

SOCIAL SEARCH – CLUSTERING

Intro

- Basics of probability and information theory
- Retrieval models
- Retrieval evaluation
- Link analysis
- From queries to top-k results
- Social search
 - Overview & applications
 - Clustering & recommendation

> Why clustering?

- > ... no labels available > group by similarity (unsupervised learning scenario)
- ... to hopefully detect "intrinsic" structure in the data ("natural clusters")
- ... to hopefully better understand/analyze the data through reduction to important patterns
- ... to detect outliers

General goal:

For objects $\mathbf{x}_1, ..., \mathbf{x}_n$ with pair-wise similarities, construct $k \leq n$ clusters $\mathbf{c}_1, ..., \mathbf{c}_k$ such that

Intra-cluster similarity is high

$$\frac{1}{k}\sum_{i}\left(\frac{1}{|\mathbf{c}_{i}|(|\mathbf{c}_{i}|-1)}\sum_{\mathbf{x},\mathbf{x}'\in\mathbf{c}_{i}}sim(\mathbf{x},\mathbf{x}')\right) \text{ or } \frac{1}{k}\sum_{i}\left(\frac{1}{|\mathbf{c}_{i}|}\sum_{\mathbf{x}\in\mathbf{c}_{i}}sim(\mathbf{x},\mathbf{c}_{i}^{*})\right)$$

Inter-cluster similarity is low

$$\frac{1}{\sum_{\mathbf{c}_i,\mathbf{c}_j}|\mathbf{c}_i||\mathbf{c}_j|}\sum_{\mathbf{x}\in\mathbf{c}_i,\mathbf{x}'\in\mathbf{c}_j}sim(\mathbf{x},\mathbf{x}') \text{ or } \frac{1}{k(k-1)}\sum_{\mathbf{c}_i^*,\mathbf{c}_j^*}sim(\mathbf{c}_i^*,\mathbf{c}_j^*)$$

Centroid: element representing the center of the cluster, e.g. in vector space:

$$\mathbf{c}_i^* = \frac{1}{|\mathbf{c}_i|} \sum_{\mathbf{x} \in \mathbf{c}_i} \mathbf{x}$$

Clustroid: cluster point that is closest to all cluster points

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

Cluster

centroids

➢ Similarity is typically based on a metric distance:
A space M with distance d is called a metric space if for any x, y, z ∈ M:
1. d(x, y) = 0 iff x = y
2. d(x, y) = d(y, x) (symmetry)
3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

In a metric space M with distance d the similarity between any $x, y \in M$ can

	1			1
be defined as $sim(x, y)$		or $sim(x, y)$:= ·	d(x y)
	1+a(x,y)			$e^{u(x,y)}$

Metric distance	Definition	
Euclidean	$\ \mathbf{x} - \mathbf{y}\ = \sqrt{\sum_{i} (x_i - y_i)^2}$	
Manhattan	$\ \mathbf{x} - \mathbf{y}\ _1 = \sum_i x_i - y_i $	
Maximum	$\ \mathbf{x} - \mathbf{y}\ _{\infty} = \max_{i} x_{i} - y_{i} $	
Mahalanobis	$d_{maha}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} \left(\frac{x_{i-}y_{i}}{\sigma_{i}}\right)^{2}}$	(for normally distributed data)

Pearson correlation

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}} \text{ (similarity measure)}$$
$$d_{\rho}(\mathbf{x}, \mathbf{y}) = \frac{1 - \rho(\mathbf{x}, \mathbf{y})}{2} \text{ (distance metric)}$$

Cosine similarity

$$csim(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
$$d_{csim}(\mathbf{x}, \mathbf{y}) = 1 - csim(\mathbf{x}, \mathbf{y}) \text{ (distance measure)}$$

Jaccard similarity

$$J(\mathbf{c}, \mathbf{c}') = \frac{|\mathbf{c} \cap \mathbf{c}'|}{|\mathbf{c} \cup \mathbf{c}'|}$$
 (similarity measure)
$$d_J(\mathbf{c}, \mathbf{c}') = 1 - J(\mathbf{c}, \mathbf{c}')$$
 (distance metric

➤ Let $f_d: D \mapsto 2^D$ be a partitioning function on the dataset *D* based on a (metric or non-metric) distance function $d: D \times D \mapsto \mathbb{R}_0$ that satisfies $d(x, y) = 0 \iff x = y$.

