

PROBABILITY AND INFORMATION THEORY

Outline

- > Intro
- Basics of probability and information theory
 - Probability space
 - Rules of probability
 - Useful distributions
 - Zipf's law & Heaps' law
 - Information content
 - Entropy (average content)
 - Lossless compression
 - Tf-idf weighting scheme
- Retrieval models
- Retrieval evaluation
- Link analysis
- From queries to top-k results
- Social search

Set-theoretic view of probability theory

Probability space

- $\triangleright (\Omega, E, P)$ with
- $\triangleright \Omega$: sample space of elementary events
- \triangleright *E*: event space, i.e. subsets of Ω , closed under \cap , \cup , and \neg , usually $E=2^{\Omega}$
- \triangleright P: E \rightarrow [0, 1], probability measure

Properties of *P* (set-theoretic view):

- 1. $P(\emptyset) = 0$ (impossible event)
- $2.P(\Omega) = 1$
- $3. P(A) + P(\neg A) = 1$
- $4. P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. $P(\bigcup_i A_i) = \sum_i P(A_i)$ for pairwise disjoint A_i

Sample space and events: examples

- Rolling a die
 - > Sample space: {1, 2, 3, 4, 5, 6}
 - Probability of even number: looking for events $A=\{2\},\ B=\{4\},\ C=\{6\},$ $P(A\cup B\cup C)=1/6+1/6+1/6=0.5$
- > Tossing two coins
 - ➤ Sample space: {HH, HT, TH, TT}
 - \triangleright Probability of HH or TT: looking for events $A = \{TT\}, B = \{HH\}, P(A \cup B) = 0.5$

 \succ In general, when all outcomes in Ω are equally likely, for an $e \in E$ holds:

$$P(e) = \frac{\text{# outcomes in } e}{\text{# outcomes in sample space}}$$

Calculating with probabilities

Total/marginal probability

$$\triangleright P(B) = \sum_{j} P(B \cap A_{j})$$
 for any partitioning of Ω in $A_{1}, ..., A_{n}$ (sum rule)

Joint and conditional probability

$$\triangleright P(A,B) = P(A \cap B) = P(B|A) P(A)$$
 (product rule)

Bayes' theorem

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Thomas Bayes

Independence

$$\triangleright P(A_1,...,A_n) = P(A_1 \cap ... \cap A_n) = P(A_1) P(A_2) ... P(A_n)$$
, for independent events $A_1,...,A_n$

Conditional Independence

- \triangleright A is independent of B given $C \Leftrightarrow P(A|B,C) = P(A|C)$
- > If A and B are independent, are they also independent given C?

Discrete and continuous random variables

\triangleright Random variable on probability space (Ω, E, P)

 $\triangleright X \colon \Omega \to M \subseteq \mathbb{R}$ (numerical representations of outcomes) with $\{e \mid X(e) \leq x\} \in E$ for all $x \in M$

Examples

- \triangleright Rolling a die: X(i) = i
- ightharpoonup Rolling two dice: X(a,b)=6(a-1)+b
- ➤ If *M* is countable *X* is called **discrete**, otherwise **continuous**

Calculating probabilities: example (1)

Example from C. Bishop: PRML

Marginal probability

$$P(X = x_i) = \frac{c_i}{N}$$

Sum rule

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j)$$
$$= \frac{1}{N} \sum_{j} n_{ij} = \frac{c_i}{N}$$

Joint probability

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Product rule

$$P(X = x_i, Y = y_j) = P(Y = y_j | X = x_i)P(X = x_i)$$
$$= \frac{n_{ij}}{c_i} \frac{c_i}{N} = \frac{n_{ij}}{N}$$

Calculating probabilities: example (2)

Suppose:
$$P(B = r) = 2/5$$

Apples and Oranges

Fruit is orange, what is probability that box was blue?

$$P(B = b \mid F = o) = \frac{P(F = o \mid B = b) P(B = b)}{P(F = o)}$$

$$P(F = o) = P(F = o \mid B = r) P(B = r) + P(F = o \mid B = b) P(B = b) = 9/20$$

Example from C. Bishop: PRML

Pdfs, cdfs, and quantiles

Probability density function (pdf)

$$ightharpoonup f_X: M \to [0,1]$$
 with $f_X(x) = P(X = x)$

Cumulative distribution function (cdf)

$$F_X: M \to [0,1]$$
 with $F_X(x) = P(X \le x)$

From C. Bishop: Pattern Recognition and Machine Learning

Quantile function

$$F^{-1}(q) = \inf\{x | F_X(x) > q\}, \ q \in [0,1] \text{ (for } q = 0.5, F^{-1}(q) \text{ is called median)}$$

