

IT Systems Engineering | Universität Potsdam

Service selection by choreographydriven matching

Emerging Web Service Technology

Agenda

- From reuse & selection
- Aspirin
- Math preparation
- Goal-preserving match
 - What doesn't work
 - What works
- Conclusion

From reuse & selection

Service reuse

- Retrieve service according to needs
- No exact match and flexibility (relaxed match)
- Reuse outside original context
- Semantic annotation & IOPE
- Hierarchy
 - Single operations
 - □ Sequence → global point of view
 - Choreography
- Web service selection
 - Conformance to a specification
 - Use of service allows achievement of a goal

Aspirin

Math prep.

- Fluent: properties whose truth value can change over time due to the application of actions
- State: set of fluents
- One could not assume that the value of a fluent is known.
- B: Beliefs of an entity about the world
 - \square $\mathcal{B}f$ f is known to be true
 - \square $\mathcal{B}\neg f$ f is known to be false
 - $\square \neg \mathcal{B}f \wedge \neg \mathcal{B}\neg f f$ is undefined
 - A fluent could be: true, false or unknown

Flight reservation :Buyer :Seller checkAvailability searchFlight(Date,Start,Dest) ALT not_available() offer(flight) evaluateOffer ALT ack() n_ack()

- Service description: $\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle$
 - \square \mathcal{O} set of operations
 - \Box g set of actions that allow to receive messages
 - $\square \mathcal{P}$ description of interactive behavior
- $\circ \mathcal{O}$ set of operations (atomic action)
 - Description in terms of:
 - Preconditions
 - ♦ Effects
 - Both sets of fluents
 - Trigger revision process on beliefs

- Service
 - ♦ Initiator operation
 - ♦ Servant operation[≪]
- \Box operation^d (interlocutor, content) **causes** $\{E_1 \dots E_n\}$
- Example:

searchflight* (seller, Date, Start, Dest)
possible if {BDate, BStart, BDest}
searchflight* (seller, Date, Start, Dest)
causes {Bwill_get_offer}

9

- \blacksquare *G* get_answer actions
 - \square receive_act(interlocutor,content) receives \mathcal{I}
 - Finite set of possibilities
 - Example:

 $get_answer(Seller)$ receives $[not_available^{\ll}(Seller)$ or $offer^{\ll}(Seller)]$

- \blacksquare \mathcal{P} encodes the behavior of a service
 - Collection of kind:

 p_0 is $p_1 ... p_n$

 p_0 – procedure

 p_1 – atomic operation, get_answer action, testing action, procedure call

Example:

booking(Seller, Date, Start, Dest) **is** $search_flight^{>>}(Seller, Date, Start, Dest), <math>get_answer(Seller), Boffer(not_avail)?$

booking(Seller, Date, Start, Dest) **is**search_flight**(Seller, Date, Start, Dest),
get_answer(Seller), Boffer(flight)?,
eval_offer, finalize(Seller)

- Choreography
 - = set of interacting roles
 - $\neg O$ devided in
 - Bound operations
 - Unbound operations
- Binding by substitution θ

$$\theta = \left[\mathcal{O}_{S_i} / \mathcal{O}_u \right]$$

$$S_d \theta = \langle \mathcal{O}\theta, \mathcal{G}\theta, \mathcal{P}\theta \rangle$$

Math prep. - substitution

$$\theta = \left[\mathcal{O}_{S_{Aspirin}} / \mathcal{O}_{u} \right]$$

$$S_{d} \theta = \langle \mathcal{O}\theta, \mathcal{G}\theta, \mathcal{P}\theta \rangle$$

$$releave_pain^{\gg}(Pharmaceutical)$$
 possible if $\{\mathcal{B}in_pain\}$ $releave_pain^{\gg}(Pharmaceutical)$ **causes** $\{\mathcal{B}\neg in_pain\}$ $\in \mathcal{O}, \mathcal{O}_u$

 $releave_pain^{\gg}(Pharmaceutical)$ **possible if** $\{\mathcal{B}in_pain\}$ $releave_pain^{\gg}(Pharmaceutical)$ **causes** $\{\mathcal{B}\neg in_pain, \mathcal{B}thin_blood\}$ $\in \mathcal{O}_{S_{Aspirin}}$, $\mathcal{O}\theta$

Math prep. – reasoning

- "Is it possible to execute p in such a way, that the condition Fs is true in the final state?"
- Fs after p
- If true \rightarrow sequence of actions σ
- \blacksquare $(\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle, S_0) \vdash G \text{ w.a. } \sigma$

Example:

 $S_0 = \{Bdate, Bstart, Bdest, Bsmoking_flight\}$

 $G = \{Bbooked(flight), Bsmoking_flight\}$ **after** booking(...)