The following axioms cannot be satisfied simultaneously:

> Scale-invariance:

for any *d* and any $\alpha > 0$: $f_d = f_{\alpha d}$

Expressiveness (control over the data): for any partitioning $\Pi \subseteq 2^D$ there exists a d, such that f_d produces Π

> Consistency:

for any d, let d' be such that d'(x, y) < d(x, y) if x, y are in the same cluster created by f_d and d'(x, y) > d(x, y) otherwise, then $f_{d'} = f_d$

Source: J. Kleinberg, NIPS 2002

➢ How well does the clustering of N elements C = {c₁, ..., c_k} represent the ground truth classes G = {c'₁, ..., c'_l}

Purity (each cluster should possibly contain only elements from one class) $Purity(C, G) = \frac{1}{N} \sum_{i=1}^{k} \max_{j} \{|c_i \cap c'_j|\}$

Note: purity is 1 if each element is in its own cluster

Normalized mutual information (each cluster should possibly only elements from one class and possibly all the elements from that class)

$$NMI(\boldsymbol{C}, \boldsymbol{G}) = \frac{\sum_{i} \sum_{j} P(\boldsymbol{c}_{i} \cap \boldsymbol{c}_{j}') \log \frac{P(\boldsymbol{c}_{i} \cap \boldsymbol{c}_{j}')}{P(\boldsymbol{c}_{i})P(\boldsymbol{c}_{j}')}}{\frac{1}{2} \left(\sum_{i} P(\boldsymbol{c}_{i}) \log \frac{1}{P(\boldsymbol{c}_{i})} + \sum_{i} P(\boldsymbol{c}_{i}') \log \frac{1}{P(\boldsymbol{c}_{i}')}\right)}$$

➢ How well does the clustering of N elements C = {c₁, ..., c_k} represent the ground truth classes G = {c'₁, ..., c'_l}

➤ Rand index (accuracy, i.e., percentage of agreements with ground truth) $Rand(C, G) = \frac{TP + TN}{TP + TN + FP + FN}$

where

TP: # pairs in same group in C and in G

TN: # pairs in different groups in C and in G

FP: # pairs in same group in C but in different groups in G

FN: # pairs in same group in G but in different groups in C

Precision, Recall, F-measure can be defined analogously.

For given data records $\mathbf{x}_1, \dots, \mathbf{x}_n$, find $k \leq n$ clusters $\mathbf{c}_1, \dots, \mathbf{c}_k$ according to some similarity measure *sim* and a cluster **stability threshold** t

> Randomly choose prototype clusters $\mathbf{c}_1, \ldots, \mathbf{c}_k$, by choosing random centroids and assigning a point to its closest centroid While there exists \mathbf{c}_i with $\sum_{\mathbf{x}\in\mathbf{c}_i} \|\mathbf{x}-\mathbf{c}_i^*\|^2 > t$

For $j \coloneqq 1$ to n do Assign \mathbf{x}_i to \mathbf{c}_l with the largest $sim(\mathbf{c}_l^*, \mathbf{x}_i)$ For $j \coloneqq 1$ to k do 1 R

Recompute
$$\mathbf{c}_{j}^{*}$$
 //where $\mathbf{c}_{j}^{*} = \frac{1}{|\mathbf{c}_{j}|} \sum_{\mathbf{x} \in \mathbf{c}_{j}} \mathbf{x}$

K-means (2)

> Example

From http://astrostatistics.psu.edu/su09/lecturenotes/clus2.html

- In practice, runtime is polynomial
- > Theoretical complexity is exponential $(2^{\Omega(n)})$
- k can be determined experimentally or based on the minimum-descriptionlength (MDL) principle
- Choice of initial prototype vectors influences the result; often k-means is re-run multiple times with random choices
- Initial prototype vectors could be chosen by using another very efficient
 clustering method (on random sample of the data records).
- > Any arbitrary metric can be used

\succ Getting k right

1) For different (increasing) values of k estimate the change of the average distance to the centroid.

Choose k for which average distance changes very little.

2) **MDL criterion**: check whether cost of encoding the information of the current cluster configuration exceeds the cost of the previous configuration.

