

IT Systems Engineering | Universität Potsdam

Word Relationships in Sentence Retrieval

Philipp Langer

January 2nd, 2012

Where are we at?

term mismatch problem

Given

- a query
- documents relevant to the query

Find

sentences relevant to the query

Problem

Query: "The Mount of Olives is just east of which city?"
Sentence: "The Mount of Olives is located near the town of
Jerusalem."

solution: a class-based LM

using term clustering

idea:

- relax the "exact match criterion" using word clusters
- word clusters contain related words
- now, the LM is defined on clusters of words, not on single words

example cluster:

• { city, town }

definition: the word-based LM

word-based language model (revision)

definition: the word-based LM

word-based language model (revision)

number of occurrences of q_i in S

$$P(q_i|S) = \frac{f_S(q_i)}{\sum_w f_S(w)}$$

normilization by the number of words in S

defintion: the class-based LM

the class-based language model (1)

$$\prod_{i=1}^{M} P(C_{q_i}|S)$$

$$P(C_{q_i}|S) = \frac{f_S(C_{q_i})}{\sum_{w} f_S(w)}$$
number of occurrences in S of all words that are in the same cluster as q_i

defintion: the class-based LM

the class-based language model (2)

$$P_{class}(Q|S) = \prod_{i=1}^{M} P(q_i|C_{q_i}, S)P(C_{q_i}|S)$$
emission probability

emission probability

Cluster C_{q_i} , cluster words $t_k \in C_{q_i}$, sentence words s_l emission probabilities:

 s_1 : $(t_1: 0.1), (t_2: 0.3), ..., (q_i: 0.4), ...$

 s_2 : $(t_1: 0.1), (t_2: 0.2), ..., (q_i: 0.5), ...$

 s_3 : $(t_1: 0.1), (t_2: 0.4), ..., (q_i: 0.2), ...$

building clusters

Brown word clustering algorithm

 input: words from a vocabulary, designated number of clusters

idea:

- put each word into one cluster
- greedily merge clusters with minimal loss of mutual information until predefined number of clusters is reached
- needs a common notion of mutual information of clusters

average mutual information

$$AMI(C_{W},C_{W'})$$

$$= \sum_{C_{W},C_{W'}} f(C_{W},C_{W'}) log \underbrace{f(C_{W},C_{W'})}_{f(C_{W})} f(C_{W'})$$
number of times that words in the cluster C_{w} occur in the same context as $C_{w'}$.

$$number of times that words from the cluster C_{w} occur in the corpus$$

word co-occurrence

document-wise co-occurrence

sentence-wise co-occurrence

word co-occurrence

document-wise co-occurrence

sentence-wise co-occurrence

co-occurrence in a window of text (bigram)

- "There are no lectures on Sunday."
- "QA takes place on Monday."

co-occurrence in a syntactic relationship

other approaches

translate sentence terms to query terms

lexicon (thesaurus)

almost no effect on the results

WordNet

better than thesauri, but still little effect

English-Arabic / Arabic-English lexicons

best of these approaches

references

clustering approach and the definition of the classbased and word-based language models: Saeedeh Momtazi, Classification in Question Answering Systems, PhD Thesis, 2010 (Chapter 5 + 8.3.1)

"other approaches":

Vanessa Murdock, W. Bruce Croft, A Translation Model for Sentence Retrieval, EMNLP Conference, 2005