

## SOCIAL SEARCH - COLLABORATIVE FILTERING

## Outline

$>$ Intro
> Basics of probability and information theory
> Retrieval models
> Retrieval evaluation
> Link analysis
> From queries to top-k results
$>$ Social search
> Overview \& applications
> Clustering \& recommendation
> Predict the user's opinion on a given item based on the user's previous likings and the opinions of other like-minded users
$>$ Recommend to a given user the items he/she might like most

| $R$ | $I_{1}$ | $\ldots$ | $I_{j}$ | $\ldots$ | $I_{n}$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $u_{1}$ |  |  |  |  |  |
| $u_{2}$ |  |  |  |  |  |
| $\ldots$ |  |  |  |  |  |
| $u_{i}$ |  |  | $?$ |  |  |
| $\ldots$ |  |  |  |  |  |
| $u_{m}$ |  |  |  |  |  |

Predict $R_{u_{i}}\left(I_{j}\right)$ (i.e., the rating of active user $u_{i}$ for item $I_{j}$ ) Recommend top-k items, the user might be most interested in

## Collaborative filtering techniques (overview)

> Neighborhood-based models
> Derive user profile from user's neighborhood (i.e., most similar users)
$\rightarrow$ user-user models
$>$ Derive item profile from item's neighborhood (i.e., most similar items)
$\rightarrow$ item-item models
> Similar models used in: Pandora.com, Music Genome Project, ...

## Collaborative filtering techniques (overview)

> Latent factor models
> Derive factors that characterize both users and items at the same time


Source: Koren et al., IEEE 2009

## Neighborhood-based user-user models

$$
R_{u}(\text { item })=\frac{\sum_{u^{\prime} \in N(u)} \operatorname{sim}\left(u, u^{\prime}\right) \cdot R_{u^{\prime}}(\text { item })}{\sum_{u^{\prime} \in N(u)} \operatorname{sim}\left(u, u^{\prime}\right)}
$$

> Possible similarity measures
$>$ Cosine similarity: $\operatorname{sim}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{\mathbf{u}^{T} \mathbf{u}}{\|\mathbf{u}\|\left\|\mathbf{u}^{\prime}\right\|}$
$>$ Pearson correlation (for ratings) $: \operatorname{sim}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{\sum_{i}\left(u_{i}-\bar{u}\right)\left(u_{i}^{\prime}-\overline{u^{\prime}}\right)}{\sqrt{\sum_{i}\left(u_{i}-\bar{u}\right)^{2}} \sqrt{\sum_{i}\left(u_{i}^{\prime}-\overline{u^{\prime}}\right)^{2}}}$
$>$ Scalar agreement: $\operatorname{sim}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\exp \left(-d\left(\mathbf{u}, \mathbf{u}^{\prime}\right)\right)$, where $d\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{1}{\operatorname{dim}(u)} \sum_{i} \frac{\left(u_{i}-u_{i}^{\prime}\right)}{\left|\operatorname{domain} u_{i}\right|}$ is the disagreement between $\mathbf{u}, \mathbf{u}^{\prime}$
$>$ Jaccard similarity: $\operatorname{sim}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{\left|\mathbf{u} \cap \mathbf{u}^{\prime}\right|}{\left|\mathbf{u} \cup \mathbf{u}^{\prime}\right|}$
> Problem: vectors can be large and comparisons can be costly

## Efficient similarity estimation (1)

> Minwise Independent Hashing
$>$ Let $h: S \rightarrow S^{\prime}$ be a hashing of the elements of $S$ onto distinct integers in $S^{\prime}$
$>$ Note that for any $x \in S: P(\min (h(S))=h(x))=\frac{1}{|S|}$
$>$ Can we use this to estimate the resemblance between users?

