

IT Systems Engineering | Universität Potsdam

Semantics – Uses for Dependencies

29.06.2017 Felix Naumann

Overview

1. Key Detection

- 2. Foreign Key Detection
- 3. Normalization
- 4. Optimization
- 5. Summarization

Room for thought

- Which properties do we expect from a key?
- Some ideas
 - □ UCC with no null values
 - □ Attribute name: ...key..., ...id..., ...PK..., etc.
 - Position in schema
 - Multi-column UCC: Togetherness
 - Data type, distribution
 - Incremental values
 - Sorted
 - Existing Index
 - □ Is referenced by many INDs
 - Or INDs that look like FKs
 - Joined often in given workload

Overview

1. Key Detection

2. Foreign Key Detection

- 3. Normalization
- 4. Optimization
- 5. Summarization

Problem: Automatic Determination of Foreign Keys

Given

Relational schema

- Database instance of that schema
- Complete set of (observed) inclusion dependencies
 - Attributes A and B with $R[A] \subseteq S[B]$ (in short $A \subseteq B$)

Find

□ All foreign key constraints: attributes A and B with A references B

Difficulty

Foreign keys are not intrinsic to data, but defined by humans
 Discover semantics

Felix Naumann Data Profiling Summer 2017

An aside: Even INDs cannot be "discovered"

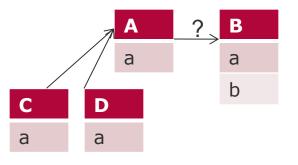
Characterizing foreign keys

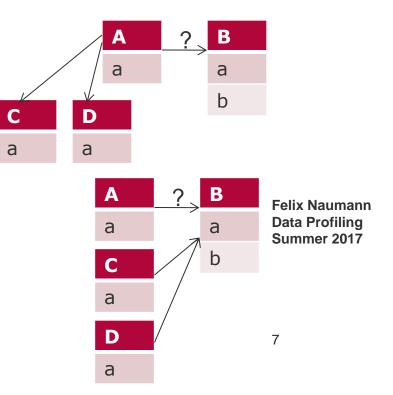
- Find set of characteristic features
 - Easily verifiable
 - Carefully developed
 - Not necessarily independent
- Then apply a machine learning approach to classify INDs as FKs

Notation

- \Box Let s(A) denote set of distinct values in attribute A.
- □ Let *name*(A) denote the label of attribute A.
- Source: Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, UlfLeser: A Machine Learning Approach to Foreign Key Discovery. In: WebDB 2009

- DependentAndReferenced
 - Counts how often the dependent attribute A appears as referenced attribute in the set of all INDs.
 - Usually, a foreign key is not also a primary key that is referenced as foreign key by other tables.
- MultiDependent
 - Counts how often A appears as dependent attribute in the set of all INDs.
 - If s(A) is contained in the set of values of many other attributes, the likelihood for each of these INDs being a FK is decreased.
- MultiReferenced
 - Counts how often B appears as referenced attribute in the set of all INDs.
 - Often, primary keys are referenced by more than one foreign key.





- DistinctDependentValues
 - \Box The cardinality of s(A).
 - Usually, attributes that are foreign keys contain at least some different values.

ValueLengthDiff

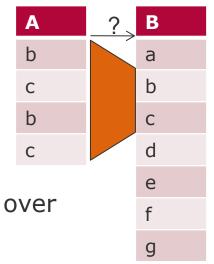
- Difference between the average value length (as string) in s(A) and s(B).
- Usually, average length of the values is similar whenever foreign keys reference a non-biased sample of the primary keys.

Α	?	В
а		а
а		b
а		С
а		d
а		е

Α	?	В	
abab		abab	
abab		b	Felix N
abab		С	Data Pi Summe
С		d	
d		е	

Coverage

- □ The ratio of values in s(B) that are covered by s(A) compared to all values in s(B).
- Usually, foreign keys cover a considerable number of primary key values.
- OutOfRange
 - Percentage of values in s(B) that are not within [min(s(A)), max(s(A))].
 - Usually, the dependent values should be evenly distributed over the referenced values.
 - Mostly, less than 5% of values outside of range
- TableSizeRatio
 - □ Ratio of number of tuples in A and number of tuples in B.
 - Usually in life sciences databases, table sizes do not differ wildly



ColumnName

Similarity between name(A) and name(B), also considering the name of the table of which B is an attribute.

