
PROBABILITY AND INFORMATION THEORY 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 1 



Outline 

 Intro 
 

 Basics of probability and information theory 
 Probability space 
 Rules of probability 
 Useful distributions 
 Zipf’s law & Heaps’ law 
 Information content 
 Entropy (average content) 
 Lossless compression 
 Tf-idf weighting scheme 

 
 Retrieval models 

 
 Retrieval evaluation 

 
 Link analysis 

 
 From queries to top-k results 
 
 Social search 

 
 
 Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 2 



Set-theoretic view of probability theory 
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 Probability space 

 (Ω, 𝐸, 𝑃) with  

 Ω: sample space of elementary events 

 𝐸: event space, i.e. subsets of Ω, closed under ∩, ∪, and ¬, usually 𝐸 = 2Ω 

 𝑃:  𝐸 →  [0, 1], probability measure  

 

Properties of 𝑃 (set-theoretic view): 

1. 𝑃(∅)  =  0 (impossible event) 

2. 𝑃(Ω)  =  1 

3. 𝑃(𝐴)  +  𝑃(¬𝐴)  =  1 

4. 𝑃(𝐴 ∪  𝐵)  =  𝑃(𝐴)  +  𝑃(𝐵) –  𝑃(𝐴 ∩  𝐵) 

5. 𝑃( 𝐴𝑖𝑖 )  =   𝑃(𝐴𝑖)𝑖  for pairwise disjoint 𝐴𝑖  

 



Sample space and events: examples 

 Rolling a die 

 Sample space: 

 Probability of even number: 

 

 

 Tossing two coins 

 Sample space: 

 Probability of HH or TT: 

{1, 2, 3, 4, 5, 6} 

looking for events  𝐴 =  {2}, 𝐵 =  {4}, 𝐶 =  {6},  
𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =  1/6 + 1/6 + 1/6 =  0.5 

{HH, HT, TH, TT} 

looking for events 𝐴 = {TT}, 𝐵 = {HH}, 𝑃(𝐴 ∪ 𝐵) = 0.5  

 In general, when all outcomes in Ω are equally likely, for an 𝑒 ∈ 𝐸 holds: 

𝑃(e) =  
# outcomes in e 

# outcomes in sample space 
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Calculating with probabilities 

 Total/marginal probability  
 𝑃(𝐵)  =  Σ𝑗 𝑃(𝐵 ∩  𝐴𝑗)  for any partitioning of Ω in 𝐴1 , … , 𝐴𝑛 (sum rule) 

 

 Joint and conditional probability 
 𝑃(𝐴, 𝐵)  =  𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐵|𝐴) 𝑃(𝐴) (product rule) 

 
 Bayes’ theorem  

𝑃(𝐵|𝐴)  =  
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)
 

 

 Independence 
 𝑃(𝐴1 , … , 𝐴𝑛)  =  𝑃(𝐴1 ∩ … ∩  𝐴𝑛)  =  𝑃(𝐴1) 𝑃(𝐴2) …  𝑃(𝐴𝑛), for 

independent events 𝐴1, … , 𝐴𝑛  

 

 Conditional Independence 
 𝐴 is independent of 𝐵 given 𝐶  𝑃(𝐴|𝐵, 𝐶)  =  𝑃(𝐴|𝐶) 

 If 𝐴 and 𝐵 are independent, are they also independent given 𝐶?  

Thomas Bayes 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 5 



Discrete and continuous random variables 

 Random variable on probability space  (Ω, 𝐸, 𝑃) 
 

 𝑋:  Ω →  𝑀 ⊆ ℝ (numerical representations of outcomes)                                  
with {𝑒|𝑋(𝑒) ≤ 𝑥} ∈ 𝐸 for all 𝑥 ∈ 𝑀 

 

 Examples 

 Rolling a die: 𝑋 𝑖 = 𝑖 

 Rolling two dice: 𝑋 𝑎, 𝑏 = 6 𝑎 − 1 + 𝑏 

 If 𝑀 is countable 𝑋 is called discrete, otherwise continuous 
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Calculating probabilities: example (1) 

