

LINK ANALYSIS

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

Outline

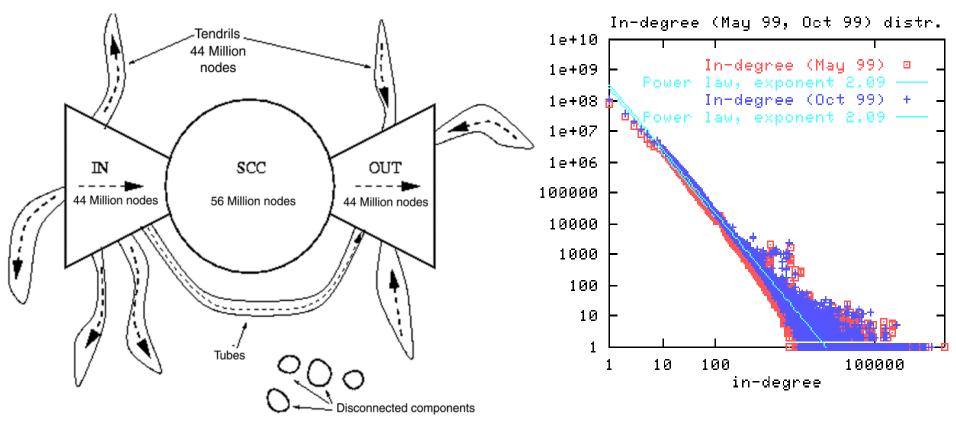
Intro

- Basics of probability and information theory
- Retrieval models
- Retrieval evaluation
- Link analysis
 - Models for the web graph
 - ➢ HITS
 - PageRank
 - > SALSA
- From queries to top-k results

Social search

The web graph

Study of Broder et al.: <u>Graph Structure in the Web</u>. WWW 2000



Web graph structure

In-degree distribution (similar distribution for out-degree)

Random graph (i.e., Erdös-Renyi model)

- An edge between any two nodes is included with probability, independent of other edges
- Preferential attachment (Barabási & Albert; Science 1999)
 - New nodes in the network join with high probability those nodes that already have a high (in)degree ("rich get richer")
 - Specifically: new node x with m links, chooses node y to link to with probability proportional to degree(y)

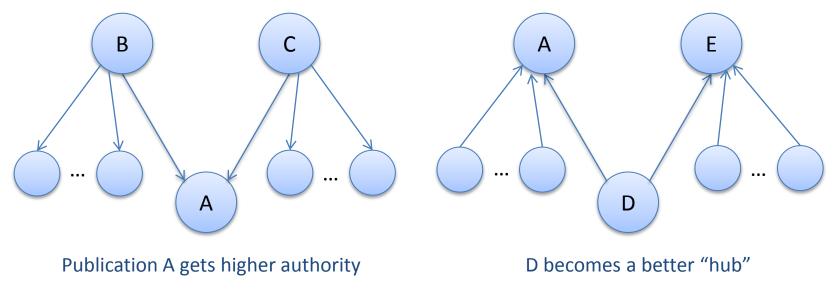
$$P(x \to y) = \frac{degree(y)}{\sum_{y'} degree(y')}$$

Link copying & preferential attachment

> New nodes copy the links of an existing nodes with probability α or follow preferential attachment with probability $(1 - \alpha)$

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

- How to measure the authority of a node in the web graph?
- What about citation measures in academic work?
 - E.g., *ImpactFactor*(J, Y): average number of references from articles published in journal J in year Y to articles published in J in year Y 1 and Y 2 (not suitable for cross-journal references)
 - Other measures consider following important structures in the citation graph: co-citations & co-referrals



