

PROBABILITY AND INFORMATION THEORY

Outline

> Intro
> Basics of probability and information theory
> Probability space
P Rules of probability
$>$ Useful distributions
Z Zipf's law \& Heaps' law
$>$ Information content
$>$ Entropy (average content)
L Lossless compression
> Tf-idf weighting scheme
> Retrieval models
> Retrieval evaluation
> Link analysis
$>$ From queries to top-k results
> Social search

Set-theoretic view of probability theory

> Probability space
$>(\Omega, E, P)$ with
$>\Omega$: sample space of elementary events
$\Rightarrow E$: event space, i.e. subsets of Ω, closed under \cap, \cup, and \neg, usually $E=2^{\Omega}$
$>P: E \rightarrow[0,1]$, probability measure

Properties of P (set-theoretic view):

1. $P(\varnothing)=0$ (impossible event)
2. $P(\Omega)=1$
3. $P(A)+P(\neg A)=1$
4. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
5. $P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$ for pairwise disjoint A_{i}

Sample space and events: examples

$>$ Rolling a die
> Sample space: $\{1,2,3,4,5,6\}$
$>$ Probability of even number: looking for events $A=\{2\}, B=\{4\}, C=\{6\}$,

$$
P(A \cup B \cup C)=1 / 6+1 / 6+1 / 6=0.5
$$

$>$ Tossing two coins
> Sample space: $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$>$ Probability of HH or TT: looking for events $A=\{T \mathrm{~T}\}, B=\{\mathrm{HH}\}, P(A \cup B)=0.5$
> In general, when all outcomes in Ω are equally likely, for an $e \in E$ holds:

$$
P(e)=\frac{\# \text { outcomes in } e}{\# \text { outcomes in sample space }}
$$

Calculating with probabilities

Total/marginal probability
> $P(B)=\Sigma_{j} P\left(B \cap A_{j}\right)$ for any partitioning of Ω in A_{1}, \ldots, A_{n} (sum rule)

Joint and conditional probability
$\Rightarrow P(A, B)=P(A \cap B)=P(B \mid A) P(A)$ (product rule)
> Bayes' theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

$>$ Independence
$>P\left(A_{1}, \ldots, A_{n}\right)=P\left(A_{1} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{n}\right)$, for independent events A_{1}, \ldots, A_{n}
> Conditional Independence
$>A$ is independent of B given $C \Leftrightarrow P(A \mid B, C)=P(A \mid C)$
$>$ If A and B are independent, are they also independent given C ?

Discrete and continuous random variables

$>$ Random variable on probability space (Ω, E, P)
$>X: \Omega \rightarrow M \subseteq \mathbb{R}$ (numerical representations of outcomes) with $\{e \mid X(e) \leq x\} \in E$ for all $x \in M$
$>$ Examples
> Rolling a die: $X(i)=i$
$>$ Rolling two dice: $X(a, b)=6(a-1)+b$
> If M is countable X is called discrete, otherwise continuous

Hasso

Calculating probabilities: example (1)

Marginal probability

$$
P\left(X=x_{i}\right)=\frac{c_{i}}{N}
$$

Sum rule

$$
\begin{gathered}
P\left(X=x_{i}\right)=\sum_{j} P\left(X=x_{i}, Y=y_{j}\right) \\
=\frac{1}{N} \sum_{j} n_{i j}=\frac{c_{i}}{N}
\end{gathered}
$$

Example from C. Bishop: PRML

Joint probability

$$
P\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

Product rule

$$
\begin{gathered}
P\left(X=x_{i}, Y=y_{j}\right)=P\left(Y=y_{j} \mid X=x_{i}\right) P\left(X=x_{i}\right) \\
=\frac{n_{i j}}{c_{i}} \frac{c_{i}}{N}=\frac{n_{i j}}{N}
\end{gathered}
$$

Calculating probabilities: example (2)

Suppose: $P(B=r)=2 / 5$
Apples and Oranges

Fruit is orange, what is probability that box was blue?

$$
\begin{aligned}
P(B=b \mid F=o)= & \frac{P(F=o \mid B=b) P(B=b)}{P(F=o)} \\
P(F=o)= & P(F=o \mid B=r) P(B=r)+ \\
& P(F=o \mid B=b) P(B=b)=9 / 20
\end{aligned}
$$

Example from C. Bishop: PRML

Pdfs, cdfs, and quantiles

$>$ Probability density function (pdf)
$>f_{X}: M \rightarrow[0,1]$ with $f_{X}(x)=P(X=x)$
$>$ Cumulative distribution function (cdf)
$>F_{X}: M \rightarrow[0,1]$ with $F_{X}(x)=P(X \leq x)$

