

IT Systems Engineering | Universität Potsdam

Advanced IND detection methods

Sebastian Kruse sebastian.kruse@hpi.de G-3.1.13 (2.5.13) Agenda

Unicode	Glyph	Symbol		Name	Diameter	Mass	Moons	Rings	W				And					- 1
U+2609	0	Sun	Me	rcury	0.382	0.06	0	no		sh to	I C			11	End			
U+263D U+263E U+263F) (4	Moon Moon Mercury	· •	/enus	0.949	0.82	0	no					a)	and a				and a second
U+2640 U+1F728	<u>0</u>	Venus Earth		Earth	1.000	1.00	1	no		200			2		1			
U+2642 U+2643	් 4	Mars Jupiter		Mars	0.532	0.11	2	no	Sign Aries	House	Domicile	Detriment Venus	Exaltation	Name	Mass	Orbital radius	Rotation	Atmosphere
U+2644	h w	Saturn	Ju	upiter	11.209	317.8	67	yes	Taurus	2nd House	Venus	Pluto	Moor	Mercury	0.06	0.47	58.64	minimal
U+26E2		Uranus	- 12					·	Gemini	3rd House	Mercury	Jupiter	N/A	Venus	0.82	0.72	-243.02	CO ₂ , N ₂
U+2646	Ψ	Neptune	s	aturn	9.449	95.2	62	yes	Cancer	4th House	Moon	Saturn	Jupiter	Earth	1.00	1.00	1.00	N ₂ , O ₂ , Ar
≈ U+2641	ð	Eris							Leo	5th House			Neptune	Mars	0.11	1.52	1.03	CO ₂ , N ₂ , Ar
≈ U+29EC	Ŷ	Eris	U	ranus	4.007	14.6	27	yes	Virgo	6th House	Mercury	Neptune	Pluto, Mercury	Jupiter	317.8	5.20	0.41	Ha, He
0+2647	В	Pluto							Libra	7th House	Venus	Mars	Saturr	Saturn	95.2	9.54	0.43	H ₂ , He
			Nep	otune	3.883	17.2	14	yes	Scorpio	8th House	Pluto	Venus	Uranus	Uranus	14.6	19.22	-0.72	H ₂ , He
	Ser State								agittarius	9th House	Jupiter	Mercury	N/A	Nentune	17.2	30.06	0.67	Ha, He
d bas	livio sed	BIN de 8 INI	NDE & cc D d	ER on et	qu cec	er tic	n		Capricorn	SCa IND	Saturn SINI aling dete	DY out ectio	Mars	teo	H chn h hi	igh ique igh-a	arity s to arity	deal INDs

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

BINDER – divide & conquer based IND detection Unary IND complexity (Repetition)

- Unary IND discovery has a complexity of O(n²) (n: number of attributes)
 - Databases often comprise thousands of columns
 - \rightarrow millions of IND candidates to be checked
- Checking an IND candidate requires "aligning" the values of the involved columns
 - Databases often comprise millions or billions of tuples
 - \rightarrow huge amounts of data need to be re-organized

Call for efficient, robust, and scalable IND discovery strategies.

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Needs to fit into main memory!

BINDER – divide & conquer based IND detection SPIDER algorithm (Repetition)

BINDER – divide & conquer based IND detection BINDER algorithm – validation

- Iterate attributes
- Iterate values
- 3. If value2attr entry exists
 - Intersect candidates with this list
 - Remove value2attr entry
 - If attribute removed from all candidates
 - Remove entry from attr2value \succ

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

BINDER – divide & conquer based IND detection BINDER algorithm – validation example

BINDER – divide & conquer based IND detection BINDER evaluation

BINDER – divide & conquer based IND detection N-ary IND detection complexity

BINDER – divide & conquer based IND detection N-ary BINDER – workflow

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

BINDER – divide & conquer based IND detection N-ary BINDER – candidate generation

Apriori algorithm:

- Bottom-up lattice traversal strategy
- Authors: R.Agrawal and R. Srikant
- Publication: Fast algorithms for mining association rules in large databases
- Input: all frequent item sets of size n
- Output: all candidate frequent item sets of size n+1