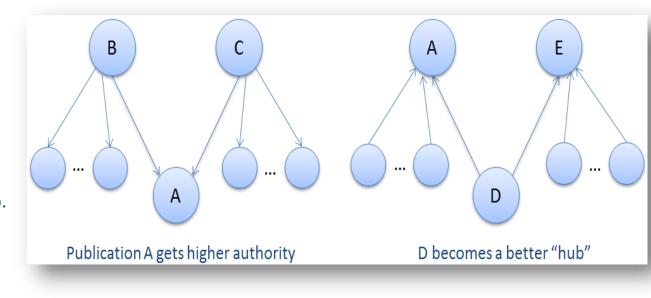
- Similarity between web graph and citation graph
 - Citation of related work y by publication x increases the importance of y (i.e., x "endorses" y); links on the web can be viewed as endorsements as well.
- > Differences
 - Web pages with high in- or out-degree could be portals or spam.
 - Company websites don't point to their competitors.
 - ≻ ...

Hypertext induced topic selection (HITS)

- By John Kleinberg in 1999
- \succ Every node v has
 - > Authority score A(v)
 - \succ Hubness score H(v)

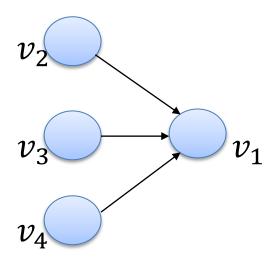
> Example

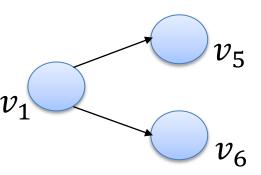
- If A, E already have high authority, D becomes a better hub.
- If B and C are good hubs, A gets higher authority.



- Web page has high authority score if it has many links from nodes with high hubness scores
- Web page has high hubness score if it has many links to nodes with high authority scores

Computing authority and hubness scores (1)





$$a(v_1) = h(v_2) + h(v_3) + h(v_4)$$

$$h(v_1) = a(v_5) + a(v_6)$$

Compute scores recursively

$$A(v) = \sum_{u \to v} H(u)$$

$$H(v) = \sum_{v \to w} A(w)$$

Computing authority and hubness scores (2)

$$\succ \text{ Let } \vec{a} = \begin{pmatrix} a(v_1) \\ a(v_2) \\ \vdots \\ \vdots \\ a(v_n) \end{pmatrix}, \vec{h} = \begin{pmatrix} h(v_1) \\ h(v_2) \\ \vdots \\ \vdots \\ h(v_n) \end{pmatrix}$$

- We can write $\vec{a} = M^T \vec{h}$ and $\vec{h} = M \vec{a}$, where *M* is the adjacency matrix $m_{ij} = 1 \iff v_i \rightarrow v_j$
- By substitution

 $\vec{a} = M^T M \vec{a}$ $\vec{h} = M M^T \vec{h}$

> Interpretation

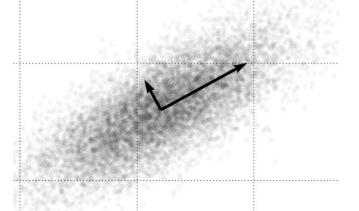
 $M^T M_{(ij)}$: number of nodes pointing to both *i* and *j* $MM^T_{(ij)}$: number of nodes to which both *i* and *j* point

- Eigenvector, Eigenvalue: for an $n \times n$ matrix A, $n \times 1$ vector \mathbf{v} and a scalar λ that satisfy $A\mathbf{v} = \lambda \mathbf{v}$ are called Eigenvector and Eigenvalue of A.
 - Eigenvalues are the roots of the characteristic function

