND Candidates in level k: 

nodes 

other, non-
overlapping nodes 

all 
permu-
tations 
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MIND (Recap)  
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results 

MIND 

(meta) data 

data 

meta data 

candidates INDs 

Validator 

Preprocessor 

Candidate 
Generator 

dataset 

Validate A,B  C,D: 
 

     SELECT R.A, R.B, S.C, S.D 

     FROM R LEFT OUTER JOIN S ON A = C AND B = D 

     WHERE (C IS NULL AND D IS NULL) 

     AND (A IS NOT NULL OR B IS NOT NULL) 

     FETCH FIRST 1 ROWS ONLY; 
 

R S 

 

SELECT fromTable.AAGE, fromTable.ACLSWKR, 

             fromTable.ADTIND, fromTable.ADTOCC,  

             fromTable.AGI, fromTable.AHGA  

FROM CENSUS6 fromTable LEFT OUTER JOIN  

           CENSUS exceptTable ON  

           fromTable.AAGE = exceptTable.AAGE AND  

           fromTable.ACLSWKR = exceptTable.ACLSWKR  

AND  

           fromTable.ADTIND = exceptTable.ADTIND AND  

           fromTable.ADTOCC = exceptTable.ADTOCC AND  

           fromTable.AGI = exceptTable.AGI AND  

           fromTable.AHGA = exceptTable.AHGA  

WHERE exceptTable.AAGE IS NULL AND  

             exceptTable.ACLSWKR IS NULL AND  

             exceptTable.ADTIND IS NULL AND  

             exceptTable.ADTOCC IS NULL AND  

             exceptTable.AGI IS NULL AND  

             exceptTable.AHGA IS NULL  

AND (fromTable.AAGE IS NOT NULL OR  

          fromTable.ACLSWKR IS NOT NULL OR  

          fromTable.ADTIND IS NOT NULL OR  

          fromTable.ADTOCC IS NOT NULL OR  

          fromTable.AGI IS NOT NULL OR  

          fromTable.AHGA IS NOT NULL)   

FETCH FIRST 1 ROWS ONLY; 
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N-ary BINDER – workflow  
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N-ary BINDER – candidate generation  
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■ Apriori algorithm: 

□ Bottom-up lattice traversal strategy 

□ Authors:  R.Agrawal and R. Srikant 

□ Publication:  Fast algorithms for mining association rules in large databases 

□ Input:  all frequent item sets of size n 

□ Output:  all candidate frequent item sets of size n+1 
 

■ Adaption for n-ary IND detection: 

□ Let Ri be the i-th relation in the relational schemata R. For each valid IND  

Rj[X]  Rk[Y] with |X|=|Y|=n generate all IND candidates Rj[XA]  Rk[YB] so that: 
 

1. 𝑅𝑗 𝑋   𝑅𝑘[𝑌] and 𝑅𝑗 𝐴   𝑅𝑘[𝐵] (both are valid INDs) 

2. ∀𝑋𝑖 ∈ 𝑋: 𝑋𝑖 < 𝐴 (INDs are permutable; do not generate them twice) 

3. 𝐴 ∈ 𝑋𝑌, 𝐵 ∈ 𝑋𝑌 and 𝑅𝑗 𝐴 ≠ {} (do not generate degenerate candidates) 

Advanced IND 
detection methods 



Assume that we need to check AB ⊆ FE and AB ⊆ FG. 

BINDER – divide & conquer based IND detection 

BINDER algorithm – workflow (n-ary) 
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N-ary BINDER evaluation 
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N-ary BINDER evaluation 
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Potentially very many 
attribute combinations 

(cf. complexity). More distinct values 
per attribute 
combination. 

Value combinations 
take up more space 
than single values. 
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SINDY 
scaling out  

IND detection 

 

 

 

 

 

 

 

 

BINDER 
divide & conquer 

based IND detection 

Name Mass 
Orbital 
radius 

Rotation 
period 

Atmosphere 

Mercury 0.06 0.47 58.64 minimal 

Venus 0.82 0.72 −243.02 CO2, N2 

Earth 1.00 1.00 1.00 N2, O2, Ar 

Mars 0.11 1.52 1.03 CO2, N2, Ar 

Jupiter 317.8 5.20 0.41 H2, He 

Saturn 95.2 9.54 0.43 H2, He 

Uranus 14.6 19.22 −0.72 H2, He 

Neptune 17.2 30.06 0.67 H2, He 

 

 

 

 

 

 

 

 

High arity 
techniques to deal 

with high-arity INDs 



■ Some problems are intrinsically hard 

□ “defeat it with iron”: use more/better hardware for the computation 

 

■ Scalability != efficiency 

□ Efficient = fast / spare resources 

□ Scalable = improvement by leveraging more resources 

 

“Do the same work in less time.” ≠ “Do more work in the same time.” 

