
FROM QUERIES TO TOP-K RESULTS

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 1

Outline

 Intro

 Basics of probability and information theory

 Retrieval models

 Retrieval evaluation

 Link analysis

 From queries to top-k results
 Query processing

 Indexing

 Top-k search

 Social search

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 2

Query processing overview

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 3

Accents,
Spacing,

Capitalization,
Acronym

expansion
…

Stop
words

Noun groups,
Entities

…

Stemming,
Spelling

correction
…

query document (same process for document indexing)

Controlled
vocabulary

…

Structure
analysis,

Tokenization

Query normalization: clean query

 Remove punctuations, comas, semicolons, unnecessary spaces…

 Upper-case vs. lower-case spellings (language-dependent)

 Normalize and expand acronyms (e.g.: N.Y. NY  New York)

 Normalize language dependent characters (e.g.: ü  ue)

4

Query normalization: remove stop words

 Typically, maintained in so-called stop word lists, e.g.:

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 5

a
able
about
across
after
all
almost
also
am
among
an
and
any
are
as
at
be
because

but
by
can
cannot
do
does
either
else
ever
every
for
from
get
has
have
he
her
hers

him
his
how
however
i
if
in
into
is
it
its
just
least
let
like
likely
may
me

most
my
neither
no
nor
not
of
off
often
 on
only
or
other
our
own
rather
she
should

since
so
some
than
that
the
their
them
then
there
these
they
this
to
too
us
we
what

when
where
which
while
who
whom
why
will
with
would
yet
you
your
…

Named-entity recognition in query

 Task

 Identify named entities such as persons, locations, organizations, dates, etc. in
query

 Example: “flights to John F. Kennedy airport”

 Solutions

 Look-up in dictionary or knowledge base (mapping is still difficult)

 Shallow parsing (exploit internal structure of names and local context in which
they appear)

 Shallow parsing + probabilistic graphical models for sequential tagging (e.g.:
Hidden Markov Models (HMMs), Conditional Random Fields (CRFs))

 Example: HMM with 2 states {entity, non-entity}, find max
𝐗
𝑃(𝐗, 𝐘)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 6

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑌1
= 𝑛𝑜𝑢𝑛

𝑌2
= 𝑝𝑟𝑒𝑝

𝑌3
= 𝑛𝑎𝑚𝑒

𝑌4
= 𝑛𝑎𝑚𝑒

𝑌5
= 𝑛𝑎𝑚𝑒

𝑌6
= 𝑛𝑜𝑢𝑛

Query normalization: stemming

 Morphological reduction to the stem of a term (i.e., the ground form)

 Lemmatization algorithms determine the part of speech (e.g., noun, verb,
adjective, etc.) of a term and apply stemming rules to map terms to their
grammatical lemma (≡ ground form)

 There are different stemming rules for adjectives, verbs, nouns, …

 Simple rules for stemming

 [.]{3, }+ies  y (countries  country, ladies  lady, …)

 [.]{4, }+ing  (fishing  fish, sing  sing, applying  apply, …)

 [.]{2, }+ss|sses  ss (press  press, guesses  guess, less  less,
 chess  chess, …)

 [.]{3, }[^s]+s  (books  book, symbols  symbol, …)

 Notes
 Order in which stemming rules are applied is important

 Indexed documents undergo the same stemming process as the query

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 7

 Derivational morphology, e.g.:
 ational  ate
 ization  ize
 biliti  ble

The Porter Stemmer

 Stemming algorithm proposed by Martin Porter in 1980

 Standard algorithm for English stemming

 Uses different steps for

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 8

 Mapping plural to singular form, e.g.:
 sses  ss
 ies  i
 ss  ss
 s  є

 Mapping past and progressive tense to simple present tense, e.g.:
 eed  ee
 ed  є
 ing  є

 Clean-up and handle endings (e.g.: y i)

Query reformulation on Google

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 9

Query normalization: spelling correction

 Check spelling

 E.g., by using similarity measures and occurrence frequencies on entries from
dictionaries, query logs, web corpus

 Propose correction of misspelled words, e.g.:

 recieve  receive

 dissapoiting  disappointing

 acomodation  accommodation

 mulitplayer  multiplayer

 Playstaton  Playstation

 Schwarznegger  Schwarzenegger

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 10

Google’s
instant autocorrection

Example: misspellings for Britney Spears on Google

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 11

 Observation: most used spelling is typically correct
 (“Wisdom-of-the-Crowds” effect)

 Can this observation be used for spellchecking and auto-correction?

Source: http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html

http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html
http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html
http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html

Google’s spelling correction approach (1)

 Preprocessing

 Goal: generate triples of the form 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑠𝑡𝑟, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑠𝑡𝑟, 𝑜𝑏𝑠_𝑓𝑟𝑒𝑞

 Build a term list with frequent terms occurring on the web.