$$f(\lambda) = \det(A - \lambda I)$$

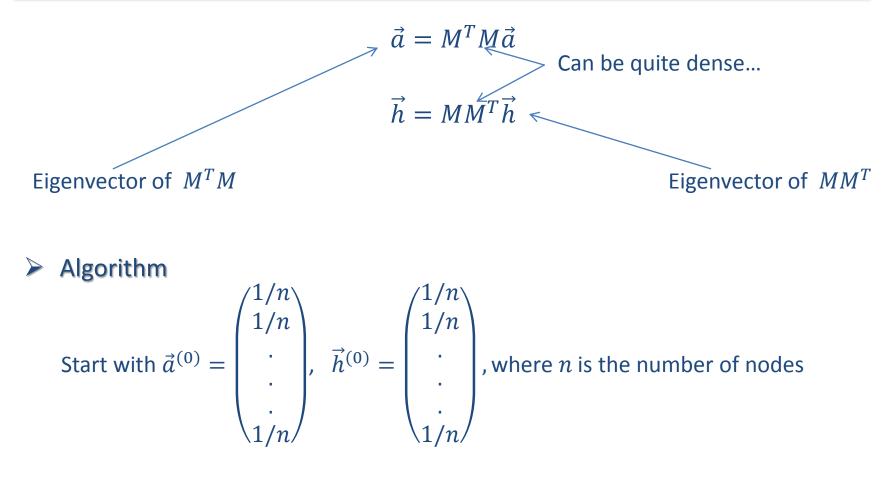
$$\det(A) = \sum_{\substack{i=1\\(j=1)}}^{n} (-1)^{(i+j)} a_{ij} \det(A^{(\setminus ij)})$$

 $A^{(ij)}$ is A without the *i*'th row and the *j*'th column



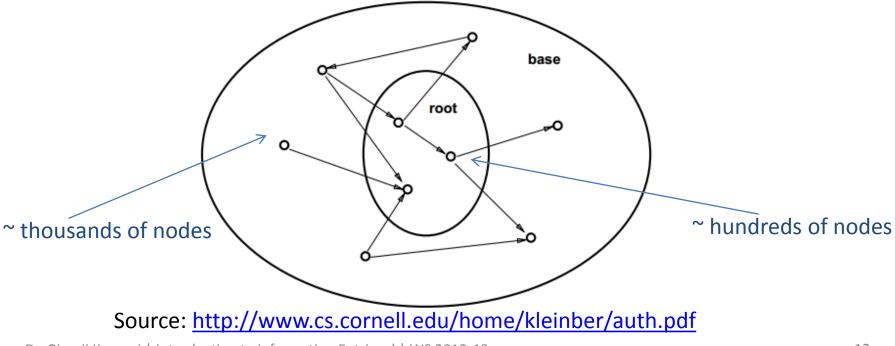
Principal eigenvector gives the direction of highest variability!

Authority and hubness scores revisited



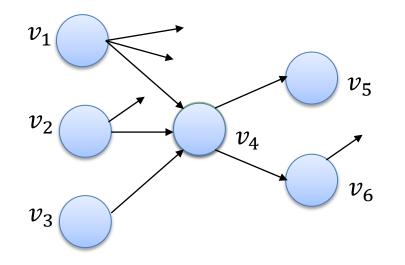
Repeat $\vec{a}^{(i+1)} = M^T \vec{h}^{(i)}$, $\vec{h}^{(i+1)} = M \vec{a}^{(i)}$, L1-normalize $\vec{a}^{(i+1)}$, $\vec{h}^{(i+1)}$ until convergence (Note: algorithm returns principal Eigenvectors of $M^T M$ and $M M^T$)

- 1. Start with a "root set" of pages relevant to a topic (or information need)
- 2. Create a "base subgraph" by adding to the root set
 - All pages that have incoming links from pages in the root set
 - For each page in the root set: up to k pages pointing to it
- 3. Compute authority and hubness scores for all pages in the base subgraph
- 4. Rank pages by decreasing authority scores



- Relevance of documents in root set is not addressed
- Documents may contain multiple "identical links" to the same document (in some other host)
 - \rightarrow Link spamming is a problem
- Bias towards bipartite subgraphs
- Danger: topic drift found pages may not be related to the original query
- ➢ HITS scores need to be computed at query time (i.e., on the base set)
 → Too expensive in most query scenarios
- Rank is not stable to graph perturbations

➢ Incoming links reflect "endorsements" (authority ↗) ➢ Outgoing links reflect "outflowing" authority (authority ↘)



 \succ Probabilistic view: what is the probability of being at node v_i ?

$$P(v_i) = \sum_{v_j} P(v_i | v_j) P(v_j)$$
$$P(v_i) = \sum_{v_j \to v_i} P(v_i | v_j) P(v_j)$$

Restrict to direct predecessors only!