From C. Bishop: Pattern Recognition and Machine Learning
> Quantile function
$>F^{-1}(q)=\inf \left\{x \mid F_{X}(x)>q\right\}, q \in[0,1]$ (for $q=0.5, F^{-1}(q)$ is called median)

Useful distributions (1)

> Examples of discrete distributions
> Uniform distribution over $\{1,2, \ldots, \mathrm{~m}\}: P(X=k)=f_{X}(k)=\frac{1}{m}$
Bernoulli distribution with parameter $\mathrm{p}: P(X=x)=f_{X}(x)=p^{x}(1-p)^{1-x}$

$$
1-p(X=x)
$$

$>$ Binomial distribution with parameter $\mathrm{p}: P(X=k)=f_{X}(k)=\binom{m}{k} p^{k}(1-p)^{m-k}$

Useful distributions (2)

$>$ Examples of continuous distributions
\Rightarrow Uniform distribution over [a, b] : $P(X=x)=f_{X}(x)=\frac{1}{b-a}$ for $a<x<b$
$>$ Pareto distribution: $P(X=x)=f_{X}(x)=\frac{k}{b}\left(\frac{b}{x}\right)^{k+1}$ for $x>b$

Multivariate distributions

Let X_{1}, \ldots, X_{m} be random variables over the same prob. space with domains $\operatorname{dom}\left(X_{1}\right), \ldots, \operatorname{dom}\left(X_{m}\right)$.
The joint distribution of X_{1}, \ldots, X_{m} has a pdf $f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)$ with

$$
\begin{aligned}
& \sum_{x_{1} \in \operatorname{dom}\left(X_{1}\right)} \ldots \sum_{x_{m} \in \operatorname{dom}\left(X_{m}\right)} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)=1 \text {, or } \\
& \int_{x_{1} \in \operatorname{dom}\left(X_{1}\right)} \ldots \int_{x_{m} \in \operatorname{dom}\left(X_{m}\right)} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) d x_{1} \ldots d x_{m}=1
\end{aligned}
$$

The marginal distribution of X_{i} is $F_{X_{1}, \ldots, X_{m}}\left(x_{i}\right)=$
$\sum_{x_{1} \in \operatorname{dom}\left(X_{1}\right)} \cdots \sum_{x_{i-1} \in \operatorname{dom}\left(X_{i-1}\right)} \sum_{x_{i+1} \in \operatorname{dom}\left(X_{i+1}\right)} \cdots \sum_{x_{m} \in \operatorname{dom}\left(X_{m}\right)} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)$ or
$\int_{x_{1} \in \operatorname{dom}\left(X_{1}\right)} \cdots \int_{x_{i-1} \in \operatorname{dom}\left(X_{i-1}\right)} \int_{x_{i+1} \in \operatorname{dom}\left(X_{i+1}\right)} \ldots \int_{x_{m} \in \operatorname{dom}\left(X_{m}\right)} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) d x_{1}$ $\ldots d x_{m}$

Multivariate distribution: example

- Multinomial distribution with parameters n, m (rolling n m -sided dice)
$P\left(X_{1}=k_{1} \ldots X_{m}=k_{m}\right)=f_{X_{1}, \ldots, X_{m}}\left(k_{1}, \ldots, k_{m}\right)=\frac{n!}{k_{1}!\ldots k_{m}!} p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$
with $k_{1}+\cdots+k_{m}=n$ and $p_{1}+\ldots+p_{m}=1$

Note: in information retrieval, the multinomial distribution is often used to model the following case:
$>$ document d with n terms from the alphabet $\left\{w_{1}, \ldots, w_{m}\right\}$, where each w_{i} occurs k_{i} times in d

Expectation, variance, and covariance

- Expectation
$>$ For discrete variable $X: E(X)=\sum_{x} x f_{X}(x)$
\Rightarrow For continuous variable $X: E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x$
> Properties
$>E\left(X_{i}+X_{j}\right)=E\left(X_{i}\right)+E\left(X_{j}\right)$
$>E\left(X_{i} X_{j}\right)=E\left(X_{i}\right) E\left(X_{j}\right)$ for independent, identically distributed (i,i.,d.) variables X_{i}, X_{j}
$>E(a X+b)=a E(x)+b$ for constants a, b
> Variance
$>\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}, \quad \operatorname{StDev}(X)=\sqrt{\operatorname{Var}(X)}$
$>$ Properties
$>\operatorname{Var}\left(X_{i}+X_{j}\right)=\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(X_{j}\right)$ for i.i.d. variables X_{i}, X_{j}
$>\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(x)$ for constants a, b
> Covariance

$$
\begin{aligned}
& >\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right)\right] \\
& >\operatorname{Var}(X)=\operatorname{Cov}(X, X)
\end{aligned}
$$

