

IT Systems Engineering | Universität Potsdam

Sentence Annotation: Semantic Role Labeling

> Question Anwering Sebastian Oergel

#### Base

2





#### Daniel Gildea

Daniel Jurafsky

Associate Professor Computer Science University of Rochester

http://www.stanford.edu/~jurafsky/



Professor of Linguistics Professor by Courtesy of Computer Science Stanford University

### **Automatic Labeling of Semantic Roles**



- Frame Semantics
- Goals
- Approach
- Discussion



#### 4

### What are Semantic Roles?

#### Frame Semantics



- Linguistic theory
  - Knowledge of context  $\rightarrow$  word can be (partially) understood

Jim flew his plane to Texas.

Alice destroys the item with a plane.

#### **Frame Semantics**



6

- Linguistic theory
  - Knowledge of context  $\rightarrow$  word can be (partially) understood

Jim flew his plane to Texas.



Alice destroys the item with a plane.

#### **Frame Semantics**



7

- Linguistic theory
  - Knowledge of context  $\rightarrow$  word can be (partially) understood









- Semantic Frame: collection of facts that specify "characteristic features, attributes, and functions of a denotatum, and its characteristic interactions with things necessarily or typically associated with it" (Keith Alan, Natural Language Semantics)
- Target words invoke a semantic frame

Alice destroys the item with a plane.



- Semantic Frame: collection of facts that specify "characteristic features, attributes, and functions of a denotatum, and its characteristic interactions with things necessarily or typically associated with it" (Keith Alan, Natural Language Semantics)
- Target words invoke a semantic frame

Alice destroys the item with a plane.



- Semantic Frame: collection of facts that specify "characteristic features, attributes, and functions of a denotatum, and its characteristic interactions with things necessarily or typically associated with it" (Keith Alan, Natural Language Semantics)
- Target words invoke a semantic frame

Operate\_vehicle

Alice destroys the item with a plane.



- Semantic Frame: collection of facts that specify "characteristic features, attributes, and functions of a denotatum, and its characteristic interactions with things necessarily or typically associated with it" (Keith Alan, Natural Language Semantics)
- Target words invoke a semantic frame

Operate\_vehicle

Alice destroys the item with a plane.



- Semantic Frame: collection of facts that specify "characteristic features, attributes, and functions of a denotatum, and its characteristic interactions with things necessarily or typically associated with it" (Keith Alan, Natural Language Semantics)
- Target words invoke a semantic frame



#### Frame Semantics – Semantic Roles



- Semantic Role: defined part of a Semantic frame
- Can be assigned to constituents of a sentence

Jim flew his plane to Texas. Operate\_vehicle Alice destroys the item with a plane. Destroying

#### Frame Semantics – Semantic Roles



14

- Semantic Role: defined part of a Semantic frame
- Can be assigned to constituents of a sentence



#### Frame Semantics – Semantic Roles



- Semantic Role: defined part of a Semantic frame
- Can be assigned to constituents of a sentence



#### Frame Semantics - Range



• Wide range possible

#### Abstract

- Agent
- Patient
- Experiencer
- Source
- ...



**Domain Specific** 

- Buyer
- Depart\_Time
- Dest\_Airport
- Winning\_Team
- ...

#### Frame Semantics – FrameNet



- Dictionary based on semantic frames
  - Uses British National Corpus
- Contains large set of:
  - Example sentences
  - Target words ("Lexical Units")
  - Semantic frames (grouped in domains)
  - Associated roles (frame elements)
- Manually annotated

| COUNT                            | FRAMENET | FRAMENET DATA                       | BIBLIOGRAPHY         | FORUMS                                                                                                                                             | HOME |  |  |
|----------------------------------|----------|-------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
|                                  |          | Frame Index                         |                      |                                                                                                                                                    |      |  |  |
| Search<br>CENTLY CHANGED<br>AMES |          | Lexical Unit Index                  |                      | to FrameNet                                                                                                                                        |      |  |  |
|                                  |          | Full Text Annotation                | to Frame             |                                                                                                                                                    |      |  |  |
|                                  |          | FrameSQL                            | al wobsite for the F | al website for the FrameNet Project. The old website, built using a CN<br>found on the new site, please let us know, and we'll try to add it.<br>r |      |  |  |
|                                  |          | FrameGrapher                        | found on the new     |                                                                                                                                                    |      |  |  |
|                                  |          | Request FrameNet                    | aker                 |                                                                                                                                                    |      |  |  |
| periment<br>ipital_stock         |          | Automatic semantic<br>role labeling | <b>T</b> 5           |                                                                                                                                                    |      |  |  |

#### https://framenet.icsi.berkeley.edu

#### Frame Semantics – FrameNet



18

#### Example





## Goals



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames
  - Q: Who invented the first computer mouse?