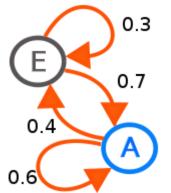
(Assuming uniform probability of choosing successor: $P(v_i|v_j) = \frac{1}{Outdegree(v_j)}$)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

Chain of discrete random variables $X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n \longrightarrow$

Markov assumption: a variable is independent of all its non-descendants given its parents

$$P(X_i \mid X_1, X_2, \dots, X_{i-1}) = P(X_i \mid X_{i-1})$$



$$\begin{array}{c} X_1 \\ = E \end{array} \xrightarrow{X_2} \\ = E \end{array} \xrightarrow{X_3} \\ = A \end{array}$$

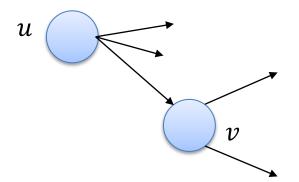
Possible instantiation of Markov chain:

$$P(X_i = E) = P(X_{i-1} = E)P(X_i = E|X_{i-1} = E)$$

+ $P(X_{i-1} = A)P(X_i = E|X_{i-1} = A)$

States with transition probabilities Source: Wikipedia

e.g., with
$$P(X_1 = E) = P(X_1 = A) = \frac{1}{2}$$



Stationary probability at node v $P(X_i = v) = \sum_{\substack{X_{i-1} = u \\ \land u \to v}} P(X_{i-1} = u) P(X_i = v | X_{i-1} = u)$

➢ Uniform transition probability accros successors $P(X_i = v | X_{i-1} = u) = \frac{1}{Outdegree(u)}$

Homogeneous

► $P(X_i = v | X_{i-1} = u)$ are independent of *i*.

Irreducible

Every state is reachable from any other state (with probability>0).

> Aperiodic

➤ The greatest common divisor of all (recurrence) values *l* with $P(X_l = v \land X_k \neq v \text{ for } k = 1, 2, ..., l - 1 | X_0 = v) > 0$ is 1 for every *v*.

Positive recurrent

For every state, the expected number of steps after which it will be reached is finite.

Ergodic

homogeneous, irreducible, aperiodic, and positive recurrent

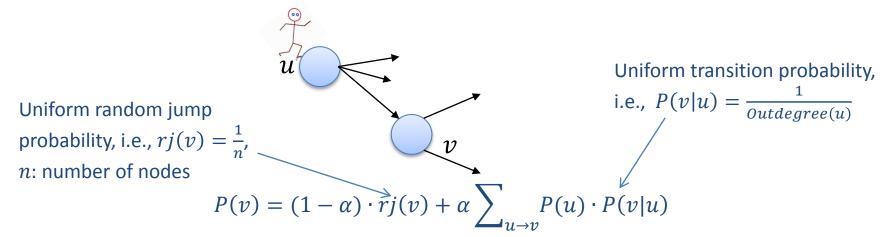
Theorem 1

> A finite-state irreducible Markov chain is ergodic if it has an aperiodic state.

Theorem 2

- For every ergodic Markov chain there exist stationary state probabilities.
- Goal: Markov-chain model to compute stationary probabilities for the nodes in the web graph
 - Finite number of nodes (i.e., finite number of states)
 - Not irreducible (i.e., not every node can be reached from every node)
 - States need to be aperiodic