Statistical parameter estimation through MLE

> Maximum Likelihood Estimation (MLE)
$>$ After tossing a coin n times, we have seen k times head.
Let p be the unknown probability of the coin showing head. Is it possible to estimate p ?
$>$ We know observation corresponds to Binomial distribution, hence:

$$
L(p ; k, n)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$>$ Maximizing $L(p ; k, n)$ is equivalent to maximizing $\log L(p ; k, n)$ $\log L(p ; k, n)$ is called log-likelihood function

$$
\begin{gathered}
\log L(p ; k, n)=\log \binom{n}{k}+k \log p+(n-k) \log (1-p) \\
\frac{\partial \log L}{\partial p}=\frac{k}{p}-\frac{(n-k)}{(1-p)}=0 \Rightarrow p=\frac{k}{n}
\end{gathered}
$$

Formal definition of MLE

$>$ Maximum Likelihood Estimation (MLE)

Let x_{1}, \ldots, x_{n} be a random sample from a distribution $f(\boldsymbol{\theta}, x)$
(Note that x_{1}, \ldots, x_{n} can be viewed as the values of i.i.d. random variables
$\left.X_{1}, \ldots, X_{n}\right)$
$L\left(\boldsymbol{\theta} ; x_{1}, \ldots, x_{n}\right)=P\left[x_{1}, \ldots, x_{n}\right.$ originate from $\left.f(\boldsymbol{\theta}, x)\right]$
Maximizing $L\left(\boldsymbol{\theta} ; x_{1}, \ldots, x_{n}\right)$ is equivalent to maximizing $\log L\left(\boldsymbol{\theta} ; x_{1}, \ldots, x_{n}\right)$,
i.e., the \log-likelihood function: $\log P\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$.
> If $\frac{\partial \log L}{\partial p}$ is analytically intractable, use iterative numerical methods, e.g. Expectation Maximization (EM)
(More on this, in the Data Mining lecture...)

Modeling natural language: three questions

1. Is there a general model for the distribution of terms in natural language?
2. Given a term in a document, what is its information content?
3. Given a document, by which terms is it best represented?

Modeling natural language

Terms in text ordered by frequencies
Is there a weighting scheme that gives higher weights to representative terms?

Zipf’s law

- Linguistic observation

In large text corpus
> few terms occur very frequently
> many terms occur infrequently

Source: http://www.ucl.ac.uk/~ucbplrd/language page.htm

Example: retweets on Twitter

Source: Master's thesis by M. Jenders (2012)

Pareto distribution

P Probability that continuous random variable X is equal to some value x is given by $f_{X}(x ; k, \theta)=P(X=x)=\left\{\begin{array}{l}\frac{k}{\theta}\left(\frac{\theta}{x}\right)^{k+1} \text { for } x \geq \theta \\ 0 \quad \text { for } x<\theta\end{array}\right.$

Source: Wikipedia
> Pareto principle
$>80 \%$ of the effects come from 20% of the causes
> Family of distributions
> Power law distributions
> Examples
> Distribution of populations over cities
$>$ Distribution of wealth
> Degree distribution in web graph (or social graphs)

Heap's law

> Empirical law describing the portion of vocabulary captured by a document

See also: Modern Information Retrieval, 6.5.2

Zipf’s law \& Heaps' law

> Two sides of the same coin ...
> Both laws suggest opportunities for compression (more on this, later)
$>$ How to compress as much as possible without loosing information?

From information content to entropy

> Information content
Can we formally capture the content of information?
$>$ 1. Intuition: the more surprising a piece of information (i.e., event), the higher its information content should be.

$$
h(x) \uparrow \quad P(x) \downarrow
$$

$>$ 2. Intuition: the information content of two independent events x and event y should simply add up (additivity).

$$
h(x+y)=h(x)+h(y)
$$

Define $h(x):=-\log _{2} P(x)$
> Entropy (expected information content)
Let X be a random variable with 8 equally possible states.
What is the average number of bits needed to encode a state of X ?

$$
\begin{gathered}
H(X)=-\sum_{x \in \operatorname{dom}(X)} P(x) \log P(x) \text { (i.e. the entropy of } X \text {) } \\
=-8 \frac{1}{8} \log \frac{1}{8}=3
\end{gathered}
$$

Also: entropy is a lower bound on the average number of bits needed to encode a state of X.