Example from C. Bishop: PRML 

Marginal probability 

𝑃 𝑋 = 𝑥𝑖 =
𝑐𝑖
𝑁

 

Sum rule 

𝑃 𝑋 = 𝑥𝑖 = 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)
𝑗

 

=
1

𝑁
 𝑛𝑖𝑗
𝑗
=
𝑐𝑖
𝑁

 

Joint probability 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
 

Product rule 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃 𝑋 = 𝑥𝑖  

=
𝑛𝑖𝑗

𝑐𝑖
 
𝑐𝑖
𝑁
=
𝑛𝑖𝑗

𝑁
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Calculating probabilities: example (2) 

Example from C. Bishop: PRML 

Suppose: 𝑃(𝐵 =  𝑟)  =  2/5  

𝑃(𝐹 =  𝑜)  =  𝑃(𝐹 =  𝑜 | 𝐵 =  𝑟) 𝑃(𝐵 =  𝑟)  +  
   𝑃(𝐹 =  𝑜 | 𝐵 =  𝑏) 𝑃(𝐵 =  𝑏)  =  9/20  

𝑃(𝐵 =  𝑏 | 𝐹 =  𝑜)   = 
𝑃(𝐹 =  𝑜 | 𝐵 =  𝑏) 𝑃(𝐵 =  𝑏) 

𝑃(𝐹 =  𝑜) 
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Pdfs, cdfs, and quantiles 

 Probability density function (pdf)  

 𝑓𝑋:𝑀 → [0,1] with 𝑓𝑋 𝑥 = 𝑃(𝑋 = 𝑥) 

 

 Cumulative distribution function (cdf) 

 𝐹𝑋:𝑀 → [0,1] with 𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥) 

 

 

 

 

 

 

 

 Quantile function 

 𝐹−1 𝑞 = inf {𝑥|𝐹𝑋 𝑥 > 𝑞},  𝑞 ∈ [0,1] (for 𝑞 = 0.5, 𝐹−1 𝑞  is called median) 

𝑓𝑋 𝐹𝑋 

From C. Bishop: Pattern Recognition  
and Machine Learning 
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Useful distributions (1) 

 Examples of discrete distributions 

 Uniform distribution over {1, 2, …, m}:  𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) =  
1

𝑚
 

 Bernoulli distribution with parameter p: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =  𝑝
𝑥(1 − 𝑝)1−𝑥 

 

 

 

 

 

 

 Binomial distribution with parameter p: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 =
𝑚
𝑘
𝑝𝑘 1 − 𝑝 𝑚−𝑘 
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𝑘 𝑘 𝑘 

𝑃 𝑋 = 𝑘  𝑃 𝑋 = 𝑘  𝑃 𝑋 = 𝑘  

1 0 

𝑃 𝑋 = 𝑥  

𝑥 

1 − 



Useful distributions (2) 

 Examples of continuous distributions 

 

 Uniform distribution over [a, b] ∶ 𝑃 𝑋 = 𝑥 = 𝑓𝑋(𝑥) =  
1

𝑏−𝑎
 for  𝑎 < 𝑥 < 𝑏 

 Pareto distribution: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =
𝑘

𝑏

𝑏

𝑥

𝑘+1
 for  𝑥 > 𝑏 
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Multivariate distributions 

 Let 𝑋1, … , 𝑋𝑚  be random variables over the same prob. space with 

     domains 𝑑𝑜𝑚 𝑋1 , … , 𝑑𝑜𝑚(𝑋𝑚). 