PageRank: a random walk model on the web graph



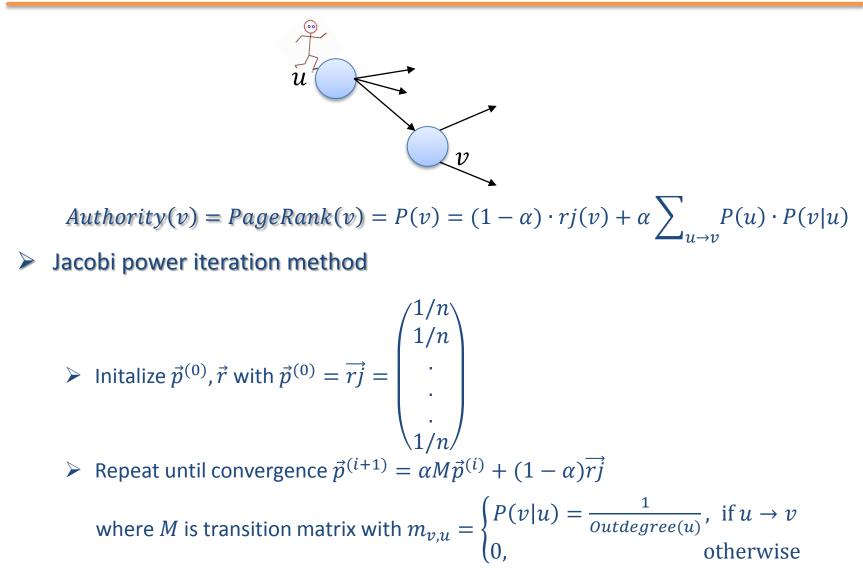
- \succ Random walker reaches v by
 - \succ following one of the outgoing links of the predecessors of v with probability α
 - > or by randomly jumping to v with probability 1α (random jump probability)

Notes

Plattner

- 1. Every node (i.e., state) can be reached from every other node (through random jumps).
- 2. Because of transition cycles of length 1 (from one node to the same node with probability > 0) every node (i.e., state) is aperiodic.
 - → Valid ergodic Markov chain model (i.e., with existing stationary probabilities for each state)

Computing PageRank scores



$$\vec{p}^{(i+1)} = \alpha M \vec{p}^{(i)} + (1-\alpha)\vec{r}$$

> *M* is a **stochastic matrix** (i.e., columns sum up to 1)

Theorem 3

For every stochastic matrix M, all Eigenvalues λ have the property |λ| ≤ 1 and there is an Eigenvector x with Eigenvalue λ₁ = 1, such that x ≥ 0 and ||x|| = 1. x is called the Principal Eigenvector.

Theorem 4

> Power iteration converges to principal Eigenvector with **convergence rate** $\alpha = |\lambda_2/\lambda_1|$, where λ_2 is the second largest Eigenvalue.

$$PageRank(v) = P(v) = (1 - \alpha) \cdot rj(v) + \alpha \sum_{u \to v} P(u) \cdot P(v|u)$$

- Bias random walk towards pages of certain topic or pages liked by the user
- How could this be done?
 - ➢ Possibility 1: introduce classification process into random walk, e.g., page v could be visited with probability proportional to linear combination of P(v) and P(v|T) → difficult to scale
 - Possibility 2: bias random jump towards the set T of target pages (much simpler)

$$rj(v) = \begin{cases} \frac{1}{|T|}, & \text{if } v \in T \\ 0, & \text{otherwise} \end{cases}$$

and run Jacobi iterations for

$$\vec{p}^{(i+1)} = \alpha M \vec{p}^{(i)} + (1-\alpha) \vec{rj}$$

- > Algorithm by Haveliwala, TKDE 2003
 - 1. Given multiple classes, precompute for each class T_k a topic sensitive PageRank vector p_k through Jacobi iterations

$$\overrightarrow{p_k}^{(i+1)} = \alpha M \overrightarrow{p_k}^{(i)} + (1-\alpha) \overrightarrow{rj_k}$$