TypicalNameSuffix

Checks whether name(A) ends with a substring that indicates a foreign key.

□ "id", "key", "nr", etc.

 $\begin{array}{l} \mathsf{SG}_\mathsf{BIOENTRY}.\mathsf{TAX}_\mathsf{OID} \\ \rightarrow \mathsf{SG}_\mathsf{TAXON}.\mathsf{OID} \end{array}$

 $\begin{array}{l} \mathsf{COURSE}.\mathsf{STUDENT} \\ \rightarrow \mathsf{STUDENT}.\mathsf{ID} \end{array}$

 $\begin{array}{l} \mathsf{SG_SEQFEATURE.ENT_OID} \\ \rightarrow \mathsf{SG_COMMENT.ENT_OID} \end{array}$

CUSTOMER.C_NATIONKEY \rightarrow NATION.N_NATIONKEY

Felix Naumann Data Profiling Summer 2017

10

FILMTEXTE.FILMTEXTTYPNR \rightarrow FILMTEXTTYPEN.FILMTEXTTYPNR

Learning to classify based on features

- Four (supervised) machine learning methods
 - □ Naive Bayes
 - Support Vector Machine
 - □ J48 decision tree
 - Decision tables
- Implementation as provided by WEKA: http://www.cs.waikato.ac.nz/ml/weka/
- Cross validation at database level (F-Measure):

Test database	Naive Bayes	SVM	J48	DecisionTab	Avg
UniProt	0.86	0.92	0.84	0.8	0.855
Filmdienst	0.80	0.86	0.86	0.93	0.817
Movielens	0.71	0.71	1.0	0.8	0.805
SCOP	1.0	1.0	1.0	1.0	1.0
ТРС-Н	0.86	0.90	0.95	0.95	0.915
Average	0.846	0.78	0.930	0.896	

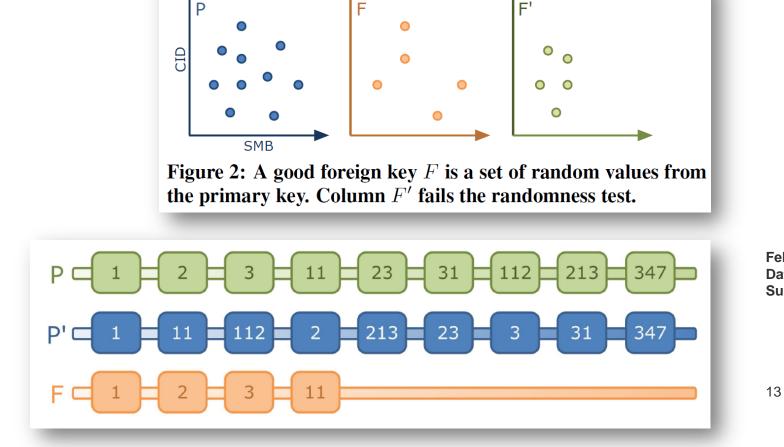
Multi-Column Foreign Key Discovery

- New feature: "Randomness"
 - □ To subsume several other features
 - Intuition: Given ordered key values, foreign key values form a (nearly) uniform random sample of key values
 - "expected to be "sprinkled" uniformly throughout the ordered set"
 - "It is highly unlikely that a database instance is designed such that a foreign key is a biased sample of the respective primary key (e.g., a prefix or a suffix in the ranked order)."

