Answer Extraction based on maximum entropy model

Minh Tuan Nguyen

✤ Given

- * A question
- A set of answer candidates

✤ Given

✤ A question

A set of answer candidates

Task

Select the correct answer from the set of answer candidates

Question: In what country was Albert Einstein born?

- Question: In what country was Albert Einstein born?
- Answer candidates :
 - A: Albert Einstein was born on 14 March 1879.
 - B: Albert Einstein was born in Germany.C: Albert Einstein was born in a Jewish family.

- Question: In what country was Albert Einstein born?
- Answer candidates :

A: Albert Einstein was born on 14 March 1879.

B: Albert Einstein was born in Germany.C: Albert Einstein was born in a Jewish family.

- → Pattern 1: X born in Y
- → Pattern 2: Location = Country

Question: In what country was Albert Einstein born

A: Albert Einstein was born on 14 March 1879.

- B: Albert Einstein was born in Germany.
- C: Albert Einstein was born in a Jewish family.

	X born in Y	Location = Country
Question		
	X born in Y	Location = Country
Answer A		
Answer B		
Answer C		

Question: In what country was Albert Einstein born

A: Albert Einstein was born on 14 March 1879.

- B: Albert Einstein was born in Germany.
- C: Albert Einstein was born in a Jewish family.

	X born in Y	Location = Country
Question	YES	YES
	X born in Y	Location = Country
Answer A	NO	NO
Answer B	YES	YES
Answer C	YES	NO

Question: In what country was Albert Einstein born

A: Albert Einstein was born on 14 March 1879.

- B: Albert Einstein was born in Germany.
- C: Albert Einstein was born in a Jewish family.

	X born in Y	Location = Country
Question	YES	YES
	X born in Y	Location = Country
Answer A	NO	NO
Answer B	YES	YES
Answer C	YES	NO

	Pattern 1	Pattern 2	 Pattern n
Answer 1			
Answer 2			
Answer 3			
Answer N			

How to model the pattern?

Feature function

Feature is a binary-valued function:

$$f_j: X \times Y \rightarrow \{0, 1\}$$

X: space of contextsY: the set of classifier

Feature function

Feature is a binary-valued function:

 $f_j: X \times Y \rightarrow \{0, 1\}$

X: space of contexts*Y*: the set of classifier

- ✤ Like a regular expression
 - ✤ 1 : match the specific pattern
 - ✤ 0 : don't match

Feature function example

Question: Which name is female?

A: Thomas	B: Kevin
C: Franz	D: Bella

→Pattern: Name ends with vowel

Feature function example

Question: Which name is female?

A: Thomas	B: Kevin
C: Franz	D: Bella

→Pattern: Name ends with vowel

 $f_{male}(x,y) = \begin{cases} 1 & \text{if } y \text{ is } "male", \text{ last letter of } x \text{ is a vowel} \\ 0 & \text{otherwise} \end{cases}$ $f_{female}(x,y) = \begin{cases} 1 & \text{if } y \text{ is } "female", \text{ last letter of } x \text{ is a vowel} \\ 0 & \text{otherwise} \end{cases}$

Feature function example

Question: Which name is female?

A: Thomas	B: Kevin
C: Franz	D: Bella

→Pattern: Name ends with vowel

 $f_{male}(x,y) = \begin{cases} 1 & \text{if } y \text{ is } "male", \text{ last letter of } x \text{ is a vowel} \\ 0 & \text{otherwise} \end{cases}$ $f_{female}(x,y) = \begin{cases} 1 & \text{if } y \text{ is } "female", \text{ last letter of } x \text{ is a vowel} \\ 0 & \text{otherwise} \end{cases}$

 $f_{male}(Bella, male) = 1$ $f_{female}(Bella, female) = 1$

Expectation value of feature function

Observation from training data set

0.0.0 D female.txt	0.0.0 @male.txt
Abogoel	Aamir
Abagat 1	Aaron
Abbe	Abbey
Abbey	Abbie
Abbi	Abbot
Abbie	Abbott
Abby	Abby
Abigoel	Abdel
Abigail	Abdul
Abigale	Abdulkorim
Abro	Abdullah
Acocio	Abe
Ada	Abel
Adah	Abelard
Adaline	Abrier
Adara	Abraham
Addie	Abram
Addis	Ace
Adel	Adair
Adela	Adom
Adelaide	Adoms
Adele	Addie
Adelice	Adger
Adelina	Aditya
Adaliat	Adlasi

Expectation value of feature function

Observation from training data set

Training data size = 50. f_{female} feature found 10 names and f_{male} 5 names

$$E_p f_{male} = \frac{\sum_{i=1}^{N} f_{male}(x, y)}{N} = \frac{5}{50} = 0.1$$
$$E_p f_{female} = \frac{\sum_{i=1}^{N} f_{female}(x, y)}{N} = \frac{10}{50} = 0.2$$

Extraction Features

Surface Features

- Expected Answer Type Matching Features
- * Surface Pattern Matching
- Dependency Relation Features
- Semantic Structure Matching Features

Until now ...