| $u_{1}$ | $u_{11}$ | $\ldots$ | $\ldots$ | $\ldots$ | $u_{1 n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathcal{H}$ : family of independent hash functions

| $h_{1}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 19 | $\ldots$ | 31 | 11 | 7 |  |
|  | $\cdot$ |  |  |  |  |  |
| $h_{k-1}$ |  | $\cdot$ |  |  |  |  |
| 21 | 33 | $\ldots$ | 42 | 13 | 5 |  |
| $h_{k}$ |  |  |  |  |  |  |
| 12 | 8 | $\ldots$ | 23 | 3 | 10 |  |



## Efficient similarity estimation (2)

> Minwise Independent Hashing
$>$ Let $h: S \rightarrow S^{\prime}$ be a hashing of the elements of $S$ onto distinct integers in $S^{\prime}$
$>$ Note that for any $x \in S: P(\min (h(S))=h(x))=\frac{1}{|S|}$

$>$ It turns out: $P\left(\min \left(h\left(S_{1}\right)\right)=\min \left(h\left(S_{2}\right)\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}$

## Efficient similarity estimation (3)

> Minwise Independent Hashing
$>$ Resemblance between $S_{1}$ and $S_{2}: R=P\left(\min \left(h\left(S_{1}\right)\right)=\min \left(h\left(S_{2}\right)\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}$
$>$ Best estimation of $R$ is: $\hat{R}=\frac{1}{k} \sum_{i=1}^{k} \llbracket \min \left(h_{i}\left(S_{1}\right)\right)=\min \left(h_{i}\left(S_{2}\right)\right) \rrbracket$
$\Rightarrow$ Variance of $\hat{R}$ is: $\operatorname{Var}(\hat{R})=\frac{1}{k} R(1-R)$
$\rightarrow$ A less exact estimation of $R$ can be corrected by increasing $k$

B-bit minwise hashing algorithm (generalization of minwise independent hashing)
Generate k random hash functions $h_{i}, i=1$ to $k$.
For each set $S$ and each permutation $h_{i}$,
store the lowest $b$ bits of the minimum hashed value $\min \_b\left(h_{i}(S)\right)=\left(e_{1 i}, \ldots e_{b i}\right) / /$ lowest b bits
For two sets $S_{1}$ and $S_{2}$ estimate $\hat{E}=\frac{1}{k} \sum_{i=1}^{k} \llbracket \min _{-} b\left(h_{i}\left(S_{1}\right)\right)=\min _{-} b\left(h_{i}\left(S_{2}\right)\right) \rrbracket$

$$
\hat{R}=\frac{\hat{E}-C_{1, b}}{1-C_{2, b}} \longleftarrow<\text { Monotone functions }
$$

Source: Li \& König. WWW2010

## Applications of minwise independent hashing

$>$ Detection of near-duplicate documents (Broder et al., STOC 1998)
$>$ Each doc is viewed as a bag of shingles (i.e., sequences of $n$ words)
> Comparison through shingle-based minwise hashing
> Redundancy in enterprise file systems
$>$ Content matching in online advertising
> Community extraction and classification in social networks
> Recommendation

LSH with Random-projections for cosine similarity estimation
$>$ Given a collection of $d$-dimensional vectors, chose a random hyperplane defined by unit normal vector $\mathbf{w}_{\mathbf{i}}$ and define hash function as $h_{i}(\mathbf{x})=\mathbf{w}_{\mathbf{i}} \cdot \mathbf{x}(\in\{+1,-1\})$

$>$ Resemblance between two vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ can be estimated as

$$
P\left(h_{i}\left(\mathbf{x}_{1}\right)=h_{i}\left(\mathbf{x}_{2}\right)\right)=1-\frac{\theta\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}{\pi} \quad \begin{aligned}
& \text { Inner angle between } \\
& \\
& \mathbf{x}_{1} \text { and } \mathbf{x}_{2} \text { in } \pi
\end{aligned}
$$

$>$ Note that $\cos \left(\theta\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)=\cos \left(\left(1-P\left(h_{i}\left(\mathbf{x}_{1}\right)=h_{i}\left(\mathbf{x}_{2}\right)\right)\right) \cdot \pi\right)$