Adaption for n-ary IND detection:

- □ Let R_i be the i-th relation in the relational schemata R. For each valid IND $R_j[X] \subseteq R_k[Y]$ with |X| = |Y| = n generate all IND candidates $R_j[XA] \subseteq R_k[YB]$ so that:
 - 1. $R_j[X] \subseteq R_k[Y]$ and $R_j[A] \subseteq R_k[B]$ (both are valid INDs)
 - 2. $\forall X_i \in X: Xi < A$ (INDs are permutable; do not generate them twice)
 - 3. $A \notin XY$, $B \notin XY$ and $R_{i}[A] \neq \{\}$ (do not generate degenerate candidates)

Advanced IND detection methods

Hasso

Plattner

Sebastian Kruse, 26th June, 2017

BINDER – divide & conquer based IND detection BINDER algorithm – workflow (n-ary)

ignored

Assume that we need to check $AB \subseteq FE$ and $AB \subseteq FG$.

attribute (combinations)
dataflow

Divide

value (combinations)

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Chart 14

Conquer

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

HPI

Hasso Plattner

Institut

Chart 15

BINDER – divide & conquer based IND detection N-ary BINDER evaluation

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Agenda

								111			1 MA	No. 1					
Unicode	Glyph	Symbol	Name	Diameter	Mass	Moons	Rings	W				-					1-1
U+2609	0		Mercury		0.06		no		sh-		A star	- 10		End		COMME	
U+263D U+263E) (Moon	Venus	0.949	0.82	2 0	no	1				AX	and a				
U+2640 U+1F728	÷ 0		Earth	1.000	1.00) 1	no		- OF			X		1			
U+2642 U+2643	් 4	Mars Jupiter	Mars	0.532	0.11	2	no	Sign	House	Domicile	Detriment	Exaltation	Name	Mass	Orbital	Rotation	Atmosphere
U+2644	J ₂			11 200	317.8	67	Ves	Taurus	2nd House	Venus	Pluto	Moor	Mercury	0.06	0 47	58.64	minimal
U+2645		Uranus	Supres	11.205	517.0		yes	Gemini	3rd House	Mercury	Jupiter	N/A	Vonus	0.82	0.72	-243.02	CO N
U+2646	Ψ	Neptune		9.449	95.2	62	yes	Cancer	4th House	Moon	Saturn	Jupiter	Farth	1.00	1.00	1.00	N = 0 Ar
≈ U+2641	ð					-		Leo	5th House	Sun	Uranus	Neptune	Marc	0.11	1.50	1.00	CO N Ar
≈ U+29EC	Q		Uranus	4.007	14.6	5 27	yes	Virgo	6th House	Mercury	Neptune	Pluto, Mercury	lupitor	217.0	E 20	0.41	
U+2647						-		Libra	7th House	Venus	Mars	Saturr	Catura	05.2	5.2U	0.41	Н. На
not present				3.883	17.2	2 14	yes	Scorpio	8th House	Pluto	Venus	Uranus	Saturn	95.2	9.54	0.43	H ₂ , He
								agittarius	9th House	Jupiter	Mercury	N/A	Uranus	14.6	19.22	-0.72	H ₂ , He
							_	Capricorn	10th House	Saturn	Moon	Mars	Neptune	17.2	30.06	0.67	H ₂ , He
d bas	ivio sed	BIN de & IND	DEF cor de	R Iqu	er	on			sca IND	SINI aling det	DY out ectio	n	te wit	Hi chn h hi	igh ique igh-a	arity es to arity	deal INDs

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection The hardware side

- Some problems are intrinsically hard
 - □ "defeat it with iron": use more/better hardware for the computation

Scalability != efficiency

- Efficient = fast / spare resources
- Scalable = improvement by leveraging more resources

"Do the same work in less time." ≠ "Do more work in the same time."

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Scaling dimensions

Scale up: faster CPUs/disk, more main memory, ...

- $\hfill\square$ lowest impact on code
- expensive, limited, shift of bottlenecks
- **Scale in**: more cores, (RAID)
 - thread-level parallelization, cache coherency
 - limited, shift of bottlenecks
- Scale out: computer clusters
 - Actors, message passing, data partition
 - Less limited, most complicated

Is problem suited to certain scaling direction?

