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Question Classification

„What Canadian city has the largest population?“
LOCATION:city

„Who was the first man on the moon?“

„What does 'USA' stand for?“

ABBREV:exp,
LOCATION:country

HUMAN:individual
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Question Categories
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Manual classification

Who / Whom

Where

Which / What

Person

Location

class by head noun phrase

Question starts with ... Class
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Classification and Machine Learning
Feature 1 Feature 2 Feature n
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Approach 1: Classifier

e.g. {abbr, entity, desc,
         human, loc, num}

Classifier
1. Compute density for each of the input classes

 (Winnow algorithm)
2. Sort classes by density
3. Output top k classes (k based on density

 threshold, max. 5)

Question features

e.g. {entity, desc}

xi=[xi ,1 , xi ,2 ,… , xi ,n]
T

Input confusion set

Result confusion set
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Hierarchical Classifier
{ABBR; ENTITY; DESC; HUMAN; LOC; NUM}

Coarse Classifier

{ENTITY; DESC}{ABBR} {ABBR; ENTITY; ...}

{abb; exp} {animal; body; ...}

...

... {abb; animal; ...}

Fine Classifier

{animal} {body} {animal; body} ...

C
0
: Initial confusion set

C
1
 = CoarseClassifier(C

0
)

C
2
 = map(C

1
)

C
3
 = FineClassifier(C

2
)

Question

Question
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Features
Simple features

(„sensors“)

Complex features ● conjunctive (n-grams)
● relational features

syntactic
● part-of-speech tags
● (head) chunks

semantic
● named entities
● semantically related words

basic
● words
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Linear Support Vector Machines

margin

hyperplane
biasweights
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Linear Support Vector Machines

training
find w, b so the that hyperplane separates
the data and the margin is maximal

classification

1

2

requires dot product
(for pairs for feature vectors)

for

hyperplane



16

Nonlinear Support Vector Machines
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Nonlinear Support Vector Machines
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Nonlinear Support Vector Machines
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Nonlinear Support Vector Machines
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The Kernel Trick

How to compute this efficiently? 
                      - Remember: we need dot products

kernel
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Features

„Which univerity did the president graduate from?“

syntax tree

„Which president is a graduate of the Harvard University?“ 

tree kernel
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Tree Fragments

Production rule
terminal symbol

Tree fragment
● at least one production rule /

terminal symbol
● no incomplete production rule
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Tree Fragments
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tree fragment i

syntax tree T

Tree Fragments: Weight

s(i) = size of i (here: 2)

d(i) = depth of i in T
          (here: 4)
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Tree Kernel

for all tree fragments v
i

dynamic programming algorithm in O(∣N1∣⋅∣N2∣)
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Summary and evaluation

● Approach 1: Hiearchical Classifiers

● Coarse-grained categories: 91.00 % accuracy

● Fine-grained categories: 84.20 % accuracy

● Approach 2: Support Vector Machines with tree kernels

● Coarse-grained categories: 90.00 % accuracy

● Fine-grained categories: Slight improvements compared to 
word/n-gram kernel
(“The experiment results are omitted to save space”)

training set: 5500 questions, test set: 500 questions
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