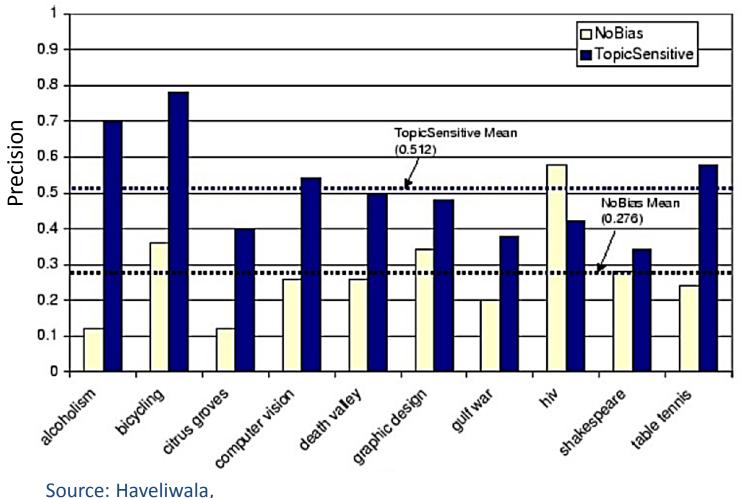
- 2. For the user query q compute $P(T_k|q)$
- 3. Compute authority score of a page v as

 $\sum_{k} P(T_k|q) p_k(v)$

> Theorem 3

Let $\overrightarrow{rj_1}$ and $\overrightarrow{rj_2}$ be biased random-jump vectors and $\overrightarrow{p_1}$ and $\overrightarrow{p_2}$ denote the corresponding biased PageRank vectors. For all $\beta_1, \beta_2 \ge 0$ with $\beta_1 + \beta_2 = 1$ it holds: $\overrightarrow{p} = \beta_1 \overrightarrow{p_1} + \beta_2 \overrightarrow{p_2} = \alpha M(\beta_1 \overrightarrow{p_1} + \beta_2 \overrightarrow{p_2}) + (1 - \alpha)(\beta_1 \overrightarrow{rj_1} + \beta_2 \overrightarrow{rj_2}).$

Topic-sensitive PageRank evaluation

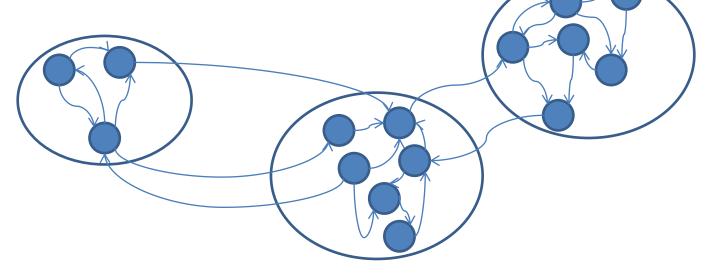


Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

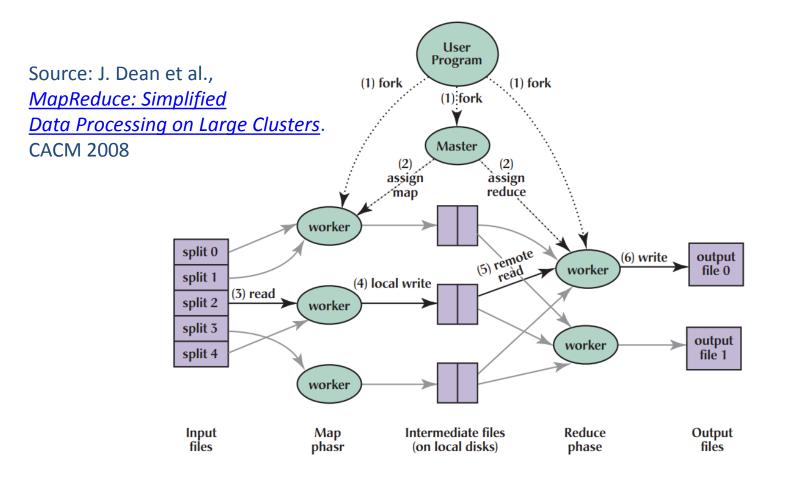
Distributed PageRank computation

Compute PageRank for each page on a domain and combine it with PageRanklike authority propagation on the domains