- LSH with Random-projections for cosine similarity estimation Sources: A. Gionis et al., VLDB 1999 and D. Ravichandran et al., ACL 2005

General algorithm for preprocessing:

1. Given a family for LSH functions, construct $l$ different hash tables
$g_{1}\left(h_{11}, \ldots, h_{1 k}\right), \ldots, g_{l}\left(h_{l 1}, \ldots, h_{l k}\right)$, where each $h_{i j}$ is randomly chosen
2. Run all $n$ input vectors through each of the hash tables

Running time: $O(k \ln )$

General algorithm for finding $m$ approximate nearest neighbor search:

1. Input: query vector $q$
2. For each $i=1, \ldots, l$,

Retrieve the list $E_{i}$ of $m$ ' $\gg m$ nearest elements (ranked by similarity) from $g_{i}(q)$
3. Perform top- $m$ search on all $E_{i}$ to find the $m$ approximate nearest neighbors of $q$

Running time: $O\left(m^{\prime} l+n\right)$

## Neighborhood-based Item-item models

> Rating of an item is estimated using known ratings made by the same user on similar items
> Item-item similarity estimation is crucial
> General model

$$
\hat{R}_{u}(i)=B_{u}(i)+\xrightarrow{\sum_{j \in N(i)} \operatorname{sim}(i, j) \cdot\left(R_{u}(j)-B_{u}(j)\right)} \sum_{j \in N(i)} \operatorname{sim}(i, j) \quad \begin{aligned}
& \text { Baseline estimation } \\
& \text { of user's rating on } j
\end{aligned}
$$

> Possible similarity measure (based on Pearson correlation)

$$
\begin{array}{r}
\operatorname{sim}(i, j)=\frac{\sum_{u \in U(i, j)}\left(R_{u}(i)-B_{u}(i)\right)\left(R_{u}(j)-B_{u}(j)\right)}{\sqrt{\sum_{u \in U(i, j)}\left(R_{u}(i)-B_{u}(i)\right)^{2} \sum_{u \in U(i, j)}\left(R_{u}(j)-B_{u}(j)\right)^{2}}} \cdot \frac{|U(i, j)|}{|U(i, j)|+\lambda} \\
\text { The larger the number }
\end{array}
$$ of users who rated $i$ and $j$, the better the estimation

## User-user- \& item-item-based models(summary)

$>$ Advantages
> Relatively easy to understand and implement
> Results can be explained based on the data,
> New users can be easily added (similarities have to be recomputed after some time)
$>$ Disadvantages
> Introducing new items leads to updated vector representations and similarity parameters
> High dependency on the quantity and quality of ratings (performance degrades considerably on large and sparse datasets)
> Dependent on efficient and effective similarity estimation

For more details see: Y. Koren, TKDD 2012
> General model
$>$ Map user $\mathbf{u} \in \mathbb{R}^{n}$ to $\widehat{\mathbf{u}} \in \mathbb{R}^{f}$
$>$ Map item $\mathbf{i} \in \mathbb{R}^{m}$ to $\hat{\mathbf{1}} \in \mathbb{R}^{f}$
$>f \ll n, m \quad$ item bias
$>$ Estimate: $\hat{R}_{u}(i)=\mu+b_{u} \overleftarrow{\left.+b_{i}+\widehat{\mathbf{u}}^{T} \hat{\mathbf{1}} \text { (inner product between } \widehat{\mathbf{u}} \text { and } \hat{\mathbf{1}} \text { ) }\right) ~}$