SINDY – scaling out IND detection 

The hardware side 

Sebastian Kruse, 
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■ Scale up: faster CPUs/disk, more main memory, … 

□ lowest impact on code 

□ expensive, limited, shift of bottlenecks 

■ Scale in: more cores, (RAID) 

□ thread-level parallelization, cache coherency 

□ limited, shift of bottlenecks 

■ Scale out: computer clusters 

□ Actors, message passing, data partition 

□ Less limited, most complicated 

 

■ Is problem suited to certain scaling direction? 

SINDY – scaling out IND detection 

Scaling dimensions 
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SINDY – scaling out IND detection 

Scale out: Setting 
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■ Multiple independent nodes 

■ can communicate and exchange 

data 

■ oftentimes data distributed among 

nodes 

 

■ no shared state 

■ network new potential bottleneck 

□ network topology relevant 

■ fault tolerance important 

■ load balancing important 

 



SINDY – scaling out IND detection 

Distributed Application Frameworks 
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HDFS Cassandra S3 

Akka Zookeeper YARN 

Hadoop 
Flink/ 

Stratosphere 
Spark Storm 

JAQL Meteor Pig 
Script 

languages 

Operator-
centric 

frameworks 

Low-level 
frameworks

/ resource 
management 

Storage 

Mesos 

HBase 

NB: overview not 
complete! Hive 



■ Four ingredients 

□ Datasets 

□ First-order functions 

– high-level data operations 

□ Second-order functions 

– one passed to each first-order functions 

– refine semantics of first-order functions 

– transform data 

□ Directed acyclic graph 

– starts with data sources, ends in data sinks 

– describes workflow 

 

 

SINDY – scaling out IND detection 

Writing an Apache Flink program 
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Map Reduce Union 

Cross Join CoGroup 

Iterate 
Delta 

Iterate 



■ implemented as DAG with two 

first-order functions (and two 

second-order functions) 

■ specifies 

□ operations on a logical level 

■ does not specify 

□ how to parallelize 

□ data serialization and shipping 

□ handling when available main 

memory is exceeded 

□ fault tolerance 

□ … 

 

SINDY – scaling out IND detection 

Classic example: word count 

Sebastian Kruse, 
26th June, 2017 

Advanced IND 
detection methods 

Chart 23 

Map 

split line into 

words 

for each word, 

output (word, 1) 

Reduce 

input file 

output 

for each input pair 

(word, n1) and 

(word, n2), output 

(word, n1+n2) 

group by word 



“big data is big” 

SINDY – scaling out IND detection 

Classic example: word count 
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Map 

Reduce 

input file 

output 

(“big”, 1)    (“data”, 1) (“is”, 1) (“big”, 1) 

(“big”, 2) (“data”, 1) (“is”, 1) 

split line into 

words 

for each word, 

output (word, 1) 

for each input pair 

(word, n1) and 

(word, n2), output 

(word, n1+n2) 

group by word 



“big data” 

SINDY – scaling out IND detection 

Classic example: word count 
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Map 

Reduce 

input file 

output 

(“big”, 1)    (“data”, 1) (“is”, 1) (“big”, 1) 

(“big”, 2) (“data”, 1) (“is”, 1) 

split line into 

words 

for each word, 

output (word, 1) 

for each input pair 

(word, n1) and 

(word, n2), output 

(word, n1+n2) 

group by word 

“is big” 



public class CountWords() { 

  public static void main(String[] args) { 

    ExecutionEnvironment env =  

      ExectionEnvironment.getExectutionEnvironment(); 

    env.readTextFile(args[0]) 

      .flatMap( 

        (String line, Collector<WordCount> out) ->  { 

          Arrays.stream(line.split(“\\W+”)) 

          .forEach(t -> out.collect(new WordCount(t, 1))) 

        }) 

      .groupBy(“word”) 

      .sum(“count”) 

      .print(); 

    env.execute();   