- We have defined N feature functions: f_1, f_2, \dots, f_n
- From the training data set we got the constraints:

$$\{E_p f_j = d_j, j = 1, ..., n\}$$

→ How to combine all features to make an unified decision?

Naïve-Bayes

$$P(x \mid features) = \frac{P(x) * P(f_1 \mid x) * P(f_2 \mid x) * ... P(f_n \mid x)}{P(f_2 \mid x)}$$

✤ Naïve-Bayes

$$P(x \mid features) = \frac{P(x) * P(f_1 \mid x) * P(f_2 \mid x) * ...P(f_n \mid x)}{P(features)}$$

- Problem
 - * Make "naive" assumption that all features f_i are **independent**

Maximum Entropy Model

Maximum Entropy Model

Maximize entropy = No assumption about feature dependency

Maximum Entropy Model

Maximize entropy = No assumption about feature dependency

$$p^{*}(y \mid x) = \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}{\sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}$$

y: what we predict

x: context

 λ_i : weight of a feature function f_i

Parameter Estimation (GIS)

Initialize $\lambda_i = 0$

Do until convergerve

For each *i*

calculate
$$E_{\lambda_j} f_j$$

update
$$\lambda_j^{(n+1)} = \lambda_j^{(n)} + \frac{1}{C} (\log \frac{E f_j}{E_{\lambda_j} f_j})$$

Parameter Estimation (GIS)

Initialize $\lambda_j = 0$

Do until convergerve

For each *i*

calculate
$$E_{\lambda_j} f_j = \sum_{x \in \varepsilon} p^{(\lambda_j)}(x) f_j(x)$$

where
$$p^{(\lambda_j)}(x) = \frac{e^{\sum\limits_{j=1}^{k+1} \lambda_j^{(n)} f_j(x)}}{Z}$$

update
$$\lambda_j^{(n+1)} = \lambda_j^{(n)} + \frac{1}{C} (\log \frac{E f_j}{E_{\lambda_j} f_j})$$

Overview

- 1. Define a set of feature functions f_i
- 2. Observe training data to find expectation value d_i of f_i
- 3. Estimation parameters λ_i of each f_i based on d_i
- 4. Compute probability of each output y

$$p^{*}(y \mid x) = \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}{\sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}$$

Question: Which name is female?

A: Thomas	B:	Kevin
C: Franz	D:	Bella

Question: Which name is female?

A: Thomas	B: Kevin
C: Franz	D: Bella

 $\rightarrow p(female \mid x)$

1. Define a set of feature functions f_i

```
def names_features(name):
    features = {}
    features['startswith(vowel)'] = name[0].lower() in 'aeiouy'
    features['endswith(vowel)'] = name[-1].lower() in 'aeiouy'
    for letter in 'abcdefghijklmnopqrstuvwxyz':
        features['count(%s)' % letter] = name.lower().count(letter)
        features['has(%s)' % letter] = letter in name.lower()
        features['startswith(%s)' % letter] = (letter==name[0].lower())
        features['endswith(%s)' % letter] = (letter==name[-1].lower())
        return features
```

2. Observe training data to find expectation value d_i of f_i

	O O O O female.txt	0.0.0 @ male.bd
<pre>def names_features(name): features = {} features['startswith(vowel)'] = name features['endswith(vowel)'] = name for letter in 'abcdefghijklmnopqrs features['count(%s)' % letter] features['has(%s)' % letter] = features['startswith(%s)' % letter] features['endswith(%s)' % letter]</pre>	Abagail Abbe Abbe Abbe Abbe Abbi Abbi Abbi Abbi	Admir Adron Abbey Abbie Abbot Abbot Abbot Abdul Addun Addul Addul Addul Addul Addul
<pre>features['has(%s)' % letter] = features['startswith(%s)' % let features['endswith(%s)' % lette return features</pre>	Adelo Adoro Adoro	Adom Adoms Addie Adger Aditya Aditya Aditya Aditya Adolf Adolf Adolf Adolph Adolphe Adolphe Adolpho Adolphus Adrian Adrian Adrian Adrien 36 Agamemon Aguinaldo

P(Maleix)	P(Femaleix)
0.871909	0.128091
0.551180	0.448820
0.527687	0.472313
0.165552	0.834448
	0.871909 0.551180 0.527687 0.165552