Mode-seeking clustering method DBSCAN: density-based clustering for applications with noise

```
For each data point x do
    Insert x into spatial index //(e.g. R-tree)
For each data point x do
    Locate all points with distance less than d_max to x
    If these points form a single cluster then
        Add x to this cluster
Else
    If there are at least min_pts data points (that
        do not yet belong to a cluster) such that for all
        point pairs the distance is less than d_max then
        Construct a new cluster with these points
```

- > Mode-seeking algorithm with average run-time: $O(n \log n)$
- > Data points that are added later can be easily assigned to a cluster
- Points that do not belong to any cluster are considered "noise"

- Given a feature-item matrix (e.g., containing relative co-occurrence frequencies)
- Is it possible to group features and items simultaneously, so that latent groups (e.g., topics) are revealed?
 - Idea: related features occur in related items and related items have related features

	D_1	<i>D</i> ₂	D_3	D_4	D_5	<i>D</i> ₆				
soccer goal	.05 .05	.05 .05	.05 .05	0 0	0 0	0 0			\hat{y}_1	\hat{y}_2
basketball NBA	0 0	0 0	0 0	.05 .05	.05 .05	.05 .05	$ \begin{array}{c} \widehat{x}_1 & .3 \\ \widehat{x}_2 & 0 \end{array} $	$\hat{x}_1 \ .3$ $\hat{x}_2 \ 0$	0.3	
team player	.04 .04	.04 .04	0 .04	.04 0	.04 .04	.04 .04			<i>x̂</i> ₃.2	.2

Example from Dhillon et al., KDD 2003

Formally, we are given the joint distribution of features and items, e.g.:

$$p(X,Y) = \begin{bmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 \\ .04 & .04 & 0 & .04 & .04 \end{bmatrix}$$

Sol: derive a clustering of rows (denoted by \hat{X}) and columns (denoted by \hat{Y}) that minimizes the loss in mutual information

 $I(X,Y) - I(\hat{X},\hat{Y}) = KL(p(X,Y) \| p(\hat{X},\hat{Y})p(X|\hat{X})p(Y|\hat{Y}))$

e.g.:
$$p(\hat{X}, \hat{Y}) = \begin{bmatrix} .3 & 0 \\ 0 & .3 \\ .2 & .2 \end{bmatrix}$$

)-: This problem is NP-hard!

Greedy algorithm

- > Input: joint probability distr. p(X, Y), the desired number k of row clusters, the desired number l of column clusters
- ▶ Output: partitions \hat{X} , \hat{Y} such that $I(X, Y) I(\hat{X}, \hat{Y})$ is minimized

Start with initial $\widehat{X}^{(0)}$, $\widehat{Y}^{(0)}$

Repeat until no improvement is possible concerning $I(X,Y) - I(\hat{X}^{(t)}, \hat{Y}^{(t)})$ Recompute p_{ij} for all blocks b_{ij} according to $\hat{X}^{(t)}, \hat{Y}^{(t)}$

For each row $x \in X$

Assign x to row block i that minimizes local loss in mutual information, i.e., $I(x, Y) - I(\hat{x}_i^{(t)}, \hat{Y}^{(t)})$

Recompute p_{ij} for all blocks b_{ij} according to $\hat{X}^{(t+1)}$, $\hat{Y}^{(t+1)}$

For each column $y \in Y$

Assign y to column block j that minimizes local loss in mutual information, i.e., $I(X, y) - I\left(\hat{X}^{(t+1)}, \hat{y}_j^{(t+1)}\right)$

Algorithm converges to (local) minimum in $O(\#iterations \cdot (k + l))$ Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

Typically used for graph-based clustering

Variant 1

- > Map each data point into k-dimensional space
- Assign each point to its highest-value dimension (strongest spectral component)

Variant 2

- \succ Compute k clusters for the data points (using any clustering algorithm)
- Project data points onto k centroid vectors ("axes" of k-dim. space)

Spectral clustering algorithm for variant 1

Construct similarity graph of n data points Construct graph Laplacian L = D - W // D: diagonal with $// D_{ii}$ =degree of i'th node //W weighted adjacency matrix Compute smallest k Eigenvalues and Eigenvectors $// Lx = \lambda Dx$ $// \lambda$: Eigenvalue Let M be the $n \times k$ matrix with these Eigenvectors as columns Treat the n rows of M as k-dim. data points

Run *k*-means with these points Runtime: $\Theta(|L|^2)$

> Theorem

- > All Eigenvalues of a graph Laplacian are non-negative reals.
- The multiplicity k of the smallest Eigenvalue 0 is the number of connected components of the graph.
- The corresponding Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are indicator vectors of the components $\mathbf{x}_i(j) = 1$ if node j is in the i'th component, and 0 otherwise.

Source: U. von Luxburg, <u>A Tutorial on Spectral Clustering</u>

Summary

Clustering goals

- Internal criteria
- Impossibility theorem
- External criteria
- Clustering techniques
 - K-means (getting k right)
 - DBSCAN
 - Co-clustering
 - Spectral clustering