  } 

} 

SINDY – scaling out IND detection 

Classic example: word count 

Sebastian Kruse, 
26th June, 2017 
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Map 

Reduce 

input file 

output 
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Intrinsic limitations of IND algorithms 
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Algorithm Phase 1 
Data Reorganization 

Phase 2 
Comparison 

De Marchi Create Inverted Index Intersect Attribute Groups 

SPIDER Sort Columns Simultaneous Iteration 

BINDER Partition Columns In-Memory Partition 
Comparison 

■ Observations: all IND algorithms follow a common pattern 

 

 

 

 

 

■ e.g., IND A⊆B 

□ to prove, need to read A completely 

□ to disprove, need to read B completely 

■ Data reorganization is the most expensive phase 

□ I/O-heavy workload, but other phase brings considerable I/O as well 

 



SINDY – scaling out IND detection 

General IND approach 
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SINDY – scaling out IND detection 

Distributed IND detection: general idea 
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1. Calculate full outer join 

2. Intersect attribute 
groups 



SINDY – scaling out IND detection 

SINDY: Calculate outer join 
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Dataset Cells 
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(i, {A}) 
(c, {B}) 
(j, {F}) 
(e, {A}) 
(i, {B}) 
(a, {F}) 
(f, {A}) 
(g, {B}) 
(c, {F}) 
… 

Local pre-join 
(cache-based) 

(a, {A}) 
(b, {B}) 
(h, {F}) 
(c, {A,B}) 
 
(i, {F}) 
 
 
… 

(i, {A,B}) 
(c, {B,F}) 
(j, {F}) 
(e, {A}) 
 
(a, {F}) 
(f, {A}) 
(g, {B}) 
 
… 

 
Global join 

(a, {A,F}) 

(c, {A,B,F}) 

(e, {A}) 

(g, {B}) 

(i, {A,B,F}) 
 

(b, {B}) 
 

(f, {A}) 
 

(h, {A,F}) 
 
(j, {A,F}) 

{A,F} 

{A,B,F} 

{A} 

{B} 

{A,B,F} 
 

{B} 
 

{A} 
 

{A,F} 
 
{A,F} 

Attribute Groups 
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{A,F} 

A ⊆ {F} 
F ⊆ {A} 
A ⊆ {B,F} 
B ⊆ {A,F} 
F ⊆ {A,B} 
A ⊆ {} 
B ⊆ {} 
A ⊆ {B,F} 
B ⊆ {A,F} 
F ⊆ {A,B} 

A ⊆ {} 

 

B ⊆ {} 

 

F ⊆ {A} 

 

B ⊆ {} 

A ⊆ {} 

A ⊆ {F} 

F ⊆ {A} 

A ⊆ {F} 

F ⊆ {A} 

B ⊆ {} 

 

A ⊆ {} 

 

F ⊆ {A} 

A ⊆ {} 

 

 

F ⊆ {A} 

 

B ⊆ {} 

 

 

 

 

Attribute  
Groups 

IND 
candidates 

Pre-consolidation 
(cache-based) Consolidation Results 

 A is not included 
in any other 
attribute 

 F is only included 
in A 

 B is not included 
in any other 
attribute 
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■ Problem of IND detection can be scaled out with the Map/Reduce 

paradigm 

□ Comes with a certain loss of control 

■ SINDY does not employ pruning (except for apriori proceeding) 

□ A general problem for distributed algorithms 

□ Not a big issue for IND detection 

■ Only suitable for large datasets 

■ Arising questions 

□ To what extent is attribute scaling possible?  MANY 

□ What if some INDs are n-ary for some larger n? 
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Name Mass 
Orbital 
radius 

Rotation 
period 

Atmosphere 

Mercury 0.06 0.47 58.64 minimal 

Venus 0.82 0.72 −243.02 CO2, N2 

Earth 1.00 1.00 1.00 N2, O2, Ar 

Mars 0.11 1.52 1.03 CO2, N2, Ar 

Jupiter 317.8 5.20 0.41 H2, He 

Saturn 95.2 9.54 0.43 H2, He 

Uranus 14.6 19.22 −0.72 H2, He 

Neptune 17.2 30.06 0.67 H2, He 
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High arity 
techniques to deal 

with high-arity INDs 



■ High-arity INDs do not go well together with apriori-based algorithms 

□ Consider an IND of arity n 

□ Then there are 2n-2 sub-INDs to be verified 

□ No pruning possible 

□ Recall the hardness of n-ary IND discovery 

 