 Source: Meihui Zhang, <u>Marios Hadjieleftheriou</u>, <u>Beng Chin Ooi</u>, <u>Cecilia M.</u> <u>Procopiuc</u>, <u>Divesh Srivastava</u>: On Multi-Column Foreign Key Discovery. <u>PVLDB 3(1)</u>: 805-814 (2010)

Defining Randomness

Given two sets of values (tuples) F and P, test the statistical hypothesis that the distinct values (tuples) in F have the same underlying distribution as the distinct values (tuples) in P.



Felix Naumann Data Profiling Summer 2017

Domain order is needed

Wilcoxon rank-sum test for unary INDs

- Create F ⊎ P (multiset semantics)
- Sort the elements and assign ranks
 - Assign mean rank for duplicate values
- Compute sum of ranks of values in F
- If sum is (too) small, most values in F are in a prefix of P.
- If sum is (too) large, most values in F are in a suffix of P.
- Test works only in one dimension.

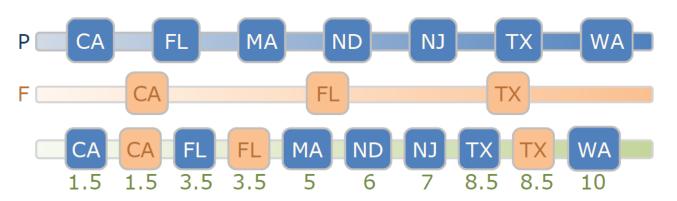


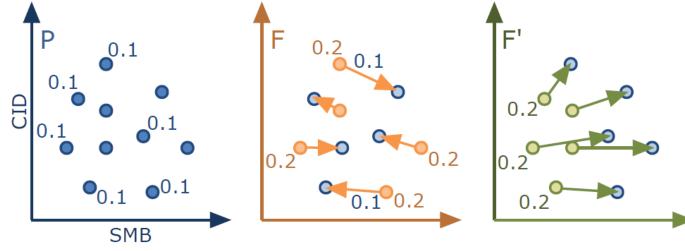
Figure 4: The Wilcoxon test: 1. Sort values in multi-set $F \cup P$; 2. Assign ranks; 3. Compute the rank-sum of values in F (13.5 in this example).

Earth Movers Distance for multiple dimensions

Minimal cost to transform one set into the other

□ Normalize points in P and F:

each value shall have same weight; sum of weights is 1.



Problems

Felix Naumann Data Profiling Summer 2017

EMD requires metric distance measure

Even for numeric values, different ranges result in different EMDs

- Incomparable across different pairs, e.g. for ranking

- Idea: Use distance between ranks of values in P column.
- Single column: Distance between two values in F and P is absolute difference between their ranks in P
- Multi-columns: Sum of single-dimension rank distances

Manhattan distance

Bias across multiple candidates if P has many more values than P': Normalize distance by number of values.

□ In effect:

DEFINITION 2 (QUANTILE DISTANCE). Given a multi-column set X consisting of n columns, a total order in each column X_i , a function $q_i(x)$ that returns the quantile order of value x in column X_i , and two tuples $v, w \in X$, the quantile distance is