     The joint distribution of 𝑋1, … , 𝑋𝑚 has a pdf 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚  with 

  …𝑥1∈𝑑𝑜𝑚(𝑋1)
 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

 = 1, or 

  …
𝑥1∈𝑑𝑜𝑚(𝑋1)

 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)
 𝑑𝑥1 … 𝑑𝑥𝑚 = 1 

 

       The marginal distribution of 𝑋𝑖  is 𝐹𝑋1,…,𝑋𝑚 𝑥𝑖 =  

  

 …  …𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)𝑥1∈𝑑𝑜𝑚(𝑋1)
 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

 
or 

 …
𝑥1∈𝑑𝑜𝑚(𝑋1)

  … 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)
 𝑑𝑥1 

… 𝑑𝑥𝑚 
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Multivariate distribution: example 

 Multinomial distribution with parameters 𝑛,𝑚 (rolling n m-sided dice)  

𝑃 𝑋1 = 𝑘1…𝑋𝑚 = 𝑘𝑚 = 𝑓𝑋1,…,𝑋𝑚 𝑘1, … , 𝑘𝑚 =
𝑛!

𝑘1! … 𝑘𝑚!
 𝑝1
𝑘1 …𝑝𝑚

𝑘𝑚  

with  𝑘1+⋯+ 𝑘𝑚 = 𝑛 and 𝑝1 + …+ 𝑝𝑚 = 1 

 

Note: in information retrieval, the multinomial distribution is often used to model 
the following case: 

 document 𝑑 with 𝑛 terms from the alphabet 𝑤1, … , 𝑤𝑚 , where each 𝑤𝑖 
occurs 𝑘𝑖 times in 𝑑 
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Expectation, variance, and covariance 

 Expectation 

 For discrete variable 𝑋: 𝐸 𝑋 =   𝑥 𝑓𝑋(𝑥)𝑥  

 For continuous variable 𝑋: 𝐸 𝑋 =   𝑥 𝑓𝑋 𝑥  𝑑𝑥
∞

−∞
 

 Properties  

 𝐸 𝑋𝑖 + 𝑋𝑗 = 𝐸 𝑋𝑖 + 𝐸(𝑋𝑗) 

 𝐸 𝑋𝑖  𝑋𝑗 = 𝐸 𝑋𝑖 𝐸(𝑋𝑗) for independent, identically distributed (i.i.d.) variables 𝑋𝑖, 𝑋𝑗  

 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑥 + 𝑏 for constants 𝑎, 𝑏 
 

 Variance 

 𝑉𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸[𝑋])2 = 𝐸 𝑋2 − 𝐸[𝑋]2 ,     𝑆𝑡𝐷𝑒𝑣 𝑋 = 𝑉𝑎𝑟(𝑋) 

 Properties 

 𝑉𝑎𝑟 𝑋𝑖 + 𝑋𝑗 = 𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟(𝑋𝑗) for i.i.d. variables 𝑋𝑖, 𝑋𝑗  

 𝑉𝑎𝑟 𝑎𝑋 + 𝑏 = 𝑎2𝑉𝑎𝑟 𝑥  for constants 𝑎, 𝑏 
 

 Covariance 

 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸[(𝑋𝑖 − 𝐸 𝑋𝑖 ) (𝑋𝑗 − 𝐸[𝑋𝑗])] 

 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋) 
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Statistical parameter estimation through MLE 

 Maximum Likelihood Estimation (MLE) 
 

 After tossing a coin 𝑛 times, we have seen 𝑘 times head.  
     Let 𝑝 be the unknown probability of the coin showing head. 

     Is it possible to estimate 𝑝? 

 

 We know observation corresponds to Binomial distribution, hence:  
 

𝐿 𝑝; 𝑘, 𝑛 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 

 Maximizing 𝐿 𝑝; 𝑘, 𝑛  is equivalent to maximizing log 𝐿 𝑝; 𝑘, 𝑛  

     log 𝐿 𝑝; 𝑘, 𝑛  is called log-likelihood function 
 

log 𝐿 𝑝; 𝑘, 𝑛 = log
𝑛

𝑘
+ 𝑘 log 𝑝 + 𝑛 − 𝑘  log (1 − 𝑝)  

 
 ∂ log 𝐿

 ∂ 𝑝
=  
𝑘

𝑝
−
(𝑛 − 𝑘)

(1 − 𝑝)
= 0 ⇒ 𝑝 =

𝑘

𝑛
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Formal definition of MLE 

 Maximum Likelihood Estimation (MLE) 