■ Different approaches necessary 

□ Cf. TANE and HyFD 

High-arity INDs 

Motivation 
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26th June, 2017 

Advanced IND 
detection methods 

Chart 38 



■ Most (maximal) INDs are of low arity, but we do find high-arity INDs 

when… 

□ There are table duplicates 

– ORDER_ITEMS vs. ORDER_ITEMS_TEMP 

□ The dataset contains materialized views 

– SELECT * FROM STUDENTS WHERE SINCE_YEAR = 2015; 

□ Datasets contain many similar columns 

– PLACES (ID in [0 .. 60], VERSION = “1.0”, DESCRIPTION = “”, …) 

– TRACKS (ID in [0 .. 10000], VERSION = “1.0”, DESCRIPTION = “”, …) 

□ Because they reflect actual foreign keys 

– SAP S4 schema contains keys with >10 columns 

□ Functional dependencies 

High-arity INDs 

Motivation 
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R    A      B     C 

 …      …     … 

S    A’     B’    C’ 

 …     …     … 

ens( R[A, B, C] ⊆ S[A’, B’, C’] ) = 
 

 

{R[A]⊆S[A’], R[B]⊆S[B’], R[C]⊆S[C’] } 
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R    A      B     C 

 …      …     … 

S    A’     B’    C’ 

 …     …     … 

ens( R[A, B, C] ⊆ S[A’, B’, C’] ) = 
 

 

{R[A]⊆S[A’], R[B]⊆S[B’], R[C]⊆S[C’] } 
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{R[A]⊆S[A’], R[B]⊆S[B’], R[C]⊆S[C’] } 

{R[C]⊆S[C’]} 

{R[A]⊆S[A’], R[B]⊆S[B’]} {R[B]⊆S[B’], R[C]⊆S[C’]} 

{R[A]⊆S[A’], R[C]⊆S[C’]} 

{R[A]⊆S[A’]} {R[B]⊆S[B’]} 

Has 2n-2 “sub-
candidates” 

that all need to 
be tested. 



■ Optimistic 

□ aim for INDs 

□ Test high-arity INDs 

early on 

□ ZigZag, FIND2 

 

■ Pessimistic 

□ aim for non-INDs 

□ Level-wise traversal of 

the IND search space 

□ MIND, SPIDER, 

BINDER, SINDY 

High-arity INDs - ZigZag 

Optimistic and pessimistic strategies 

Sebastian Kruse, 
26th June, 2017 

Advanced IND 
detection methods 

Chart 43 

5-ary IND 
candidates 

4-ary IND 
candidates 

ternary IND 
candidates 

binary IND 
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candidates A B D E 

AB 

ABC 

ABCD 

C 

BCDE 

ABCDE 

ABCE ACDE ABDE 

ABD ABE ACD ACE ADE BCD BCE BDE CDE 

AC AD AE BC BD BE CD CE DE 

DE stands for the 
IND  

R[DE] ⊆ S[D’E’] 
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■ Given two tables, and a set of known INDs and/or non-INDs, how can we 

determine the optimistic IND border? 

□ All IND candidates that are (i) not known non-INDs and (ii) are maximal 

w.r.t. property (i). 

 

■ FIND2 

□ Determine hypergraph cliques based on INDs 

 

■ ZigZag 

□ Determine hitting sets based on non-INDs 

High-arity INDs - ZigZag 

Calculate the optimistic IND border 
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■ Example: 

□ Unary INDs = {A, B, C, D, E} 

□ INDs = {AB, AC, AE, BC, BD, BE, CE} 

□ non-INDs = {AD, CD, DE} 

 

■ Goal: 

□ find all maximal sets ⊆ ABCDE that are no supersets of AD, CD, or DE 

 

■ General strategy 

□ Determine minimal sets that intersect with all non-INDs (ACE, D) 

□ Remove these minimal sets from ABCDE (BD, ABCE) 

High-arity INDs - ZigZag 

Calculate the optimistic IND border 
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■ Input: non-INDs N N=[AD, CD, DE] 