- Compute PageRank by using MapReduce
 - ➤ Map: $(k1, val1) \rightarrow list(k2, val2) // list of key-value pairs from one domain mapped to list of key-value pairs of another domain$
 - ➢ Reduce: (k2, list(val2)) → list(val3) //compute results from each group in parallel

General framework for MapReduce



> MapReduce implementations: PIG (Yahoo), Hadoop (Apache), DryadLing (Microsoft)

Initial MAP: (url, content) {(url, (PR_0, list(urls pointed to by url)))} //set initial PageRank value Initial REDUCE: return tuples unchanged MAP: (url, (PR(url), list(*n* urls pointed to by url))) {(linked url1, PR(url) /n), ...,(linked urln, PR(url) /n), (url, list(n urls pointed to by url))} **REDUCE:** (url, {(url', PR')|url' points to url}U {(url, list(urls pointing to url)})

{(url, (PR(url), list(urls pointed to by url)))}

Strengths

- Elegant theoretical foundation with nice interpretations (e.g., stochastic matrices, principal Eigenvectors, stationary state probabilities in random walk model/ Markov-chain process)
- Can be extended to topic-based and personalized models
- Static measure (i.e., can be precomputed)
- Relatively straight-forward to scale
- PageRank scores are relatively stable to graph perturbations

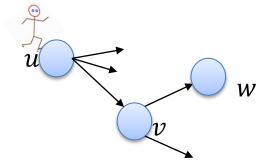
Weaknesses

- Rank is not stable to perturbations
- Random-jump extension is needed to make corresponding Markov process ergodic on arbitrary directed graphs
- Query independence (no direct relation to relevance)

Institut SALSA: stochastic approach for link-structure analysis

2-hop random walk model for HITS on connected directed graphs

Likelihood of reaching w from u in two hops is $\sum_{v \in V: u \to v \to w} \frac{1}{Outdegree(u)} \frac{1}{Outdegree(v)}$ (assuming uniform probability of choosing successor)



From original graph G(V, E), construct undirected bipartite graph G'(V', E'): $V' = \{u_h | u \in V \land Outdegree(u) > 0\}$ $\cup \{u_a | u \in V \land Indegree(u) > 0\} \text{ and }$ $E' = \{\{u_h, v_a\} | u \rightarrow v \in E\}.$

 $\succ \text{ Construct from } G' \text{ hub matrix } H: h_{uw} = \sum_{v \in V: u_h - v_a - w_h} \frac{1}{Degree(u)} \frac{1}{Degree(v)}$

- \blacktriangleright Construct from G' auth. matrix A: $a_{uw} = \sum_{v \in V: u_a v_h w_a} \frac{1}{Dearee(u)} \frac{1}{Dearee(v)}$
- Can be extended with random-jump probabilities

Strengths

- Probabilistic HITS-based (i.e., random-walk) interpretation

Weaknesses

- Random-jump extension is definitely needed to make corresponding Markov process ergodic on arbitrary directed graphs
- Authority scores are proportional to indegrees of nodes (in the original graph); the same holds for hubness scores and outdegrees
 - \rightarrow suggests much simpler ranking, e.g., based on in-degrees only

Precision@k ranking comparison

Source: Borodin et al., <u>Link analysis</u> <u>ranking: algorithms,</u> <u>theory, and</u> <u>experiments</u>. TOIT 2005