       

      Let 𝑥1, … , 𝑥𝑛 be a random sample from a distribution 𝑓(𝜽, 𝑥) 

      (Note that 𝑥1, … , 𝑥𝑛 can be viewed as the values of i.i.d. random variables 

       𝑋1, … , 𝑋𝑛) 

      𝐿 𝜽; 𝑥1, … , 𝑥𝑛 =  𝑃[𝑥1, … , 𝑥𝑛 originate from𝑓(𝜽, 𝑥)] 

      Maximizing 𝐿(𝜽; 𝑥1, … , 𝑥𝑛) is equivalent to maximizing log 𝐿(𝜽; 𝑥1, … , 𝑥𝑛), 

      i.e., the log-likelihood function: log 𝑃(𝑥1, … , 𝑥𝑛|𝜽).  

 

 If 
 ∂ log 𝐿

 ∂ 𝑝  is analytically intractable, use iterative numerical methods, e.g. 

Expectation Maximization (EM)   

     (More on this, in the Data Mining lecture…)  
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Modeling natural language: three questions 

 

1. Is there a general model for the distribution of terms in natural 
language? 

 

 

2. Given a term in a document, what is its information content? 

 

 

 

3. Given a document, by which terms is it best represented? 
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Modeling natural language 
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Term distribution 

Expected information content 

Terms in text ordered by frequencies 

Te
rm

 f
re

q
u

e
n

ci
es

 

Most representative terms 

Is there a weighting scheme that gives higher weights to representative terms? 



Zipf’s law 

 Linguistic observation 

        In large text corpus 

 few terms occur very frequently 

 many terms occur infrequently 
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Source: http://www.ucl.ac.uk/~ucbplrd/language_page.htm 

Frequency of term 𝑡 is inversely  
proportional to its rank 

𝑓 𝑡 = 𝐶
1

𝑟(𝑡)
 

𝐶: frequency of the most frequent term 
𝑟(𝑡): rank of term 𝑡 

http://www.ucl.ac.uk/~ucbplrd/language_page.htm


Example: retweets on Twitter 
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Note the log-log scale of the graph! 



Pareto distribution 

 Probability that continuous random variable 𝑋 is equal to some value 𝑥 is 

given by 𝑓𝑋 𝑥; 𝑘, 𝜃 = 𝑃 𝑋 = 𝑥 =  
     
𝑘

𝜃

𝜃

𝑥

𝑘+1
  𝑓𝑜𝑟 𝑥 ≥ 𝜃

0            𝑓𝑜𝑟 𝑥 < 𝜃
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 Examples 
 Distribution of populations  
      over cities 
 Distribution of wealth  
 Degree distribution in web  
      graph (or social graphs) 

 

 Family of distributions 
 Power law distributions 

 

Source: Wikipedia 

 Pareto principle 
 80% of the effects come  
     from 20% of the causes 



Heap’s law 

 Empirical law describing the portion of vocabulary captured by a 
document  
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Document size 𝑛 

Si
ze

 o
f 

vo
ca

b
u

la
ry

 V
(𝑛
) 

𝑉 𝑛 = 𝐾𝑛𝛽 

For parameters 
𝐾 (typically 10 ≤ 𝐾 ≤ 100) 
and 𝛽 (typically 0.4 ≤ 𝛽 ≤ 0.6) 

Vocabulary of a text grows sublinearly with its size! 

See also: Modern Information Retrieval, 6.5.2  



Zipf’s law & Heaps’ law 
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Source: Modern Information Retrieval 

 
 Two sides of the same coin … 

 Both laws suggest opportunities for compression (more on this, later) 

 How to compress as much as possible without loosing information?  