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames
  - Q: Who invented the first computer mouse?

[...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...]



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames
  - Q: Who invented the first computer mouse?

[...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...]



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames



[...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...]



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames



[...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...]



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames

Q: Who invented the first computer mouse? Cognizer New\_idea New\_idea Cognizer [...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...]



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames

Q: Who invented the first computer mouse? Cognizer New\_idea New\_idea Cognizer [...] The trackball was invented by Tom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...] QA - Sentence Annotation: Semantic Role Labeling | Sebastian Oergel | 21.11.2011



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames

Q: Who invented the first computer mouse? Cognizer New\_idea New\_idea Cognizer [...] The trackball was invented by Iom Cranston, Fred Longstaff and Kenyon Taylor working on the Royal Canadian Navy's DATAR project in 1952. Independently, Douglas Engelbart at the Stanford Research Institute invented the first computer mouse in 1963 [...] QA - Sentence Annotation: Semantic Role Labeling | Sebastian Oergel | 21.11.2011



- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames





- 30
- How can semantic roles help in QA?
- → analyze question → analyze possible answer sentences → find equalities between frames





Kenyon Taylor working on the Roy Cognizer n Navy's DATAR project

in 1952. Independently, Douglas Engelbart at the Stanford Research

Institute invented the first computer mouse in 1963 [...] New idea



# Approach

#### Approach – Basic Idea



- Statistical classifier
  - Assigns roles based on probabilities
  - Probabilites calculated / derived from features
- FrameNet data
  - 10% for testing, 10% for tuning, 80% for training
- Given data:
  - Sentence / clause
  - Target word
  - Frame
  - (role boundaries)

#### Approach – Features



33

- "Collins" Parser for generating a parse tree
- Used for the derivation of some features



#### Approach – Features



34

- "Collins" Parser for generating a parse tree
- Used for the derivation of some features





#### Approach – Features – Phrase type







#### Approach – Features – Phrase type





"Farrell" → NP

- "him"  $\rightarrow$  NP
- "from behind"  $\rightarrow$  PP
## Approach – Features – Governing Category



QA – Sentence Annotation: Semantic Role Labeling | Sebastian Oergel | 21.11.2011

HP

Hasso Plattner

Institut





38





### Approach – Features – Parse Tree Path







#### Approach – Features – Parse Tree Path



"Farrell" →
 VBD↑VP↑S↓NP

. . .

. . .

#### Approach – Features – Position

41





#### Approach – Features – Position





- "Farrell" → before
- "him"  $\rightarrow$  behind
- "from behind" →
   behind

#### Approach – Features – Voice





#### Approach – Features – Voice







- "Farrell" → active
- "him" → active
- "from behind" → active



#### Approach – Features – Head Word





### Approach - Features - Head Word





- "Farrell" → "Farrell"
- "him" → "him"
- "from behind" →
   "behind"



- Probabilities calculated based on features
- Probability:
- Calculation:



- 48
- Probabilities calculated based on features
- Probability:  $P(r \mid h, pt, gov, position, voice, t)$
- Calculation:



- 49
- Probabilities calculated based on features
- Probability:  $P(r \mid h, pt, gov, position, voice, t)$
- Calculation:

 $P(r \mid h, pt, gov, position, voice, t) = \frac{\#(r, h, pt, gov, position, voice, t)}{\#(h, pt, gov, position, voice, t)}$ 



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times
    - How often does this combination have the role "Theme"?
      - 387 times

52



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times
    - How often does this combination have the role "Theme"?
      - 387 times
    - How often does this combination have the role "Vehicle"?
      - 8 times



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times
    - How often does this combination have the role "Theme"?
      - 387 times
    - How often does this combination have the role "Vehicle"?
      - 8 times

 $P("Theme" | "Farrell", NP, S, before, active, "approached") \approx 89\%$ 



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times
    - How often does this combination have the role "Theme"?
      - 387 times
    - How often does this combination have the role "Vehicle"?
      - 8 times

 $P("Theme" | "Farrell", NP, S, before, active, "approached") \approx 89\%$  $P("Vehicle" | "Farrell", NP, S, before, active, "approached") \approx 2\%$ 



- Example:
  - How often occurs ("Farrell", NP, S, before, active,"approached")?
    - 436 times
    - How often does this combination have the role "Theme"?
      - 387 times
    - How often does this combination have the role "Vehicle"?
      - 8 times

 $P("Theme" | "Farrell", NP, S, before, active, "approached") \approx 89\%$  $P("Vehicle" | "Farrell", NP, S, before, active, "approached") \approx 2\%$ 