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Scale out: Setting

- Multiple independent nodes
- can communicate and exchange data
- oftentimes data distributed among nodes
- no shared state
- network new potential bottleneck
 - network topology relevant
- fault tolerance important
- load balancing important

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Writing an Apache Flink program

- refine semantics of first-order functions
- transform data
- Directed acyclic graph
 - starts with data sources, ends in data sinks
 - describes workflow

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

 implemented as DAG with two first-order functions (and two second-order functions)

specifies

- operations on a logical level
- does not specify
 - how to parallelize
 - data serialization and shipping
 - handling when available main memory is exceeded

fault tolerance

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Chart 23

□ ...

HPI Hasso Plattner Institut

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

HPI Hasso Plattner Institut

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

```
public class CountWords() {
  public static void main(String[] args) {
    ExecutionEnvironment env =
      ExectionEnvironment.getExectutionEnvironment();
    env.readTextFile(args[0])
      .flatMap(
        (String line, Collector<WordCount> out) -> {
          Arrays.stream(line.split("\\W+"))
          .forEach(t -> out.collect(new WordCount(t, 1)))
        })
      .groupBy("word")
      .sum("count")
      .print();
    env.execute();
```


Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

• Observations: all IND algorithms follow a common pattern

Algorithm	Phase 1 Data Reorganization	Phase 2 Comparison
De Marchi	Create Inverted Index	Intersect Attribute Groups
SPIDER	Sort Columns	Simultaneous Iteration
BINDER	Partition Columns	In-Memory Partition Comparison

∎ e.g., IND A⊆B

- □ to prove, need to read A completely
- □ to disprove, need to read B completely
- Data reorganization is the most expensive phase
 - □ I/O-heavy workload, but other phase brings considerable I/O as well

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection General IND approach

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Distributed IND detection: general idea

1. Calculate full outer join

2. Intersect attribute groups

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection SINDY: Calculate outer join

SINDY – scaling out IND detection Determine INDs from join result

SINDY – scaling out IND detection Implementation on Flink (unary INDs)

SINDY – scaling out IND detection Implementation on Flink (n-ary INDs)

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Scale-out behavior

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

SINDY – scaling out IND detection Performance comparison with SPIDER

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

HPI

Hasso

Plattner Institut

SINDY – scaling out IND detection **Conclusions**

- Problem of IND detection can be scaled out with the Map/Reduce paradigm
 - Comes with a certain loss of control
- SINDY does not employ pruning (except for apriori proceeding)

A general problem for distributed algorithms

Not a big issue for IND detection

- Only suitable for large datasets
- Arising questions
 - $\hfill\square$ To what extent is attribute scaling possible? \rightarrow MANY
 - What if some INDs are n-ary for some larger n?

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Agenda

U+2609 U+2630 U+2632 U+263F U+263F U+2640 U+1F728	Giyph S	Sun Moon Moon Mercury Venus Earth		Mercury Venus Earth	unit for the second sec	0.06 0.82	со С С С С С С С С С С С С С С С С С С С	no					A Star	- mut				1:
U+2642 U+2643	් 24	Mars Jupiter	1	Mars	0.532	0.11	2	no	Sign Aries	House	Domicile	Detriment	Exaltation	Name	Mass	Orbital	Rotation	Atmosphere
U+2644			. 8		11.209	317.8	67	ves	Taurus	2nd House	Venus	Pluto	Moor	Mercury	0.06	0.47	58.64	minimal
U+2645		Uranus	1					· .	Gemini	3rd House	Mercury	Jupiter	N/A	Venus	0.82	0.72	-243.02	CO ₂ , N ₂
U+2646	Ψ		- 81		9.449	95.2	62	yes	Cancer	4th House	Moon	Saturn	Jupiter	Farth	1 00	1.00	1 00	N= O= Ar
≈ U+2641	ð		- 81						Leo	5th House			Neptune	Mars	0.11	1.00	1.00	CO N Ar
≈ U+29EC	0			Uranus	4.007	14.6	27	yes	Virgo	6th House	Mercury	Neptune	Pluto, Mercury	lupitor	217.0	E 20	0.41	
U+2647									Libra	7th House	Venus	Mars	Saturr	Cature	05.2	0.54	0.41	
not present				Neptune	3.883	17.2	14	yes	Scorpio	8th House	Pluto	Venus	Uranus	Saturn	95.2	9.54	0.43	Н ₂ , не
									agittarius	9th House	Jupiter	Mercury	N/A	Uranus	14.6	19.22	-0.72	H ₂ , He
									Capricorn	10th House	Saturn	Moon	Mars	Neptune	17.2	30.06	0.67	H ₂ , He
d bas	BINDER divide & conquer based IND detection							sc IND	SINI aling det	DY out ectio	n	te wit	H chn h h	igh ique igh-a	arity es to arity	deal INDs		

