language models for document retrieval

Question Answering

Searching Documents: Assumptions

- Set of documents
- Retrieve relevant documents
 - Search engine expects a query (e.g. keywords)
- Documents, Query = Text
- Order documents by relevance

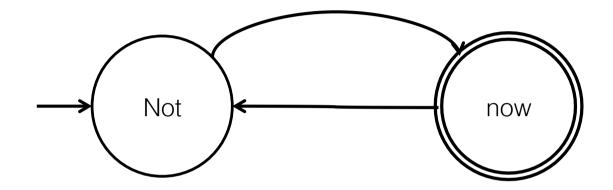
Searching Documents: Assumptions

- User has a certain document in mind
- Document is good match if
 - Query terms appear frequently in the document
 - document (language) model is likely to generate the query
- Documents relevance is dependent on likeliness

Using LM for DR

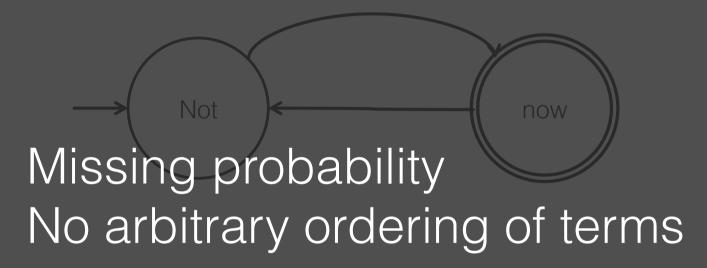
- 1. Infer a language model for each document
- 2. Compute probability of generating the query
 - Query Likelihood Model specific instance of LM approach

Generative Models



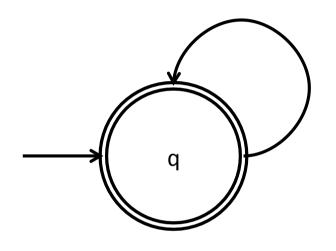
- Not now
- Not now Not now
- Not now Not now Not now
- ...

Generative Models



- Not now
- Not now Not now
- Not now Not now Not now
- •

Language Model



term	P(term, q)
the	0.2
not	0.1
frog	0.01
dog	0.03
now	0.02
STOP	0.2

 $P(not\ now\ dog\ not\ now) =$

Language Model

- puts a probability measure over terms
- Different types:
 - Unigram: Estimate each term independently

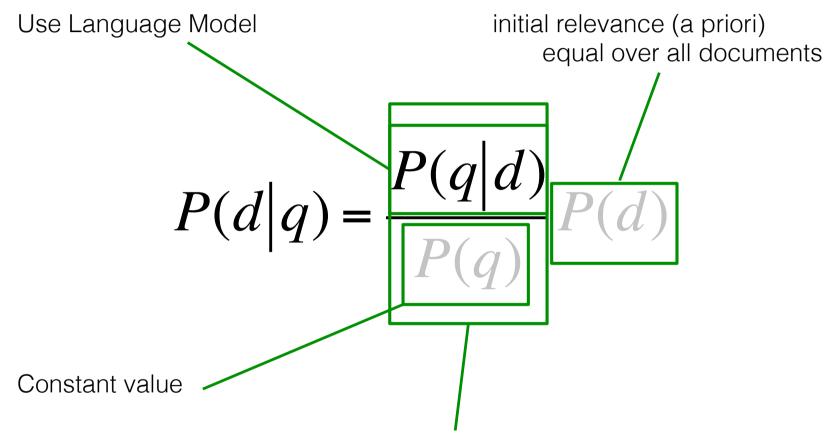
•
$$P(t_1t_2t_3) = P(t_1) P(t_2) P(t_3)$$

$$- P(t_1t_2t_3) = P(t_1) P(t_2 | t_1) P(t_3 | t_2)$$
 (bigram)

$$- P(t_1t_2t_3) = P(t_1) P(t_2 \mid t_1) P(t_3 \mid t_1t_2)$$

$$P(d|q) = \frac{P(q|d)}{P(q)}P(d)$$

Relevance of a document d to a query q



Impact of query on initial document relevance

$$P(d|q) \sim P(q|d)$$

- Computing P(q | d) using LM
- Unigram assumption:

$$P(q|M_d) = \prod_{t \in q} P(t|M_d)^{tf_{t,d}}$$

Formula so far

$$P(d|q) \sim P(q|d) = \prod_{t \in q} \frac{tf_{t,d}}{L_d}$$

Zero Probabilities

Query larry ellison

Document 1 larry ellison is the co-founder of oracle

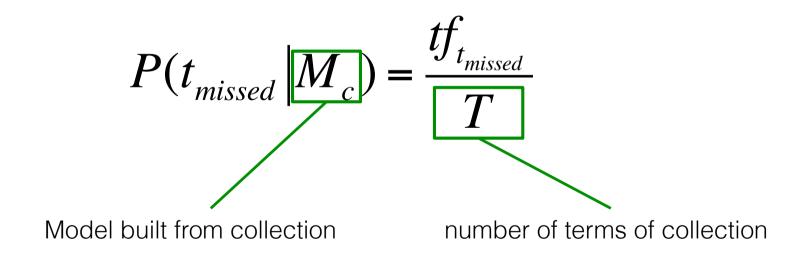
Document 2 ellison was born in new york city

 $P(Query | Document 1) = 1/7 \times 1/7 = 1/49$

 $P(Query | Document 2) = 0/7 \times 1/7 = 0$

Zero Probabilities

- Case: $P(t_{missed} | M_d) = 0$
- Basic Idea: allow non-occuring terms



Linear Interpolation Smoothing

$$P(d|q) \sim \prod_{1 \le k \le |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- Assign λ weight
- M_c Model built from Collection of all documents
- Chose λ according to query length
 - Large value for short queries (unlikely that terms are missing)

Bayesian Smoothing

$$P(t|d) = \frac{tf_{t,d} + \alpha P(t|M_c)}{L_d + \alpha}$$

t = (missing) term $L_d = Document size$ Alpha = Weight

Extensions

- LMs do not address issues of alternate expression (synonyms)
- Translation Models:
 - Generate missing query terms by translation
 - January 2 2012 by Philipp Langer

Resources

- http://nlp.stanford.edu/IR-book/
 - Chapter 11, 12
- http://www.uni-stuttgart.de/gi/research/schriftenreihe/ quo_vadis/pdf/koch.pdf