- 57
- Problem: features not always available (0 occurences)
  - Esp. head word: very specific
- $P(r \mid h, pt, gov, position, voice, t)$  might be too strict



- 58
- Problem: features not always available (0 occurences)
  - Esp. head word: very specific
- $P(r \mid h, pt, gov, position, voice, t)$  might be too strict
- Solution:
  - Subset
    - of probabilities
  - Different
    - combinations



- Problem: features not always available (0 occurences)
  - Esp. head word: very specific
- $P(r \mid h, pt, gov, position, voice, t)$  might be too strict
- Solution:

| • | Subset           | Distribution                                                    | Coverage       | Accuracy      | Performance   |
|---|------------------|-----------------------------------------------------------------|----------------|---------------|---------------|
|   | of probabilities | $ \begin{array}{l} P(r \mid t) \\ P(r \mid nt, t) \end{array} $ | 100.0%<br>92.5 | 40.9%<br>60.1 | 40.9%<br>55.6 |
| • | Different        | $P(r \mid pt, gov, t)$                                          | 92.0           | 66.6          | 61.3          |
|   |                  | $P(r \mid pt, position, voice)$                                 | 98.8           | 57.1          | 56.4          |
|   | combinations     | $P(r \mid pt, position, voice, t)$                              | 90.8           | 70.1          | 63.7          |
|   |                  | $P(r \mid h)$                                                   | 80.3           | 73.6          | 59.1          |
|   |                  | $P(r \mid h, t)$                                                | 56.0           | 86.6          | 48.5          |
|   |                  | $P(r \mid h, pt, t)$                                            | 50.1           | 87.4          | 43.8          |
|   |                  |                                                                 |                |               |               |



60

- Idea: combine distributions
  - Linear interpolation

$$P(r \mid constituent) = \lambda_1 P(r \mid t) + \lambda_2 P(r \mid pt, t) + \lambda_3 P(r \mid pt, gov, t) + \lambda_4 P(r \mid pt, position, voice) + \lambda_5 P(r \mid pt, position, voice, t) + \lambda_6 P(r \mid h) + \lambda_7 P(r \mid h, t) + \lambda_8 P(r \mid h, pt, t)$$



61

- Idea: combine distributions
  - Linear interpolation

$$P(r \mid constituent) = \lambda_1 P(r \mid t) + \lambda_2 P(r \mid pt, t) + \lambda_3 P(r \mid pt, gov, t) + \lambda_4 P(r \mid pt, position, voice) + \lambda_5 P(r \mid pt, position, voice, t) + \lambda_6 P(r \mid h) + \lambda_7 P(r \mid h, t) + \lambda_8 P(r \mid h, pt, t)$$

• 79.5% performance



- 62
- Idea: combine distributions
  - "Backoff"





- 63
- Idea: combine distributions
  - "Backoff"



• 80.4% performance



- Additional step before the automatic labeling
- Similar techniques as described before
  - Here: no differentiation among multiple roles → is parse constituent a role or not?
  - Threshold for probability required





- Additional step before the automatic labeling
- Similar techniques as described before
  - Here: no differentiation among multiple roles → is parse constituent a role or not?
  - Threshold for probability required





- Additional step before the automatic labeling
- Similar techniques as described before
  - Here: no differentiation among multiple roles → is parse constituent a role or not?
  - Threshold for probability required





- Additional step before the automatic labeling
- Similar techniques as described before
  - Here: no differentiation among multiple roles → is parse constituent a role or not?
  - Threshold for probability required





- Additional step before the automatic labeling
- Similar techniques as described before
  - Here: no differentiation among multiple roles → is parse constituent a role or not?
  - Threshold for probability required





### Boundaries – Precision / Recall





- With given boundaries  $\rightarrow$  relatively high performance
  - Interpolation of different probability distributions combinations makes sense
- Without boundaries  $\rightarrow$  much lower performance
- Still some tasks open
  - Mostly disambiguation



- With given boundaries  $\rightarrow$  relatively high performance
  - Interpolation of different probability distributions combinations makes sense
- Without boundaries  $\rightarrow$  much lower performance
- Still some tasks open
  - Mostly disambiguation
- Integration into QA system
  - Input: Question + Possible answer sentences (→ disambiguation for frame required)
  - Connection to FrameNet





- Daniel Gildea, Danied Jurafsky, Automatic Labeling of Semantic Roles, Journal of Computational Linguistics, 2002
- Michael Collins, Head-Driven Statistical Models for Natural Language Parsing, Ph.D. dissertation, University of Pennsylvania, Philadelphia, 1999