[G	luery	Hrts	PageRank	INDEGREE	SALSA	HUBAVG	Max	AT-MED	AT-AVG	BFS	BAYESIAN	SBAYESIAN
a	bortion	90%	70%	100%	100%	100%	100%	100%	100%	100%	90%	100%
a	ffirmative	70%	50%	50%	50%	10%	10%	10%	10%	80%	40%	50%
- II *	action	10.00	10000	Dealer Court	0.000.000.000	5-00.64	1000	10.000.0003	1000000	1	00000	Constanting of
a	lcohol	90%	60%	90%	90%	90%	80%	80%	80%	90%	80%	90%
a	musement	100%	30%	30%	50%	0%	90%	10%	0%	80%	100%	30%
110	parks		-5-1-8-1-5-	All a second		200	11111111	100000000	10000	2024/2014		Second Second
a	rchitecture	10%	70%	70%	70%	10%	60%	70%	10%	60%	10%	70%
a	rmstrong	20%	50%	20%	20%	20%	20%	20%	20%	50%	20%	20%
a	utomobile	10%	10%	20%	30%	10%	10%	10%	10%	60%	20%	20%
	industries											
	asketball	0%	70%	20%	20%	0%	10%	10%	10%	100%	10%	20%
Б	lues	60%	80%	60%	60%	70%	60%	70%	70%	50%	60%	60%
[]c]	heese	0%	20%	30%	30%	10%	0%	0%	10%	50%	0%	30%
, el	lassical	90%	50%	70%	70%	50%	80%	50%	50%	90%	70%	70%
	guitar			and the second		10000						1
	omplexity	0%	50%	50%	50%	0%	90%	90%	0%	80%	0%	50%
- I C	omputational	90%	70%	90%	90%	90%	90%	90%	90%	90%	100%	90%
	complexity		100 C 100 C			and the second			10000		1000	
C	omputational	100%	40%	70%	70%	70%	100%	70%	70%	100%	80%	70%
	geometry		-									
	eath penalty	100%	70%	90%	90%	70%	100%	100%	100%	100%	100%	\$00%
	enetic	100%	70%	100%	100%	100%	100%	100%	100%	90%	100%	100%
	eometry	90%	20%	90%	90%	90%	90%	90%	80%	90%	80%	90%
	lobalization	100%	70%	90% 100%	90%	100% 100%	100% 100%	100%	100% 100%	90%	100%	90% 100%
112	un control	0%	50%		100%					100%	80%	
	raq war	40% 0%	30% 30%	30% 0%	30% 0%	10%	20%	20%	10%	90% 10%	40% 0%	30% 0%
	aguar ordan	0%	30%	30%	30%	40%	100%	100%	100%	40%	30%	30%
112	noon landing	0%	30%	20%	20%	40%	0%	0%	0%	100%	0%	20%
	novies	10%	20%	20%	40%	50%	70%	70%	70%	60%	60%	50%
	ational parks	0%	50%	10%	10%	80%	80%	80%	0%	70%	0%	10%
	et censorship	0%	30%	80%	80%	60%	90%	90%	90%	80%	70%	80%
	andomized	70%	80%	80%	80%	40%	50%	50%	50%	60%	80%	70%
11	algorithms		0070	0010	00.0	10/2	00.0		00.0	00.0	00%	
n	ecipes	0%	20%	70%	70%	30%	90%	90%	100%	80%	80%	70%
	oswell	0%	20%	40%	40%	70%	70%	60%	0%	60%	10%	40%
- H-3	earch	80%	90%	100%	100%	100%	100%	100%	100%	90%	80%	100%
	engines											
5	hakespeare	100%	70%>	100%	100%	100%	100%	100%	100%	100%	100%	100%
	able tennis	90%	60%	100%	100%	90%	90%	90%	90%	90%	90%	100%
76	reather	80%	50%	80%	80%	60%	80%	80%	80%	90%	80%	80%
- V	intage cars	20%	10%	60%	60%	20%	60%	60%	20%	70%	40%	60%
<u>ما</u>	vg	47%	48%	61%	62%	51%	67%	64%	54%	78%	56%	61%
	ax	100%	90%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	action to Info	0.00			110902	0%	0%	0%	0%	10%	0%	0%
i yuu	tdev	43% I	n R 9 11 23%	31%	31%	38%	36%	36%	42%	21%	37%	31%

Dr. Gjergji Kasneci | Intro

- Web links vs. citation Links
- \succ Hubs and Authorities \rightarrow HITS
- \succ Random walks on the web graph \rightarrow PageRank
 - Topic-sensitve, personalized
 - Distributed
- \succ Two-hop random walks between hubs and authorities \rightarrow SALSA