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs **Motivation**

High-arity INDs do not go well together with apriori-based algorithms

- \square Consider an IND of arity n
- □ Then there are $2^{n}-2$ sub-INDs to be verified
- □ No pruning possible
- □ Recall the hardness of *n*-ary IND discovery
- Different approaches necessary
 - □ Cf. TANE and HyFD

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs Motivation

 Most (maximal) INDs are of low arity, but we do find high-arity INDs when...

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - ZigZag A different notation for n-ary INDs

 $R[A, B, C] \subseteq S[A', B', C']$

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - ZigZag A different notation for n-ary INDs

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - ZigZag A different notation for n-ary INDs

High-arity INDs - ZigZag Optimistic and pessimistic strategies

High-arity INDs - ZigZag

High-arity INDs - ZigZag

High-arity INDs - ZigZag

High-arity INDs - ZigZag IND borders

Given two tables, and a set of known INDs and/or non-INDs, how can we determine the optimistic IND border?

 All IND candidates that are (i) not known non-INDs and (ii) are maximal w.r.t. property (i).

FIND₂

Determine hypergraph cliques based on INDs

ZigZag

Determine hitting sets based on non-INDs

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Example:

Unary INDs = {A, B, C, D, E}
INDs = {AB, AC, AE, BC, BD, BE, CE}
non-INDs = {AD, CD, DE}

Goal:

□ find all maximal sets \subseteq ABCDE that are no supersets of AD, CD, or DE

General strategy

Determine minimal sets that intersect with all non-INDs (ACE, D)

Remove these minimal sets from ABCDE (BD, ABCE)

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Input: non-INDs N

N=[AD, CD, DE]

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

■ Input: non-INDs N, unary INDs U N=[AD, CD, DE], U={A, B, C, D, E}

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Current state

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

HPI Hasso Plattner Institut

Current state

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

HPI Hasso Plattner Institut

- For the attentive student:
 - (6) update S with all elements in L except a subset is already in S
 - What if an existing solution is a superset of a new solution?
- This is not possible (inductive proof):
 - Assume, we introduced a new element N that is a subset of some existing element E in S
 - $\hfill\square$ Then we would have obtained N from some N'=N\I for some unary IND in U.
 - Hence, S must have been already in an inconsistent state.
 - □ Initially, $S = \{ \emptyset \}$, which is a consistent state.
 - □ What about two elements being added in a single iteration, though?
 → Figure out yourselves.

Advanced IND detection methods

```
Sebastian Kruse, 26th June, 2017
```


- Promising IND candidate $R[X] \subseteq S[Y]$ if $g'_3(R[X] \subseteq S[Y]) \le \varepsilon$
- $g'_3(R[X] \subseteq S[Y])$: proportion of distinct values in R[X] to be removed, such that $R[X] \subseteq S[Y]$ is a valid IND
 - \square Alternative: proportion of tuples to be removed from R
- Example: $g'_3(R[Planet] \subseteq S[Planet]) = 1 / 10 = 0.1$
 - □ The value "Ceres" has to be removed out of 10 distinct values

. 1	Planet	Mean distance	Relative mean distance
	Mercury	57.91	1
	Venus	108.21	1.86859
	Earth	149.6	1.3825
	Mars	227.92	1.52353
	Ceres	413.79	1.81552
	Jupiter	778.57	1.88154
	Saturn	1,433.53	1.84123
	Uranus	2,872.46	2.00377
	Neptune	4,495.06	1.56488
	Pluto	5,869.66	1.3058