From information content to entropy 

 Information content 

      Can we formally capture the content of information? 
 1. Intuition: the more surprising a piece of information (i.e., event), the higher its 

information content should be. 
ℎ 𝑥 ↑   𝑃(𝑥) ↓ 

 2. Intuition: the information content of two independent events 𝑥 and event 𝑦 should 
simply add up (additivity). 

ℎ 𝑥 + 𝑦 = ℎ 𝑥 + ℎ(𝑦) 

Define ℎ 𝑥 := − log2 𝑃(𝑥) 

 

 Entropy (expected information content) 

      Let 𝑋 be a random variable with 8 equally possible states. 

      What is the average number of bits needed to encode a state of 𝑋? 

      𝐻 𝑋 = − 𝑃 𝑥 log 𝑃(𝑥)𝑥∈𝑑𝑜𝑚(𝑋)  (i.e. the entropy of 𝑋) 

= −8 
1

8
 log
1

8
= 3 

       Also: entropy is a lower bound on the average number of bits needed  

                 to encode a state of 𝑋. 
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Entropy function 
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𝑃(𝑋 = 𝑥) 

𝐻
(𝑋
) 

1.0 
 
 
 
 
 
 
 
0.5 
 
 
 
 
 
 
 
 
 



Relative entropy 

 Relative entropy (Kullback-Leibler Divergence)  

      Let 𝑓 and 𝑔 be two probability density functions over random variable 𝑋. 

      Assuming  that 𝑔 is an approximation of 𝑓, the additional average number     

      of bits to encode a state of 𝑋 through 𝑔 is given by 
 

𝐾𝐿 𝑓 ∥ 𝑔 =  𝑓 𝑥 log
𝑓(𝑥)

𝑔(𝑥)
    𝑑𝑥

𝑥

 

 

 Properties of relative entropy 

 𝐾𝐿 𝑓 ∥ 𝑔 ≥ 0 (Gibbs’ inequality) 

 𝐾𝐿 𝑓 ∥ 𝑔 ≠ 𝐾𝐿 𝑔 ∥ 𝑓   (asymmetric) 

 

 Related symmetric measure: Jensen-Shannon Divergence 

 𝐽𝑆 𝑓, 𝑔 =  𝛼 𝐾𝐿 𝑓 ∥ 𝑔 +  𝛽 𝐾𝐿 𝑔 ∥ 𝑓   with 𝛼 + 𝛽 = 1 
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Mutual information 

 Mutual information 
 

      Let 𝑋 and 𝑌 be two random variables with a joint distribution  

      function 𝑃. The degree of their independence is given by 

𝐼 𝑋, 𝑌 = 𝐾𝐿 𝑃 𝑋, 𝑌 ∥ 𝑃 𝑋 𝑃 𝑌 = 𝑝 𝑋, 𝑌 log
𝑃(𝑋, 𝑌)

𝑃 𝑋 𝑃(𝑌)
 𝑑𝑋 𝑑𝑌 

 

 Properties of mutual information 

 𝐼 𝑋, 𝑌 ≥ 0 

 𝐼 𝑋, 𝑌 = 0 if and only if 𝑋 and 𝑌 are independent 

 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻[𝑌|𝑋]  (also known as: information gain) 

     (i.e., the entropy reduction of 𝑋 by being told the value of 𝑌) 
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Lossless compression (1) 

 Huffman compression 

      Let 𝑋 be a random variable with 8 possible states  
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8} 

      with occurrence probabilities 

(
1

2
,
1

4
,
1

8
,
1

16
,
1

64
,
1

64
,
1

64
,
1

64
) 

      In any case: 3 bits would be sufficient to encode any of the 8 states.  

      Can we do better? 
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔: 0,10,110,1110,111100,111101,111110,111111 

 

𝑥8 𝑥7 𝑥6 𝑥5 

𝑥4 
𝑥3 𝑥2 𝑥1 

1

64
 

1

64
 1

64
 

1

64
 

1

32
 

1

32
 

1

16
 

1

16
 

1

8
 

1

8
 

1

4
 

1

4
 

1

2
 

1

2
 

Bottom-up 
tree construction 
by combining 
lowest-frequency  
subtrees 
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Prefix property: no codeword is  
prefix of another codeword! 