Useful distributions (1)

> Examples of discrete distributions

- ➤ Uniform distribution over {1, 2, ..., m}: $P(X = k) = f_X(k) = \frac{1}{m}$
- ➤ Bernoulli distribution with parameter p: $P(X = x) = f_X(x) = p^x(1-p)^{1-x}$

➤ Binomial distribution with parameter p: $P(X = k) = f_X(k) = {m \choose k} p^k (1-p)^{m-k}$

Useful distributions (2)

> Examples of continuous distributions

- ➤ Uniform distribution over [a, b] : $P(X = x) = f_X(x) = \frac{1}{b-a}$ for a < x < b
- Pareto distribution: $P(X = x) = f_X(x) = \frac{k}{b} \left(\frac{b}{x}\right)^{k+1}$ for x > b

Multivariate distributions

Let $X_1, ..., X_m$ be random variables over the same prob. space with domains $dom(X_1), ..., dom(X_m)$.

The *joint distribution* of
$$X_1, \ldots, X_m$$
 has a pdf $f_{X_1,\ldots,X_m}(x_1,\ldots,x_m)$ with
$$\sum_{x_1\in dom(X_1)} \ldots \sum_{x_m\in dom(X_m)} f_{X_1,\ldots,X_m}(x_1,\ldots,x_m) = 1, \text{ or }$$

$$\int_{x_1\in dom(X_1)} \ldots \int_{x_m\in dom(X_m)} f_{X_1,\ldots,X_m}(x_1,\ldots,x_m) \ dx_1 \ldots dx_m = 1$$

The *marginal distribution* of X_i is $F_{X_1,...,X_m}(x_i) =$

$$\sum_{X_1 \in dom(X_1)} \dots \sum_{X_{i-1} \in dom(X_{i-1})} \sum_{X_{i+1} \in dom(X_{i+1})} \dots \sum_{X_m \in dom(X_m)} f_{X_1, \dots, X_m}(x_1, \dots, x_m)$$
 or

$$\int_{x_1 \in dom(X_1)} \dots \int_{x_{i-1} \in dom(X_{i-1})} \int_{x_{i+1} \in dom(X_{i+1})} \dots \int_{x_m \in dom(X_m)} f_{X_1, \dots, X_m}(x_1, \dots, x_m) \ dx_1 \dots dx_m$$

Multivariate distribution: example

 \triangleright Multinomial distribution with parameters n, m (rolling n m-sided dice)

$$P(X_1 = k_1 \dots X_m = k_m) = f_{X_1, \dots, X_m}(k_1, \dots, k_m) = \frac{n!}{k_1! \dots k_m!} \ p_1^{k_1} \dots p_m^{k_m}$$
 with $k_1 + \dots + k_m = n$ and $p_1 + \dots + p_m = 1$

Note: in information retrieval, the multinomial distribution is often used to model the following case:

 \blacktriangleright document d with n terms from the alphabet $\{w_1, \dots, w_m\}$, where each w_i occurs k_i times in d

Expectation, variance, and covariance

Expectation

- For discrete variable $X: E(X) = \sum_{x} x f_{X}(x)$
- For continuous variable $X: E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
- Properties
 - $\triangleright E(X_i + X_j) = E(X_i) + E(X_j)$
 - $\succ E(X_i X_j) = E(X_i)E(X_j)$ for independent, identically distributed (i.i.d.) variables X_i, X_j
 - $\triangleright E(aX + b) = aE(x) + b$ for constants a, b

Variance

- $ightharpoonup Var(X) = E[(X E[X])^2] = E[X^2] E[X]^2$, $StDev(X) = \sqrt{Var(X)}$
- Properties
 - $ightharpoonup Var(X_i + X_i) = Var(X_i) + Var(X_i)$ for i.i.d. variables X_i, X_i
 - $ightharpoonup Var(aX+b)=a^2Var(x)$ for constants a,b

Covariance

- $\triangleright Var(X) = Cov(X,X)$

Statistical parameter estimation through MLE

Maximum Likelihood Estimation (MLE)