- From reuse & selection
- Aspirin
- Math preparation
- Goal-preserving match
 - What doesn't work
 - What works
- Conclusion

Goal-preserving match

Definition 1 (Conservative substitution). Let us consider a service $S_i = \langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle$ which plays a role R_i in a given choreography, and a query G such that, given an initial state S_0 ,

$$(\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle, S_0) \vdash G w.a. \sigma$$

Consider a substitution $\theta = [\mathcal{O}_{S_j}/\mathcal{O}_{u(R_j)}^{\sigma}]$, where $\mathcal{O}_{u(R_j)}^{\sigma} = \{o_u \in \mathcal{O} \mid o \text{ occurs in } \sigma\}$ is the set of all unbound operations that refer to another role R_j , $j \neq i$, of the same choreography, that are used in the execution trace σ . θ is conservative when the following holds:

$$(\langle \mathcal{O}\theta, \mathcal{G}\theta, \mathcal{P}\theta \rangle, S_0) \vdash G w.a. \sigma\theta$$

Matching – what doesn't work

- EM Exact Pre/Post Match
 - \square $Precs(r) = Precs(s) \land Effs(r) = Effs(s)$
- PIM Plugin Match
 - Strongest of the flexible
 - \square $Precs(r) \supseteq Precs(s) \land Effs(s) \supseteq Effs(r)$
 - Allow at least all old conditions
 - Provide a guarantee at least as strong

17

What doesn't work

Example using PIM:

```
S_0 = \{\mathcal{B}bp, \mathcal{B}in\_pain, \mathcal{B}\neg thin\_blood\}
  G = \{ \mathcal{B} \neg in\_pain, \mathcal{B} \neg thin\_blood \} after medication(...)
(\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle, S_0) \vdash G \ w. a. \ \sigma
```

 $releave_pain^{\gg}(Pharm) possible if \{Bin_pain\} \setminus Precs(r) \supseteq Precs(s)$ $releave_pain^{\gg}(Pharm) \ causes \{\mathcal{B}\neg in_pain\}$ $Effs(s) \supseteq Effs(r)$

 $releave_pain^{\gg}(Pharm) possible if \{Bin_pain\}$ $releave_pain^{\gg}(Pharm) \ causes \{\mathcal{B}\neg in_pain, \mathcal{B}thin_blood\}$

Dependency

2 fictitious actions

$$\diamond$$
 $a_{n+1} \rightarrow Precs(a_{n+1}) = Fs$

$$\overline{\sigma} = a_0; a_1; a_2; ...; a_n; a_{n+1}$$

Indexes i, j = 0, ... n + 1 with j < i $a_i \text{ depends on } a_j \text{ for the fluent } \mathcal{B}l \text{ in } \sigma : a_j \rightsquigarrow_{(\mathcal{B}l, \overline{\sigma})} a_i$ if $\mathcal{B}l \in Effs(a_j), \mathcal{B}l \in Precs(a_i), \neg \exists k (j < k < i, \mathcal{B}l \in Effs(a_k))$

■ Dependency set: $Deps(\mathcal{B}l, \sigma) = \{(j, i) | a_j \rightsquigarrow_{(\mathcal{B}l, \overline{\sigma})} a_i \}$

Uninfluential fluent

- \square $[s/o_u] \in \theta_{PIM}$
- □ $\mathcal{B} \neg l \in Effs(s) Effs(o_u)$ is uninfluential fluent iff all pairs $(j,i) \in Deps(\mathcal{B}l,\sigma)$ with k identifying the position of o_u in σ and k < j or $i \le k$

20

■ A substitution θ_{PIM} is called uninfluential iff for any substitution $[s/o_u]$ in θ_{PIM} , all beliefs in $Effs(s) - Effs(o_u)$ are uninfluential fluents w.r.t. σ

Theorem 2. Let us consider a service $S_i = \langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle$ which plays a role R_i in a given choreography, and a query G such that, given an initial state S_0 ,

$$(\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle, S_0) \vdash G \text{ w.a. } \sigma$$

Consider an uninfluential substitution $\theta_{PIM} = [\mathcal{O}_{S_j}/\mathcal{O}_{u(R_j)}^{\sigma}]$, where $\mathcal{O}_{u(R_j)}^{\sigma} = \{o_u \in \mathcal{O} \mid o \text{ occurs in } \sigma\}$ is the set of all unbound operations that refer to another role R_j , $j \neq i$, of the same choreography, that are used in the execution trace σ . Then, the following holds:

$$(\langle \mathcal{O}\theta_{PIM}, \mathcal{G}\theta_{PIM}, \mathcal{P}\theta_{PIM} \rangle, S_0) \vdash G w.a. \sigma\theta_{PIM}$$

Conclusion

- Achived
 - Formal representation of a service
 - Uninfluential Plugin Match
 - Definition of a goal-preserving match
- Semantical annotation
- Definition of unbound operations
- Feasibility