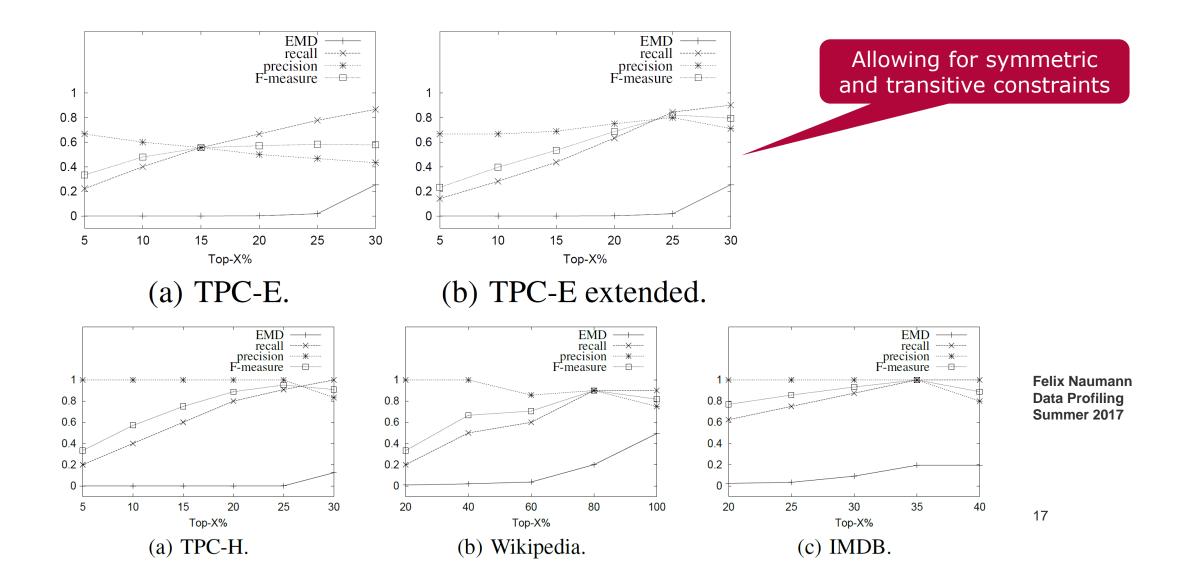
$$d(v, w) = \sum_{1 \le i \le n} |q_i(v) - q_i(w)|.$$

Felix Naumann Data Profiling Summer 2017

Final normalization is needed if number of dimensions is different
 Comparing unary candidate P and F with n-ary candidates.

16

Evaluation



Randomness implies previous features

- **1**. A foreign key should have significant cardinality
- Implication clear
- 2. A foreign key should have good coverage of the primary key
- Implication clear
- 3. A foreign key should not be at the same time a primary key for too many other foreign keys
 - "Probability that a substantial number of columns F' are random samples of F, without any real correlation between F and F', is very small."
- 4. The set of values of a foreign key should not be a subset of too many primary keys
 - "If F is a random sample of P, and F is a random sample of some other column P' with the same underlying distribution as P, then P and P' are clearly highly correlated. It is unlikely that a large number of such correlated columns P' exist.
- The average length of the values in foreign/primary key columns should be similar (mostly for strings)
- Implication clear

- The primary key should have only a small percentage of values outside the range of the foreign key
- Implication clear
- 7. The column names of foreign/primary keys should be similar.

Overview

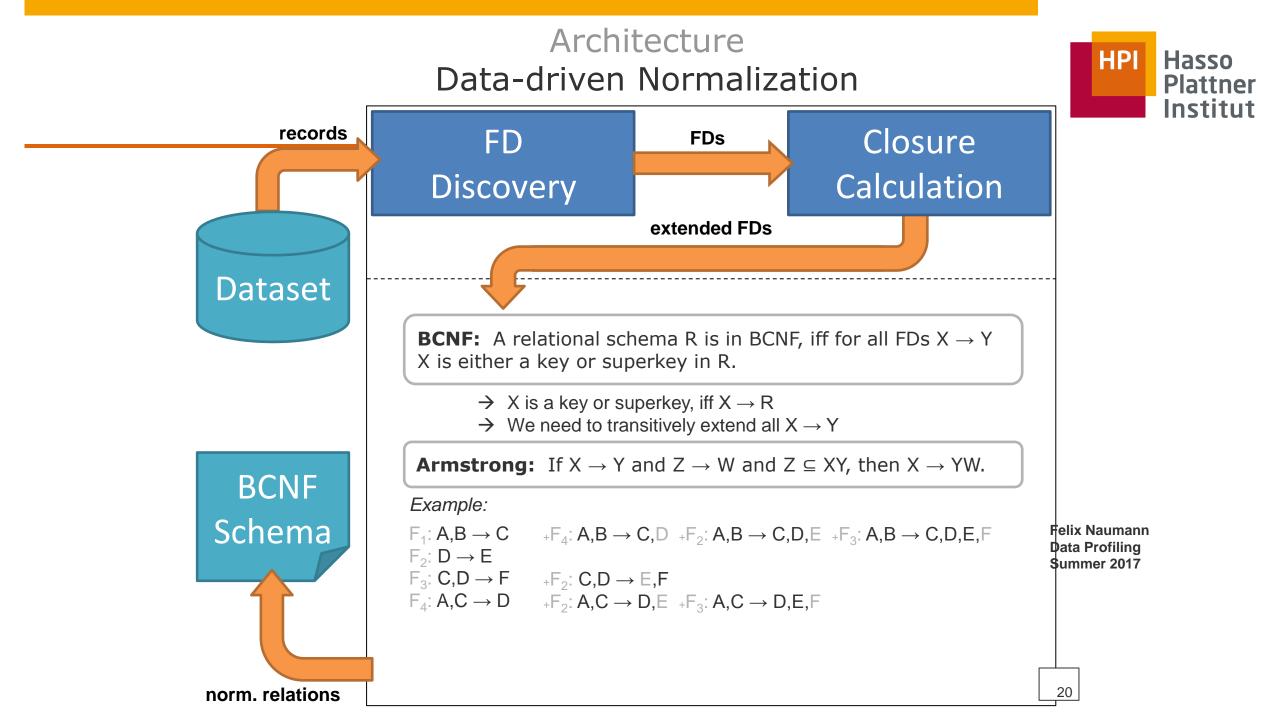
- 1. Key Detection
- 2. Foreign Key Detection