■ (1) initialize empty solution S={⌀} 

■ (2) remove head H of N, update  N=[CD, DE], H = AD 

S := S×H S={A, D} 

■ (3) remove non-minimal sets S={A, D} 

■ (2) remove head H of N, update  N=[DE], H=CD 

S := S×H S={AC, AD, CD, D} 

■ (3) remove non-minimal sets S={AC, D} 

■ (2) remove head H of N, update  N=[], H=DE 

S := S×H S={ACD, ACE, D, DE} 

■ (3) remove non-minimal sets S={ACE, D} 

■ (4) invert border = {BD, ABCE} 
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■ Input: non-INDs N, unary INDs U N=[AD, CD, DE], U={A, B, C, D, E} 

■  (1) initialize set trie S with empty S=  

solution 

■ (2) remove head H of N H=AD, N=[CD, DE] 

■ (3) invert H wrt. U I=BCE 

■ (4) remove subsets of I from S S=       ,  L={⌀} 

■ (5) for each removed solution in L, L={A, D} 

combine it with all unary INDs in H 

■ (6) update S with all elements in S= 

L except a subset is already in S  
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■ Current state N=[CD, DE], S= 

 

 

■ (2) remove head H of N H=CD, N=[DE] 

■ (3) invert H wrt. U I=ABE 

■ (4) remove subsets of I from S S=       ,  L={A} 

 

 

■ (5) for each removed solution in L, L={AC, AD} 

combine it with all unary INDs in H 

■ (6) update S with all elements in S= 

L except a subset is already in S   

High-arity INDs - ZigZag 

Calculate the optimistic IND border (adv.) 
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■ Current state N=[DE], S= 

 

 

■ (2) remove head H of N H=DE, N=[] 

■ (3) invert H wrt. U I=ABC 

■ (4) remove subsets of I from S S=       ,  L={AC} 

 

 

■ (5) for each removed solution in L, L={ACD, ACE} 

combine it with all unary INDs in H 

■ (6) update S with all elements in S= 

L except a subset is already in S 

■ (7) invert: border = {BD, ABCE}  

High-arity INDs - ZigZag 

Calculate the optimistic IND border (adv.) 
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■ For the attentive student: 

(6) update S with all elements in L except a subset is already in S 

□ What if an existing solution is a superset of a new solution? 

■ This is not possible (inductive proof): 

□ Assume, we introduced a new element N that is a subset of some 

existing element E in S 

□ Then we would have obtained N from some N’=N\I for some unary IND 

in U. 

□ Hence, S must have been already in an inconsistent state. 

□ Initially, S={⌀}, which is a consistent state. 

□ What about two elements being added in a single iteration, though? 

 Figure out yourselves. 
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■ Promising IND candidate R[X] ⊆ S[Y] if 

g’3(R[X] ⊆ S[Y]) ≤ ε 

■ g’3(R[X] ⊆ S[Y]): proportion of distinct values in R[X] to be removed, such 

that R[X] ⊆ S[Y] is a valid IND 

□ Alternative: proportion of tuples to be removed from R 

■ Example: g’3(R[Planet] ⊆ S[Planet])= 1 / 10 = 0.1 

□ The value “Ceres” has to be removed out of 10 distinct values  
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Planet Mean distance Relative mean distance 

Mercury 57.91 1 

Venus 108.21 1.86859 

Earth 149.6 1.3825 

Mars 227.92 1.52353 

Ceres 413.79 1.81552 

Jupiter 778.57 1.88154 

Saturn 1,433.53 1.84123 

Uranus 2,872.46 2.00377 

Neptune 4,495.06 1.56488 

Pluto 5,869.66 1.3058 

Planet 
 

Calculated 
(in AU) 

Observed 
(in AU) 

Perfect 
octaves 

Actual 
distance 

Mercury 0.4 0.387 0 0 

Venus 0.7 0.723 1 1.1 

Earth 1 1 2 2 

Mars 1.6 1.524 4 3.7 

Asteroid belt 2.8 2.767 8 7.8 

Jupiter 5.2 5.203 16 15.7 

Saturn 10 9.539 32 29.9 

Uranus 19.6 19.191 64 61.4 

Neptune 38.8 30.061 96 -96.8 

Pluto 77.2 39.529 128 127.7 

R 
S 



1. Input: tables R and S, pessimistic levels k, promising error ε 

2. Calculate lower k  levels with a pessimistic approach (e.g., BINDER) 

3. Calculate optimistic IND border from non-INDs 

4. For each IND candidate I in the optimistic IND border 

1. Calculate error g’3(I) of I 

2. If g’3(I) = 0 then  output IND I 

3. Else if g’3(I) ≤ ε then traverse lattice top-down breadth-first from I 

4. Else add all k+1-ary parent IND candidates of I to the pessimistic IND 

candidates 

5. Check all pessimistic IND candidates 

6. If there are open IND candidates, set k=k+1 and start over with step 3 
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■ A strategy for handling more than two tables is missing 

■ Several optimizations are possible, e.g., not all kinds of unary INDs can be 

combined to valid n-ary IND candidates (attribute repetition) 

■ Empirical evidence on the actual advantages of optimistic IND discovery is 

missing 

 Thorough evaluation all IND algorithms is called for! 