Entropy function

Relative entropy

> Relative entropy (Kullback-Leibler Divergence)
Let f and g be two probability density functions over random variable X.
Assuming that g is an approximation of f, the additional average number of bits to encode a state of X through g is given by

$$
K L(f \| g)=\int_{x} f(x) \log \frac{f(x)}{g(x)} d x
$$

> Properties of relative entropy
$>K L(f \| g) \geq 0$ (Gibbs' inequality)
$>K L(f \| g) \neq K L(g \| f)$ (asymmetric)
$>$ Related symmetric measure: Jensen-Shannon Divergence
$>J S(f, g)=\alpha K L(f \| g)+\beta K L(g \| f)$ with $\alpha+\beta=1$

Mutual information

> Mutual information
Let X and Y be two random variables with a joint distribution function P. The degree of their independence is given by
$I[X, Y]=K L(P(X, Y) \| P(X) P(Y))=\iint p(X, Y) \log \frac{P(X, Y)}{P(X) P(Y)} d X d Y$
$>$ Properties of mutual information
> $I[X, Y] \geq 0$
$>I[X, Y]=0$ if and only if X and Y are independent
$>I[X, Y]=H[X]-H[X \mid Y]=H[Y]-H[Y \mid X]$ (also known as: information gain) (i.e., the entropy reduction of X by being told the value of Y)

Lossless compression (1)

> Huffman compression
Let X be a random variable with 8 possible states

$$
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right\}
$$

with occurrence probabilities

$$
\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)
$$

In any case: 3 bits would be sufficient to encode any of the 8 states.
Can we do better?
encoding: 0,10,110,1110,111100,111101,111110,111111
 tree construction by combining prefix of another codeword!

Lossless compression (2)

> Shannon's noiseless coding theorem
Let X be a random variable with n possible states. For any noiseless encoding of the states of $X, H(X)$ is a lower bound on the average code length of a state of X.
> Theorem
The Huffman compression is an entropy encoding algorithm (i.e., it achieves the lower bound estimated by entropy)
$>$ Corollary
The Huffman compression is optimal for lossless compression

Lossless compression (3)

> Ziv-Lempel compression (e.g., LZ77)
> Use lookahead window and backward window to scan text
> Identify in lookahead window the longest string that occurs in backward window
> Replace the string by a pointer to its previous occurrence
$>$ Text is encoded in triples (previous, length, new)
previous: distance to previous occurrence length: length of the string new: symbol following the string

More advanced variants use adaptive dictionaries with statistical occurrence analysis!

Lossless compression (4)

> Ziv-Lempel compression (e.g., LZ77)
> Example
Text: $A A B A B B B A B A A B A B B A B B A B B$
Code: $(\varnothing, 0, A)(-1,1, B)(-2,2, B)(-4,3, A)(-9,8, B)(-3,3, \varnothing)$
> Note that LZ77 and other sophisticated lossless compression algorithms (e.g. LZ78, Lempel-Ziv-Welch,...) encode several states at the same time.
> With appropriately generalized notions of variables and states, Shannon's lossless coding theorem still holds!

Tf-idf weighting scheme (1)

- Given a document, by which terms is it best represented?
$>$ Is there a weighting scheme that gives higher weights to representative terms?

Tf-idf weighting scheme (2)

> Given a document, by which terms is it best represented?
$>$ Is there a weighting scheme that gives higher weights to representative terms?
$>$ Consider corpus with documents $D=\left\{d_{1}, \ldots, d_{n}\right\}$ with terms from a vocabulary $V=\left\{t_{1}, \ldots, t_{m}\right\}$.
\Rightarrow The term frequency of term t_{i} in document d_{j} is measured by

$$
t f\left(t_{i}, d_{j}\right)=\frac{\text { freq }\left(t_{i}, d_{j}\right)}{\max _{k} \operatorname{freq}\left(t_{k}, d_{j}\right)} \longleftarrow \quad \begin{aligned}
& \text { Normalisation makes estimation } \\
& \text { independent of document length. }
\end{aligned}
$$

$>$ The inverse document frequency for a term t_{i} is measured by

$$
i d f\left(t_{i}, D\right)=\log \frac{|D|}{\mid\left\{d \in D ; t_{i} \text { occurs in } d\right\} \mid}
$$

$>$ Central weighting scheme for scoring and ranking

Downweights terms that ocurr in many documents (i.e., stop words: the, to, from, if, ...).

Tf, idf, and tf-idf

Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from Wall Street Journal (~99,000 articles published between 1987 and 1989)

Source: Modern Information Retrieval

Various tf-idf weighting schemes

> Different weighting schemes based on the tf-idf model, implemented in the SMART system

Source: Introduction to Information Retrieval

Probability theory

Summary

> Sample space, events random variables
> Sum rule (for marginals), product rule (for joint distributions), Bayes' theorem (using conditionals)
> Distributions (discrete, continuous, multivariate), pdfs, cdfs, quantiles
> Expectation, variance, covariance
> Maximum likelihood estimation

Information theory

Summary

> Information content
> Entropy, relative entropy (= KL divergence), mutual Information
$>$ Lossless compression, Lempel-Ziv and Huffman compression (entropy encoding algorithm)
> Shannon's noiseless coding theorem
> Tf-idf