-1.227 endswith(d)==True and label is 'female' 0.986 endswith(o)==True and label is 'male' 0.891 endswith(m)==True and label is 'male' -0.885 endswith(s)==True and label is 'female' -0.842 count(s)==2 and label is 'male' -0.810 has(w)==True and label is 'female' -0.785 startswith(z)==True and label is 'female' -0.785 endswith(h)==True and label is 'male' 0.676 endswith(g)==True and label is 'male' -0.663 startswith(w)==True and label is 'female'

3. Estimation parameters of each f_i based on d_i

P(Malelx)	P(Femalelx)
0.871909	0.128091
0.551180	0.448820
0.527687	0.472313
0.165552	0.834448
	P(Male x) 0.871909 0.551180 0.527687 0.165552

-1.227 endswith(d)==True and label is 'female'
0.986 endswith(o)==True and label is 'male'
0.891 endswith(m)==True and label is 'male'
-0.885 endswith(s)==True and label is 'female'
-0.842 count(s)==2 and label is 'male'
-0.810 has(w)==True and label is 'female'
-0.785 startswith(z)==True and label is 'female'
-0.785 endswith(h)==True and label is 'male'
-0.663 startswith(w)==True and label is 'female'

4. Compute probability of each output y

Unseen Names	P(Malelx)	P(Female)	x)	
Thomas Kevin	0.871909 0.551180	0.128091	- n(formale)	A
Franz	0.527687	0.472313	poemaie	X
Della	0.105552	0.03440		

-1.227 endswith(d)==True and label is 'female'
0.986 endswith(o)==True and label is 'male'
0.891 endswith(m)==True and label is 'male'
-0.885 endswith(s)==True and label is 'female'
-0.842 count(s)==2 and label is 'male'
-0.810 has(w)==True and label is 'female'
-0.785 startswith(z)==True and label is 'female'
-0.785 endswith(h)==True and label is 'male'
-0.663 startswith(w)==True and label is 'male'

Overview

- 1. Define a set of feature functions f_i
- 2. Observe training data to find expectation value d_i of f_i
- 3. Estimation parameters λ_i of each f_i based on d_i
- 4. Compute probability of each output y

$$p^{*}(y \mid x) = \frac{\exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}{\sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)}$$

Answer extraction models proposed by Dan Shen, 2008

Answer Candidate Ranking

Answer Candidate Classification

Answer Candidate Ranking

$$p^*(ac \mid q, \{ac_1, \dots, ac_N\}) = \frac{\exp\left(\sum_{m=1}^M \lambda_m f_m(q, ac)\right)}{\sum_{ac' \in \{ac_1, \dots, ac_N\}} \exp\left(\sum_{m=1}^M \lambda_m f_m(q, ac')\right)}$$
q: question

q: question ac: answer candidate f_i : feature function

 $ac^* = \arg_{ac \in \{ac_1, ac_2, \dots, ac_n\}} p(ac | \{ac_1, ac_2, \dots, ac_n\})$

q : question *ac* : answer candidate *f_i* : feature function

 $ac^* = \underset{ac \in \{ac_1, ac_2, \dots, ac_n\}}{\operatorname{arg}} p(true \mid q, ac)$

Comparison

	# Events	# Classes	# Parameters
Classification	$Q \times N$	2	2M
Ranking	Q	N	M

$$p^{*}(c \mid q, ac) = \frac{\exp\left(\sum_{m=1}^{M} \lambda_{m,c} f_{m}(q, ac)\right)}{\sum_{c' \in \{true, false\}} \exp\left(\sum_{m=1}^{M} \lambda_{m,c'} f_{m}(q, ac)\right)}$$

$$p^*(ac \mid q, \{ac_1, \dots, ac_N\}) = \frac{\exp\left(\sum_{m=1}^M \lambda_{m,c} f_m(q, ac)\right)}{\sum_{ac' \in \{ac_1, \dots, ac_N\}} \exp\left(\sum_{m=1}^M \lambda_m f_m(q, ac')\right)}$$

Reference

Dan Shen, Exploring Rich Evidence for Maximum Entropy-based Question Answering, PhD Thesis, 2008

A brief Maxent tutorial, Adam Berger, 2004

Maximum entropy models for natural language ambiguity resolution, Adwait ratnarpakhi, 1998

Maxent Models Conditional Estimation and Optimization, Dan Klein and Chris Manning, 2003

A Survey of Answer Extraction Techniques in Factoid Question Answering, Mengqiu Wang, 2006

Maximum entropy model, Fei Xia, 2006

A Simple Introduction to Maximum Entropy Models for Natural Language Processing, Adwait Ratnaparkhi, 1997