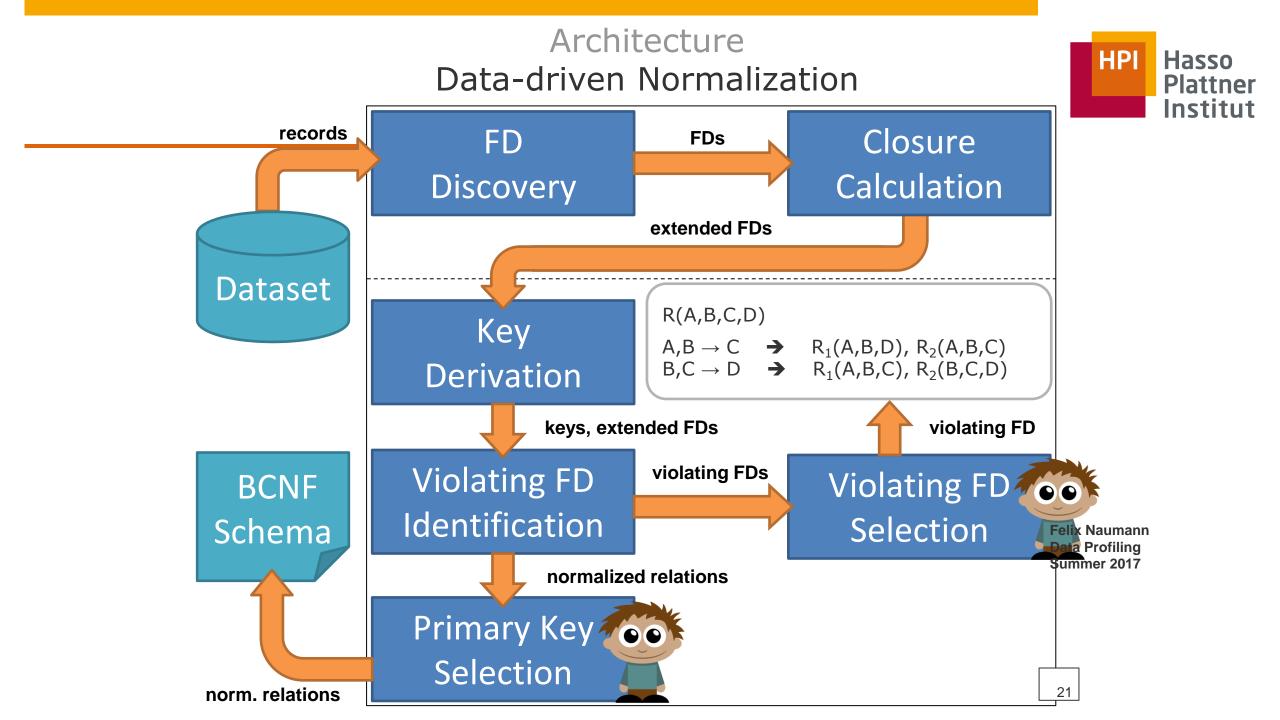
3. Normalization

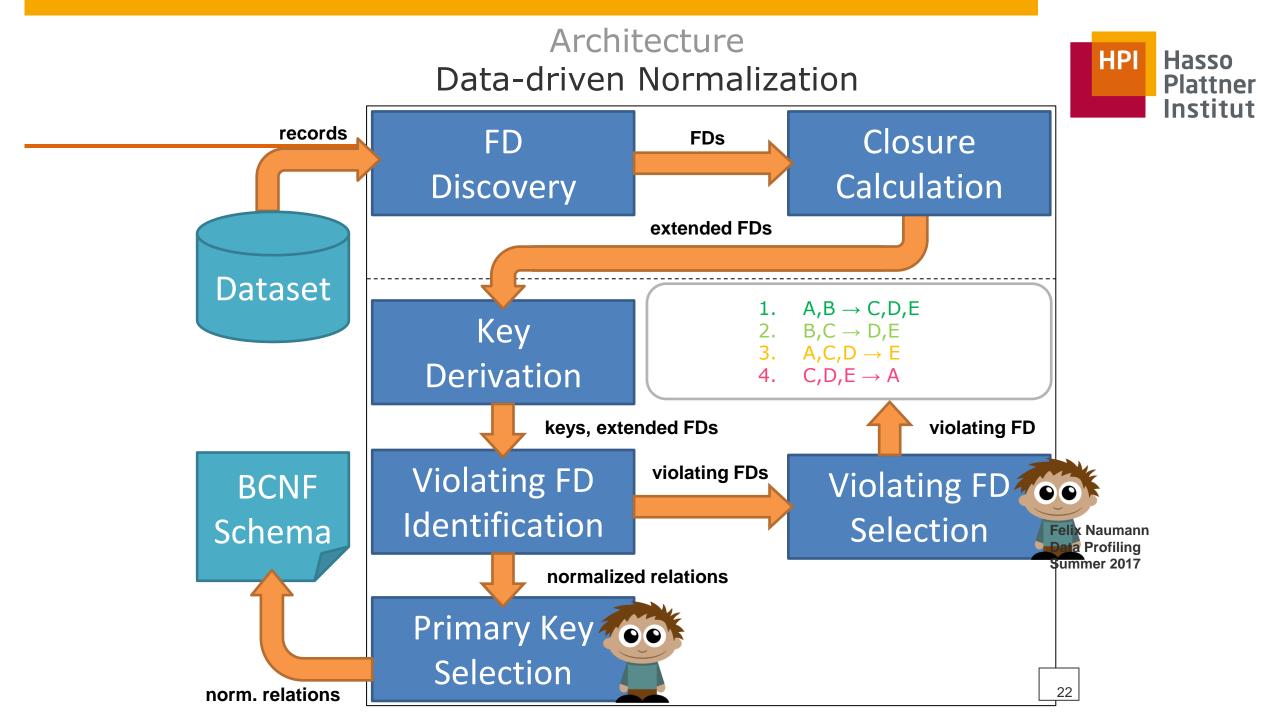
- 4. Optimization
- 5. Summarization

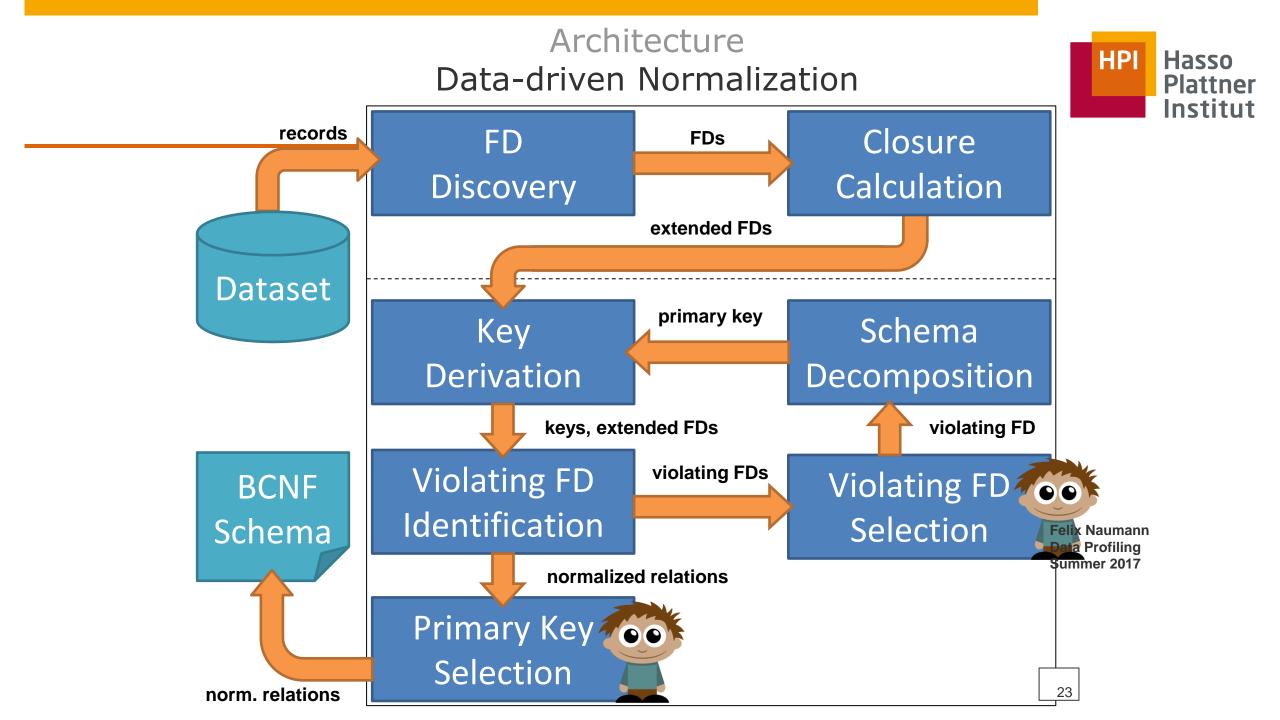
Felix Naumann Data Profiling Summer 2017

Thorsten Papenbrock, Felix Naumann, *A Hybrid Approach to Functional Dependency Discovery.* SIGMOD Conference 2016: 821-833









Primary Key Selection

score(UCC) = lengthScore(UCC) + valueScore(UCC) + positionScore(UCC)

IengthScore(UCC)

□ Semantically correct keys are usually shorter than spurious keys in their number of attributes $|X|: \frac{1}{|X|}$

- valueScore(UCC)
 - The values in primary keys are typically short, because they serve to identify records and usually do not contain much business logic:

 $\max(1,|\max(X)|-7)$

```
positionScore(UCC)
```

□ Key attributes are typically located left and without non-key attributes between them: $\frac{1}{2} * \left(\frac{1}{|left(X)|+1} + \frac{1}{|between(Y)|+1} \right)$

Violating FD Selection

score(FD)

□ lengthScore(FD) + valueScore(FD) + positionScore(FD) + duplicationScore(FD)

IengthScore

 \Box X should contain possibly few and Y possibly many attributes: $\frac{1}{2} * \left(\frac{1}{|X|} + \frac{|Y|}{|R|-2}\right)$

valueScore

□ X should hold possibly short values: $\frac{1}{\max(1,|\max(X)|-7)}$

positionScore

 \Box The attributes in X and Y should be close in the schema: $\frac{1}{2} * \left(\frac{1}{|between(X)|+1} + \frac{1}{|between(Y)|+1}\right)$

duplicationScore

and Y should contain possibly much redundancy:
$$\frac{1}{2} * \left(2 - \frac{|uniques(X)|}{|values(X)|} - \frac{|uniques(Y)|}{|values(Y)|}\right)^{Summer 2017}$$