> General model
$>$ Map user $\mathbf{u} \in \mathbb{R}^{n}$ to $\widehat{\mathbf{u}} \in \mathbb{R}^{f}$
$\Rightarrow$ Map item $\mathbf{i} \in \mathbb{R}^{m}$ to $\hat{\mathbf{i}} \in \mathbb{R}^{f}$
Plain model
$>f \ll n, m$ $\rightarrow$
$>$ Estimate: $\hat{R}_{u}(i)=\mu+b_{u}+b_{i}+\widehat{\mathbf{u}}^{T} \hat{\mathbf{i}}$ (combination of average rating, user bias, item bias, and inner product between $\widehat{\mathbf{u}}$ and $\hat{\mathbf{1}}$ )
> Main challenge: generate appropriate mappings of $\mathbf{u}$ and $\mathbf{i}$ into $\mathbb{R}^{f}$
> Typical approach: Singular Value Decomposition

> Problem with SVD for collaborative filtering
$>$ User-item matrix is too sparse (i.e., there are many values missing)
> Filling in missing values correctly is difficult
$>$ Other possibility: estimate $\widehat{\mathbf{u}}$ and $\mathbf{i}$ as

$$
\min _{\widehat{\mathbf{u}, \hat{1}, \mathbf{b}}} \sum_{\mathbf{A} \ni(u, i) \neq \mathbf{0}}\left(R_{u}(i)-\mu-b_{u}-b_{i}-\widehat{\mathbf{u}}^{T} \hat{\mathbf{i}}\right)^{2}+\underbrace{\text { Regularization term }} \begin{aligned}
& \text { avoids overfitting to observed data } \\
& \\
& \lambda \text { can be learned through cross validation }
\end{aligned}
$$

> Other information such as temporal dynamics, implicit feedback, and user features (e.g., age, gender, group, etc.) can be added
$>$ Two approaches for minimizing above equation:
(1) Stochastic gradient descent
(2) Alternating least squares

## Netflix competition (1)

> In 2006, Netflix (an online DVD rental company) announced a contest to improve the state of its recommender system
> 100 million ratings on more than 17,000 movies, spanning about 500,000 anonymous customers and their ratings
> Movies rated on a scale of 1 to 5 stars
$>$ Test set with approximately 3 million ratings
$>$ The first team that can improve on the root mean square error (RMSE) of the Netflix system by $10 \%$ or more could win $\$ 1$ million

$$
R M S E=\sqrt{\frac{\sum_{(u, i) \in \text { TestSet }}\left(R_{u}(i)-\hat{R}_{u}(i)\right)^{2}}{\mid \text { TestSet } \mid}}
$$

> RMSE of the Netflix system: 0.95

## Netflix competition (2)

> Winning team shorlty before submitting on July 26th, 2009


## Example factors



Source: Koren et al., IEEE 2009

## Lessons learned from the Netflix challenge

> Matrix factorization techniques are superior to neighborhood-based ones
> But they need to combine many different aspects (e.g., temporal aspect, implicit feedback, user features, user and item bias)
> Filling in missing values correctly is difficult
> Winning system had many different algorithms stitched together
> Many concerns about RMSE as a measure (as it does not capture well user satisfaction)

## Research problems in collaborative filtering

> Data sparsity and noise
> Fill in missing values correctly or remove noise
> Cold start problem
> Recommending items to new users (i.e., learn preference for new users)
> Predicting rating for new items
$>$ Scalability
> Factorization of large sparse matrices is difficult

- Recognizing adversarial users or dealing with users who, from time to time, largely disagree with common opinion
$>$ How to promote diversity in recommendations?
$>$ Neighborhood-based models for collaborative filtering
> User-user models
> Item-item models
> Explainable results, easy to understand and implement but difficult to scale and update (at least for new items added)
$>$ Latent factor (i.e., matrix factorization) models for collaborative filtering
> Map user and item vectors to lower-dimensional space and measure similarity in that space
> SVD can be used but results suffer from sparse data
> Learn mappings directly from observed data through optimization problem
> Take other aspects into account (e.g.: time, implicit feedback, user bias, item bias, features, etc.)
> Scalable models that are superior to the neighborhood based ones