- After tossing a coin n times, we have seen k times head. Let p be the unknown probability of the coin showing head. Is it possible to estimate p?
- We know observation corresponds to Binomial distribution, hence:

$$L(p;k,n) = \binom{n}{k} p^k (1-p)^{n-k}$$

Maximizing L(p; k, n) is equivalent to maximizing $\log L(p; k, n)$ $\log L(p; k, n)$ is called **log-likelihood function**

$$\log L(p; k, n) = \log {n \choose k} + k \log p + (n - k) \log (1 - p)$$

$$\frac{\partial \log L}{\partial p} = \frac{k}{p} - \frac{(n-k)}{(1-p)} = 0 \Rightarrow p = \frac{k}{n}$$

Formal definition of MLE

Maximum Likelihood Estimation (MLE)

Let x_1, \ldots, x_n be a random sample from a distribution $f(\boldsymbol{\theta}, x)$ (Note that x_1, \ldots, x_n can be viewed as the values of i.i.d. random variables X_1, \ldots, X_n) $L(\boldsymbol{\theta}; x_1, \ldots, x_n) = P[x_1, \ldots, x_n \text{ originate from} f(\boldsymbol{\theta}, x)]$ Maximizing $L(\boldsymbol{\theta}; x_1, \ldots, x_n)$ is equivalent to maximizing $\log L(\boldsymbol{\theta}; x_1, \ldots, x_n)$, i.e., the log-likelihood function: $\log P(x_1, \ldots, x_n | \boldsymbol{\theta})$.

> If $\frac{\partial \log L}{\partial p}$ is analytically intractable, use iterative numerical methods, e.g. **Expectation Maximization (EM)** (More on this, in the Data Mining lecture...)

Modeling natural language: three questions

1. Is there a general model for the distribution of terms in natural language?

2. Given a term in a document, what is its information content?

3. Given a document, by which terms is it best represented?

Modeling natural language

Is there a weighting scheme that gives higher weights to representative terms?

Zipf's law

Linguistic observation

In large text corpus

- few terms occur very frequently
- > many terms occur infrequently

Source: http://www.ucl.ac.uk/~ucbplrd/language page.htm

Example: retweets on Twitter

Source: Master's thesis by M. Jenders (2012)

Pareto distribution

 \triangleright Probability that continuous random variable X is equal to some value x is

given by
$$f_X(x; k, \theta) = P(X = x) = \begin{cases} \frac{k}{\theta} \left(\frac{\theta}{x}\right)^{k+1} & \text{for } x \ge \theta \\ 0 & \text{for } x < \theta \end{cases}$$

- > Pareto principle
 - > 80% of the effects come from 20% of the causes
- > Family of distributions
 - Power law distributions
- Examples
 - Distribution of populations over cities
 - Distribution of wealth
 - Degree distribution in web graph (or social graphs)

Heap's law

Empirical law describing the portion of vocabulary captured by a document

See also: Modern Information Retrieval, 6.5.2

Zipf's law & Heaps' law

Source: Modern Information Retrieval

- Two sides of the same coin ...
- Both laws suggest opportunities for compression (more on this, later)
- How to compress as much as possible without loosing information?

From information content to entropy

Information content

Can we formally capture the content of information?

➤ 1. Intuition: the more surprising a piece of information (i.e., event), the higher its information content should be.

$$h(x) \uparrow P(x) \downarrow$$

➤ 2. Intuition: the information content of two independent events x and event y should simply add up (additivity).

$$h(x + y) = h(x) + h(y)$$

Define $h(x) := -\log_2 P(x)$

Entropy (expected information content)

Let X be a random variable with 8 equally possible states.

What is the average number of bits needed to encode a state of X?

$$H(X) = -\sum_{x \in dom(X)} P(x) \log P(x) \text{ (i.e. the entropy of } X)$$
$$= -8 \frac{1}{8} \log \frac{1}{8} = 3$$

Also: entropy is a lower bound on the average number of bits needed to encode a state of X.

Entropy function

Relative entropy

Relative entropy (Kullback-Leibler Divergence)

Let f and g be two probability density functions over random variable X. Assuming that g is an approximation of f, the additional average number of bits to encode a state of X through g is given by

$$KL(f \parallel g) = \int_{x} f(x) \log \frac{f(x)}{g(x)} dx$$

- Properties of relative entropy
 - $ightharpoonup KL(f \parallel g) \ge 0$ (Gibbs' inequality)
 - $\succ KL(f \parallel g) \neq KL(g \parallel f)$ (asymmetric)
- > Related symmetric measure: Jensen-Shannon Divergence
 - $ightharpoonup JS(f,g) = \alpha KL(f \parallel g) + \beta KL(g \parallel f) \text{ with } \alpha + \beta = 1$