Lossless compression (2) 

 Shannon’s noiseless coding theorem  

      Let 𝑋 be a random variable with 𝑛 possible states. For any noiseless  

      encoding of the states of 𝑋, 𝐻(𝑋) is a lower bound on the average code    

      length of a state of 𝑋.  

 

 Theorem 

      The Huffman compression is an entropy encoding algorithm (i.e., it  

      achieves  the lower bound estimated by entropy) 

 

 Corollary 

      The Huffman compression is optimal for lossless compression 
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Lossless compression (3) 

 Ziv-Lempel compression (e.g., LZ77) 
 

 Use lookahead window and backward window to scan text  

 Identify in lookahead window the longest string that occurs in backward 
window 

 Replace the string by a pointer to its previous occurrence 

 Text is encoded in triples 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑒𝑤  

 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠: distance to previous occurrence 

 𝑙𝑒𝑛𝑔𝑡ℎ: length of the string 

 𝑛𝑒𝑤: symbol following the string 

 

More advanced variants use adaptive dictionaries with statistical occurrence 
analysis! 
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Lossless compression (4) 

 Ziv-Lempel compression (e.g., LZ77) 

 Example 

 Text: 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐵 𝐴 𝐵 𝐵 
 Code: ∅, 0, 𝐴 −1,1, 𝐵 −2,2, 𝐵 −4, 3, 𝐴 (−9, 8, 𝐵)(−3,3, ∅) 

 

 Note that LZ77 and other sophisticated lossless compression algorithms 
(e.g. LZ78, Lempel-Ziv-Welch,…) encode several states at the same time.  

 

 With appropriately generalized notions of variables and states, Shannon’s 
lossless coding theorem still holds!  
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Tf-idf weighting scheme (1) 

 Given a document, by which terms is it best represented? 

 Is there a weighting scheme that gives higher weights to representative 
terms? 
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Tf-idf weighting scheme (2) 

 Given a document, by which terms is it best represented? 

 Is there a weighting scheme that gives higher weights to representative 
terms? 

 

 Consider corpus with documents 𝐷 = 𝑑1, … , 𝑑𝑛  with terms from a 
vocabulary 𝑉 = 𝑡1, … , 𝑡𝑚 . 

 

 The term frequency of term 𝑡𝑖  in document 𝑑𝑗 is measured by 

  𝑡𝑓 𝑡𝑖 , 𝑑𝑗 =
𝑓𝑟𝑒𝑞 𝑡𝑖,𝑑𝑗

𝑚𝑎𝑥𝑘 𝑓𝑟𝑒𝑞 𝑡𝑘,𝑑𝑗
  

 

 The inverse document frequency for a term 𝑡𝑖  is measured by 

  𝑖𝑑𝑓 𝑡𝑖 , 𝐷 = log
𝐷

𝑑∈𝐷; 𝑡𝑖 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑑 
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Normalisation makes estimation  
independent of document length. 

Downweights terms that ocurr  
in many documents (i.e., stop words: 
the, to, from, if, … ). 

 Central weighting scheme for  
     scoring and ranking 



Tf, idf, and tf-idf 
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Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from 
Wall Street Journal (~99,000 articles published between 1987 and 1989)  
 
  Source: Modern Information Retrieval 



Various tf-idf weighting schemes 

 Different weighting schemes based on the tf-idf model, implemented in 
the SMART system 
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Source: Introduction to Information Retrieval 



Probability theory 

 Summary 

 

 Sample space, events random variables 

 

 Sum rule (for marginals), product rule (for joint distributions), Bayes’ theorem 
(using conditionals) 

 

 Distributions (discrete, continuous, multivariate), pdfs, cdfs, quantiles 

 

 Expectation, variance, covariance 

 

 Maximum likelihood estimation 
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Information theory 

 Summary 

 

 Information content 

 

 Entropy, relative entropy (= KL divergence), mutual Information 

 

 Lossless compression, Lempel-Ziv and Huffman compression (entropy 
encoding algorithm) 

 

 Shannon’s noiseless coding theorem 

 

 Tf-idf 
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