Felix Naumann

Experimental Evaluation

inenumber, extendedprice, discount, tax, returnflag, shipdate, commit- date, receiptdate, comment, <u>orderkey</u> , partkey)	LINEITEM
(linenumber, extendedprice, tax, commitdate, receiptdate, shipinstruct)	
(extendedprice, discount, shipmode, orderkey)	
(quantity, <u>extendedprice</u> , <u>partkey</u>)	
(linestatus, <u>shipdate</u>)	
(tax, returnflag, orderkey, partkey, suppkey)	
(availqty, supplycost, comment, partkey, suppkey)	PARTSUPP
(partkey, name, brand, type, size, container, retailprice, comment)	PART
L (mfgr, <u>brand</u>)	
(suppkey, name, address, phone, acctbal, comment, nationkey)	SUPPLIER
(nationkey, name, comment, regionkey)	NATION
(shippriority, regionkey, name, comment)	REGION
(orderkey, totalprice, orderdate, orderpriority, clerk, comment, custkey)	
(orderstatus, totalprice, orderdate)	
(custkey , name, address, phone, acctbal, mktsegment, comment)	CUSTOMER

Experimental Evaluation

<u>a_id, p_id, rl_id, t_id)</u>	-
(c_id, t_id, t_gid, t_medium, t_number, t_name, t_length, t_lupdated)	TRACK
+(<u>c_id</u> , t_ac, <u>t_lupdated</u>)	
(<u>c id</u> , t_position, <u>t_number</u>)	
<pre>(c_id, c_gid, c_name, c_length, c_comment, c_lupdated)</pre>	RECORDING
(<u>c_name</u> , c_edits_pending)	
(p id, p_gid, p_name, p_address, p_coordinates, p_comment, p_lupdated, p_byear,	PLACE
p_bmonth, p_bday, p_eyear, p_emonth, p_eday, p_ende	d)
(p_name, p_type, p_edits_pending)	
(e_id, <u>a_id</u> , a_gid, a_name, a_sort_name, a_byear, a_bmonth, a_bday, a_eyear, a_emont	h, ARTIST
a_eday, a_gender, a_comment, a_lupdated, acn_nam	ie)
(a lupdated, a_ended, a_barea, a_earea, acn_position, acn_joinp) ARTIST_C	REDIT_NAME
(<u>e_id</u> , e_gid, e_name, e_type, e_lupdated)	AREA
(l_id, r_id, rl_id, rl_cnumber, rl_lupdated) RE	ELEASE_LABEL
(<u>l_id</u> , l_gid, l_name, l_byear, l_bmonth, l_lcode, l_area, l_comment, l_lupdated, l_ende	d) LABEL
(<u>I_name</u> , I_bday, I_emonth, I_eday, I_type)	
└ <mark>─(<u>I_name</u>, I_eyear, <u>I_ended</u>)</mark>	
(<u>r_id</u> , r_gid, r_name, r_ac, r_status, r_packaging, r_language, r_script, r_barcode,	RELEASE
r_comment, r_edits_pending, r_quality, r_lupdated, rg_	id)
[ac_id, rg_id, rg_gid, rg_name, rg_type, rg_lupdated] REL	EASE_GROUP
(rg_comment, rg_editspending, rg_lupdated)	
(e_byear, e_bmonth, e_bday, a_type, ac_id, ac_name, ac_acount, ac_refcount, A	RTIST_CREDIT
ac_create	ed)
(e_edits_pending, e_eyear, e_emonth, e_eday, e_ended, a_edits_pending,	
ac ref count, ac created, l_editspending, c_video, t_editspending, t_isdtrace	ck)