■ The original article on ZigZag proposes to do use SQL-based error checks 

for n-ary INDs (cf. MIND) 

 the traversal strategy, however, is orthogonal to IND error checks 

 more efficient techniques, such as those of BINDER and SINDY, could 

be used instead 

High-arity INDs - ZigZag 

Practical considerations 

Sebastian Kruse, 
26th June, 2017 
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■ Consider following dependencies: [ZIP’, City’] ⊆ [ZIP, City] and ZIP → City 

■ Rule 1) Then ZIP’ → City’ is also a valid FD. 

■ Because FDs cannot be violated by removing tuples. 

■ Additionally, consider [Name’, ZIP’] ⊆ [Name, ZIP]  

■ Rule 2) Then [Name’, ZIP’, City’] ⊆ [Name, ZIP, City] is an IND. 

■ Because if t[ZIP] = t[ZIP’], then t[City] = t[City’].  
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Tim 10627 Berlin 
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Students HPI Students 



■ Idea: split INDs into “core” INDs and “augmentation rules” 

□ IND: [Name’, ZIP’] ⊆ [Name, ZIP]  

□ AR: [ZIP’] ⊆ [ZIP] → [City’] ⊆ [City] 

■ Separates INDs into core and supplemental INDs 

□ Useful for foreign key discovery and understanding 

■ Potentially reduces the size of the result set 

□ Speed up discovery and make results more manageable 
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■ Assume, we know [ZIP’] ⊆ [ZIP]  and [ZIP’, City’] ⊆ [ZIP, City] 

□ Problem: we need to know if ZIP → City is an FD to tell if 

[ZIP’] ⊆ [ZIP] → [City’] ⊆ [City] is an AR. 

■ Solution 1: Discover FDs beforehand (e.g., with HyFD). 

■ Solution 2: Check relevant FD candidates on-the-fly. 

□ ZIP → City ↔ |π(ZIP)| = |π(ZIP, City)| (cf. TANE) 

□ We have to group our data anyways, so we can “piggyback” the 

          counting of distinct values at little extra cost. 
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Name Zip City Status 

Tim 10627 Berlin Student 

Tom 10627 Berlin Student 

Tom 14482 Potsdam Student 

Sandy 10324 Berlin Student 

Inge 14469 Potsdam Student 

Name’ Zip’ City’ Status’ 

Tim 10627 Berlin Student 

Tom 10627 Berlin Student 

Inge 14469 Potsdam Student 

Students HPI Students 

■ Special case: columns/INDs with only a single value 

□ [Status’] ⊆ [Status] is valid 

□ X  Status is a valid AR for any column X in Students 

■ {}  [Status’] ⊆ [Status] is a valid AR 

■ This is a very frequent case 

□ Empty or constant columns can be found in many databases 

□ They are highly susceptible to form n-ary INDs 
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ZC ZS CS NZ NC NS 

N 

NZS NCS ZCS NZC 

NZCS Initial state: unary INDs with 

distinct values of LHS/dep. 

1 2 4 4 

{}  S is an AR. 
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ZC ZS CS NZ NC NS 
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NZS NCS ZCS NZC 

NZCS 

1 2 4 4 

Apply {}  S. We can prune all n-ary INDs that 

comprise S, because they can be 

inferred. 
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Test remaining binary IND 

candidates. 

Z  C is another AR. 

5 5 4 
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■ Final result: 

□ INDs: [Name’, ZIP’] ⊆[Name, ZIP], [Name’, City’] ⊆[Name, City]  

□ ARs: [ZIP’] ⊆[ZIP] → [City’] ⊆[City], {} → [Status’] ⊆[Status] 

 

■ Checked only 3 out of 11 (valid) IND candidates. 
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■ Andy uses SINDY-style candidate checking based on Flink. 
Both run on a single machine but ANDY uses 2 cores/4 threads. 

Timeout 
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