

RETRIEVAL EVALUATION

Outline

Intro

- Basics of probability and information theory
- Retrieval models
- Retrieval evaluation
 - Basic measures: precision, recall
 - Combined measures
 - Measures for integrating user ratings
 - Ranking measures
- Link analysis
- From queries to top-k results
- Social search

Efficiency evaluation

Objective measurements

- Answer time analysis
- Space consumption analysis

Effectiveness evaluation

Subjective measurements (user satisfaction, surprise, etc.)

- Quality of returned results in terms of relevance
- Online testing with human evaluators

- Require knowledge (or even expertise) about good and poor results with regard to search need
- Are time-consuming and expensive
- Can not be done for every document in the corpus

Pooling for explicit relevance feedback

- Top-k documents returned by one (or multiple) search engine(s) are merged into a pool
- Duplicates are removed
- Human evaluators give binary relevance feedback

Query logs for implicit relevance feedback

- Contain tuples of the form (UserIP, query, URL, click, time, ...)
- Can be used to infer preferences

Precision & recall

False positive: non-relevant document in the answer set (analogous for true negative)

- False negative: relevant document not in the answer set (analogous for true positive)
- Optimizing for precision

 \Leftrightarrow increasing the probability of a result (in the answer set) being relevant

Optimizing for recall

 \Leftrightarrow increasing the probability of a relevant doc being in the answer set

Consider top-k retrieved documents as the answer set Compute *precision@i* (*P@i*) for all *i* on this answer set

> Toy example

> Toy example: suppose we have found all relevant documents

7

Often reported as effectiveness measure: area under the curve (AUC)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

Recall

1.0

Break-even-point of precision and recall

\succ Precision = v = Recall

ROC (receiver-operating characteristics) curves

Hasso Plattner

Plotting true-positive rate vs. false-positive rate

Hasso Plattner Institut

$$F = \frac{1}{\beta \frac{1}{Precision} + (1 - \beta) \frac{1}{Recall}}$$

> For $\beta = 0.5$ we get the harmonic mean:

$$F = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Mitigates the influence of large precision or recall values (to prevent bias towards large outlying values)

Example: for Recall = 0.2 and Precision = 0.9, harmonic mean is $F \approx 0.33$

- \blacktriangleright Consider benchmark of *n* queries q_1, \ldots, q_n and corresponding results
- For a user-oriented evaluation, average precision, average recall, and average F-measure over all queries are suitable measures
 - Macro precision $Precision_{macro} = \frac{1}{n} \sum_{i=1}^{n} Precision(q_i)$ Macro recall

$$Recall_{macro} = \frac{1}{n} \sum_{i=1}^{n} Recall(q_i)$$

Macro F-measure

$$F_{macro} = \frac{1}{n} \sum_{i=1}^{n} F(q_i)$$

 \blacktriangleright Consider benchmark of *n* queries q_1, \dots, q_n and corresponding results

- Average precision for query q computed over different recall levels (for a given step width, e.g., 0.2)
- Let Prec(Rl) = max{Prec': Rl' ≥ Rl ∧ (Prec', Rl') is observed}
 (maximum precision observed in any recall-precision point at a higher or equal recall level)
- The interpolated average precision is defined as

$$IAP = \frac{1}{1/\Delta Rl} \sum_{i=1}^{1/\Delta Rl} Prec(i \cdot \Delta Rl)$$

Upper bound of the area under the precision-recall curve

Interpolated average precision: example

For recall levels at step width 0.2, compute the interpolated average precision

▶ Remember: $Prec(Rl) = \max\{Prec': Rl' \ge Rl \land (Prec', Rl') \text{ is observed}\}$

 \blacktriangleright Consider benchmark of *n* queries q_1, \dots, q_n and corresponding results

Generally:

$$MAP = \frac{1}{n} \sum_{q_i} AvePrecision(q_i)$$
$$= \frac{1}{2} \left(\frac{(1+0.66+0.75+0.8+0.625)}{5} + \frac{(0.5+0.66+0.6+0.66+0.625)}{5} \right)$$

> Other possibility:

$$MAPI = \frac{1}{n} \sum_{q_i} IAP(q_i)$$

Note: MAPI corresponds to the macro-average of per-query interpolated average precision (with standard step width between recall levels 0.01)

- How effectively does a search system retrieve the first relevant result?
- \blacktriangleright Consider queries q_1, \dots, q_n and corresponding ranked result lists
- \succ frr(q_i) denotes the rank of the first relevant result for any q_i
- > The mean reciprocal rank is defined as

$$MRR = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{frr(q_i)}$$

> Variations are possible (e.g., summand is 0 if $frr(q_i) > threshold$)

- Previous evaluation measures were based on binary relevance feedback (i.e., result is either relevant or non-relevant)
- Is it possible to integrate ratings for degree of relevance into evaluation of effectiveness?
- Consider query q with ranked results, where res(i) stands for the result at rank i

$$DCG = \sum_{i} \frac{2^{rating(res(i))} - 1}{\log(1+i)}$$

where, for example

$$rating(res(i)) = \begin{cases} 0, & if res(i) is irrelevant \\ 1, & if res(i) is ok \\ 2, & if res(i) is relevant \end{cases}$$

Punishes result lists with many relevant results ranked lower than less relevant ones

Normalized discounted cumulative gain (NDCG)

Plattner

Normalize DCG by the DCG of the optimal ranking (of the query results)

- Results should cover different aspects of the user's search need
- For ambiguous query (e.g., Paris), diversify results and hope that top-k results will satisfy the user's search need
- Important in sponsored search, e.g., giant could be a good term for "Giant Company Software", the movie "Giant", or Giant bikes
- General measure for result diversity

$$\begin{split} Div@k &= \lambda \sum_{d \in top_k} relevance(d) \\ &+ (1 - \lambda) \sum_{d,d' \in top_k} dissimilarity(d,d') \end{split}$$

For two rankings \$\pi_1\$, \$\pi_2\$ of results to the same query
 Overlap@k (similarity measure)
 Overlap@k(\$\pi_1\$, \$\pi_2\$) = \frac{|top_k(\$\pi_1\$) \cap top_k(\$\pi_2\$)|}{k}\$

Footrule distance
Let
$$S := top_k(\pi_1) \cup top_k(\pi_2)$$

 $FRDist(\pi_1, \pi_2) = \frac{1}{|S|} \sum_{e \in S} |\pi_1(e) - \pi_2(e)|$

$$\succ \text{ Kendall's } \tau \text{ measure (distance measure)} \\ K_{\tau}(\pi_1, \pi_2) = \\ \left| \begin{cases} (a, b) \in S \times S \mid (a \neq b) \land \\ (\pi_1(a) > \pi_1(b) \land \pi_2(a) < \pi_2(b) \lor \pi_1(a) < \pi_1(b) \land \pi_2(a) > \pi_2(b)) \end{cases} \right| \\ |S|(|S| - 1) \end{cases}$$

> Note: $FRDist(\pi_1, \pi_2) \ge K_{\tau}(\pi_1, \pi_2) \ge \frac{1}{2}FRDist(\pi_1, \pi_2)$

Summary

Basic measures

- Precision (@k), recall
- Precision-recall curves, break-even-point
- ROC curves
- Area under the curve (AUC)
- Combined measures
 - ➢ F-Measure
 - Micro, macro average (of precision, recall, F-measure)
 - Interpolated precision
 - Mean average precision (MAP)
- Measures for integrating user ratings
 - (Normalized) discounted cumulative gain ((N)DCG)
- Diversification

Ranking measures

> Overlap@k, Footrule distance, Kendall's τ