S	Planet	Calculated (in AU)	Observed (in AU)	Perfect octaves	Actual distance
	Mercury	0.4	0.387	0	0
	Venus	0.7	0.723	1	1.1
	Earth	1	1	2	2
	Mars	1.6	1.524	4	3.7
	Asteroid belt	2.8	2.767	8	7.8
	Jupiter	5.2	5.203	16	15.7
	Saturn	10	9.539	32	29.9
	Uranus	19.6	19.191	64	61.4
	Neptune	38.8	30.061	96	-96.8
	Pluto	77.2	39.529	128	127.7

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

- **1.** Input: tables R and S, pessimistic levels k, promising error ε
- 2. Calculate lower k levels with a pessimistic approach (e.g., BINDER)
- 3. Calculate optimistic IND border from non-INDs
- 4. For each IND candidate *I* in the optimistic IND border
 - 1. Calculate error $g'_{3}(I)$ of I
 - **2.** If $g'_{3}(I) = 0$ then output IND I
 - **3.** Else if $g'_{3}(I) \leq \varepsilon$ then traverse lattice top-down breadth-first from I
 - **4. Else** add all *k*+1-ary parent IND candidates of *I* to the pessimistic IND candidates
- 5. Check all pessimistic IND candidates
- 6. If there are open IND candidates, set k=k+1 and start over with step 3

Sebastian Kruse, 26th June, 2017

High-arity INDs - ZigZag **Practical considerations**

- A strategy for handling more than two tables is missing
- Several optimizations are possible, e.g., not all kinds of unary INDs can be combined to valid n-ary IND candidates (attribute repetition)
- Empirical evidence on the actual advantages of optimistic IND discovery is missing
 - \rightarrow Thorough evaluation all IND algorithms is called for!
- The original article on ZigZag proposes to do use SQL-based error checks for *n*-ary INDs (cf. MIND)
 - \rightarrow the traversal strategy, however, is orthogonal to IND error checks
 - \rightarrow more efficient techniques, such as those of BINDER and SINDY, could be used instead

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - Andy FDs cause high-arity INDs

HPI Hasso Plattner Institut

- Consider following dependencies: $[ZIP', City'] \subseteq [ZIP, City]$ and $ZIP \rightarrow City$
- **Rule 1)** Then $ZIP' \rightarrow City'$ is also a valid FD.
 - Because FDs cannot be violated by removing tuples.
- Additionally, consider [Name', ZIP'] ⊆ [Name, ZIP]
- **Rule 2)** Then [Name', ZIP', City'] \subseteq [Name, ZIP, City] is an IND.
 - Because if t[ZIP] = t[ZIP'], then t[City] = t[City'].

Name	Zip	City				
Tim	10627	Berlin				
Tom	10627	Berlin				
Tom	14482	Potsdam				
Sandy	10324	Berlin				
Inge	14469	Potsdam				
Students						

Name'	Zip′	City'
Tim	10627	Berlin
Tom	10627	Berlin
Inge	14469	Potsdam
HPI S	tudents	5

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - Andy Augmentation rules

Idea: split INDs into "core" INDs and "augmentation rules"

- $\square \text{ IND: } [Name', ZIP'] \subseteq [Name, ZIP]$
- $\Box \mathsf{AR}: [ZIP'] \subseteq [ZIP] \rightarrow [City'] \subseteq [City]$
- Separates INDs into core and supplemental INDs

Useful for foreign key discovery and understanding

- Potentially reduces the size of the result set
 - Speed up discovery and make results more manageable

Name	Zip	City					
Tim	10627	Berlin					
Tom	10627	Berlin					
Tom	14482	Potsdam					
Sandy	10324	Berlin					
Inge	14469	Potsdam					
Stude	Students						

Name'	Zip'	City'
Tim	10627	Berlin
Tom	10627	Berlin
Inge	14469	Potsdam
HPI S	tudents	5

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

• Assume, we know $[ZIP'] \subseteq [ZIP]$ and $[ZIP', City'] \subseteq [ZIP, City]$

- □ Problem: we need to know if $ZIP \rightarrow City$ is an FD to tell if $[ZIP'] \subseteq [ZIP] \rightarrow [City'] \subseteq [City]$ is an AR.
- Solution 1: Discover FDs beforehand (e.g., with HyFD).
- Solution 2: Check relevant FD candidates on-the-fly.