Mutual information

Mutual information

Let X and Y be two random variables with a joint distribution function P. The degree of their independence is given by

$$I[X,Y] = KL(P(X,Y) \parallel P(X)P(Y)) = \iint p(X,Y) \log \frac{P(X,Y)}{P(X)P(Y)} dX dY$$

Properties of mutual information

- $ightharpoonup I[X,Y] \geq 0$
- $\triangleright I[X,Y] = 0$ if and only if X and Y are independent
- I[X,Y] = H[X] H[X|Y] = H[Y] H[Y|X] (also known as: **information gain**) (i.e., the entropy reduction of X by being told the value of Y)

Lossless compression (1)

Huffman compression

Let X be a random variable with 8 possible states

$$\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

with occurrence probabilities

$$(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64})$$

In any case: 3 bits would be sufficient to encode any of the 8 states.

Can we do better?

Lossless compression (2)

Shannon's noiseless coding theorem

Let X be a random variable with n possible states. For any noiseless encoding of the states of X, H(X) is a lower bound on the average code length of a state of X.

> Theorem

The Huffman compression is an **entropy encoding** algorithm (i.e., it achieves the lower bound estimated by entropy)

Corollary

The Huffman compression is optimal for lossless compression

Lossless compression (3)

- Ziv-Lempel compression (e.g., LZ77)
 - Use lookahead window and backward window to scan text
 - Identify in lookahead window the longest string that occurs in backward window
 - Replace the string by a pointer to its previous occurrence
 - > Text is encoded in triples (previous, length, new)

previous: distance to previous occurrence

length: length of the string

new: symbol following the string

More advanced variants use adaptive dictionaries with statistical occurrence analysis!

Lossless compression (4)

- Ziv-Lempel compression (e.g., LZ77)
 - > Example

Text: A A B A B B B A B A B A B B B A B B A B B

Code: $(\emptyset, 0, A)(-1,1, B)(-2,2, B)(-4, 3, A)(-9, 8, B)(-3,3, \emptyset)$

- Note that LZ77 and other sophisticated lossless compression algorithms (e.g. LZ78, Lempel-Ziv-Welch,...) encode several states at the same time.
- ➤ With appropriately generalized notions of variables and states, Shannon's lossless coding theorem still holds!

Tf-idf weighting scheme (1)

- Given a document, by which terms is it best represented?
 - ➤ Is there a weighting scheme that gives higher weights to representative terms?

Tf-idf weighting scheme (2)

- Given a document, by which terms is it best represented?
 - ➤ Is there a weighting scheme that gives higher weights to representative terms?
 - ightharpoonup Consider corpus with documents $D=\{d_1,\ldots,d_n\}$ with terms from a vocabulary $V=\{t_1,\ldots,t_m\}$.
 - \triangleright The term frequency of term t_i in document d_i is measured by

$$tf(t_i, d_j) = \frac{freq(t_i, d_j)}{max_k freq(t_k, d_j)}$$
 Normalisation makes estimation independent of document length.

 \triangleright The inverse document frequency for a term t_i is measured by

$$idf(t_i, D) = \log \frac{|D|}{|\{d \in D; t_i \ occurs \ in \ d \ \}|}$$

Central weighting scheme for scoring and ranking Downweights terms that ocurr in many documents (i.e., stop words: the, to, from, if, ...).

Tf, idf, and tf-idf

Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from Wall Street Journal (\sim 99,000 articles published between 1987 and 1989)

Source: Modern Information Retrieval

Various tf-idf weighting schemes

Different weighting schemes based on the tf-idf model, implemented in the SMART system

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
1 (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/u (Section 6.4.4)
b (boolean)	$\begin{cases} 1 & \text{if tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/CharLength^{\alpha}$, $\alpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

Source: Introduction to Information Retrieval

Probability theory

> Summary

- Sample space, events random variables
- > Sum rule (for marginals), product rule (for joint distributions), Bayes' theorem (using conditionals)
- Distributions (discrete, continuous, multivariate), pdfs, cdfs, quantiles
- Expectation, variance, covariance
- Maximum likelihood estimation

Information theory

Summary

- > Information content
- > Entropy, relative entropy (= KL divergence), mutual Information
- Lossless compression, Lempel-Ziv and Huffman compression (entropy encoding algorithm)
- Shannon's noiseless coding theorem
- > Tf-idf