 $\Box ZIP \rightarrow City \leftrightarrow |\pi(ZIP)| = |\pi(ZIP, City)| \text{ (cf. TANE)}$

□ We have to group our data anyways, so we can "piggyback" the

Name	Zip	City					
Tim	10627	Berlin					
Tom	10627	Berlin					
Tom	14482	Potsdam					
Sandy	10324	Berlin					
Inge	14469	Potsdam					
Students							

counting of distinct values at little extra cost.

Name'	Zip'	City'
Tim	10627	Berlin
Tom	10627	Berlin
Inge	14469	Potsdam
HPI S	tudents	5

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - Andy Augmentation rule discovery

- Special case: columns/INDs with only a single value
 - $\square [Status'] \subseteq [Status] \text{ is valid}$
 - \square X \rightarrow Status is a valid AR for any column X in Students
- $\{\} \rightarrow [Status'] \subseteq [Status] \text{ is a valid AR}$
- This is a very frequent case
 - Empty or constant columns can be found in many databases
 - □ They are highly susceptible to form *n*-ary INDs

Name	Zip	City	Status	
Tim	10627	Berlin	Student	
Tom	10627	Berlin	Student	
Tom	14482	Potsdam	Student	
Sandy	10324	Berlin	Student	
Inge	14469	Potsdam	Student	
Students				

Name'	Zip'	City'	Status'	
Tim	10627	Berlin	Student	
Tom	10627	Berlin	Student	
Inge	14469	Potsdam	Student	
HPI Students				

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

Final result:

□ INDs: $[Name', ZIP'] \subseteq [Name, ZIP]$, $[Name', City'] \subseteq [Name, City]$ □ ARs: $[ZIP'] \subseteq [ZIP] \rightarrow [City'] \subseteq [City]$, {} $\rightarrow [Status'] \subseteq [Status]$

Checked only 3 out of 11 (valid) IND candidates.

Name	Zip	City	Status	
Tim	10627	Berlin	Student	
Tom	10627	Berlin	Student	
Tom	14482	Potsdam	Student	
Sandy	10324	Berlin	Student	
Inge	14469	Potsdam	Student	
Students				

Name'	Zip'	City'	Status'	
Tim	10627	Berlin	Student	
Tom	10627	Berlin	Student	
Inge	14469	Potsdam	Student	
HPI Students				

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

High-arity INDs - Andy Evaluation

Andy uses SINDY-style candidate checking based on Flink.
 Both run on a single machine but ANDY uses 2 cores/4 threads.

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017

IT Systems Engineering | Universität Potsdam

Advanced IND detection methods

Sebastian Kruse Thorsten Papenbrock

- Papenbrock, T., Kruse, S., Quiané-Ruiz, J. A., & Naumann, F. (2015). Divide & conquer-based inclusion dependency discovery. *Proceedings of the VLDB Endowment*, 8(7), 774-785.
- Kruse, S., Papenbrock, T., & Naumann, F. (2015). Scaling Out the Discovery of Inclusion Dependencies. In *Proceedings of the Conference on Database Systems for Business, Technology, and Web* (pp. 445-454).
- De Marchi, F., & Petit, J. M. (2003). Zigzag: a new algorithm for mining large inclusion dependencies in databases. In *Proceedings of the International Conference on Data Mining* (pp. 27-34).
- Koeller, A., & Rundensteiner, E. A. (2003). Discovery of high-dimensional inclusion dependencies.
 In *Proceedings of the International Conference on Data Engineering* (pp. 683-685).
- Casanova, M. A., Fagin, R., & Papadimitriou, C. H. (1984). Inclusion dependencies and their interaction with functional dependencies. *Journal of Computer and System Sciences*, 28(1), 29-59.

Advanced IND detection methods

Sebastian Kruse, 26th June, 2017