 Remove non-words (e.g., too many punctuations, too short or too long).

 For each term in the list, find all other terms in the list that are “close” to it and
create pairs 𝑠𝑡𝑟1, 𝑠𝑡𝑟2 , where 𝑠𝑡𝑟1, 𝑠𝑡𝑟2 are “close enough” to each other.

 From all pairs of the form 𝑠𝑡𝑟1, 𝑠𝑡𝑟2 and maintain only those pairs (𝑠𝑡𝑟′, 𝑠𝑡𝑟), for
which 𝑓𝑟𝑒𝑞 𝑠𝑡𝑟′ ≥ 10 ∗ 𝑓𝑟𝑒𝑞 𝑠𝑡𝑟 .

 Return list of remaining triples 𝑠𝑡𝑟′, 𝑠𝑡𝑟, 𝑓𝑟𝑒𝑞(𝑠𝑡𝑟) .

 Note: computation can be done in parallel and is easy to distribute.

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 12

Source: Whitelaw et al. “Using the Web for Language Independent Spellchecking and
Autocorrection”. EMNLP 2009

http://dl.acm.org/citation.cfm?id=1699629
http://dl.acm.org/citation.cfm?id=1699629
http://dl.acm.org/citation.cfm?id=1699629

Google’s spelling correction approach (2)

 Input

 Observed word 𝑤,

 Candidate corrections 𝑐 𝑐 “is close to” 𝑤}

 Data given by the set of triples 𝑐, 𝑤, 𝑓𝑟𝑒𝑞 𝑤 | 𝑤 is observed

 Output

 Candidate corrections, ranked decreasingly by

𝑃(𝑐|𝑤) ∝ 𝑃 𝑤 𝑐 𝑃(𝑐)

 Estimation of error model: for adjacent-substring partitions 𝑅 of 𝑐 and 𝑇 of 𝑤
estimate

𝑃 𝑤|𝑐 ≈ max
𝑅,𝑇: 𝑅 =|𝑇|

 𝑃 𝑇𝑖|𝑅𝑖
|𝑅|

𝑖=1

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 13

Error model (word likelihood) N-gram language model
derived from the web

e.g., with |𝑅𝑖 , |𝑇𝑖 ≤ 3

Google’s spelling correction approach (3)

 Context of a word can also be taken into account

 Generate triples of the form 𝑤𝑙𝑐𝑤𝑟 , 𝑤𝑙 𝑤 𝑤𝑟, 𝑓𝑟𝑒𝑞 𝑤

 Language model can be down-weighted (relatively to the error model), in
case errors are common, e.g.:

𝑃 𝑐 𝑤 ∝ 𝑃 𝑤 𝑐 𝑃 𝑐 𝜆

 Reported error rates < 4% when error model trained on corpus size of

 ~10 Mio. terms

 How to find “close” strings?

 Use similarity measures on strings (e.g., based on edit distance, Jaccard
similarity on substring partitions, …)

 Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 14

with 𝜆 ≥ 0

String distance measures: edit distance (1)

 Minimal number of editing operations to turn a string 𝑠1into another string 𝑠2

 Levenshtein distance (edit distance)
 Uses replacement, deletion, insertion of a character as editing operations

 Input: 𝑠1[1. . 𝑖] and 𝑠2 1. . 𝑗

 Conditions:

 𝑒𝑑𝑖𝑡 0, 0 = 𝑑𝑖𝑓𝑓 𝑖, 𝑗 ,

 𝑒𝑑𝑖𝑡 𝑖, 0 = 𝑖 + 𝑒𝑑𝑖𝑡 0, 0 ,
 𝑒𝑑𝑖𝑡 0, 𝑗 = 𝑗 + 𝑒𝑑𝑖𝑡 0, 0 .

 Output: 𝑒𝑑𝑖𝑡(𝑖, 𝑗) = min { 𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗) + 1,

 𝑒𝑑𝑖𝑡 𝑖, 𝑗 − 1 + 1,
 𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗 − 1) + 𝑑𝑖𝑓𝑓(𝑖, 𝑗) }

 e.g., with 𝑑𝑖𝑓𝑓 𝑖, 𝑗 =
1 𝑖𝑓 𝑠1[𝑖] ≠ 𝑠2[𝑗]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

→efficient computation by dynamic programming

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 15

// replace

// insert

// delete

String distance measures: edit distance (2)

 Levenshtein distance

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 16

K N I T T I N G

S 1 2 3 4 5 6 7 8

I 2 2 2 3 4 5 6 7

T 3 3 3 2 3 4 5 6

T 4 4 4 3 2 3 4 5

I 5 5 4 4 3 2 3 4

N 6 5 5 5 4 3 2 3

G 7 6 6 6 5 4 3 2

Approximate string containment with edit distance

 Levenshtein distance for approximate string containment

 Slightly different starting conditions

 “colour” is contained in “kolorama” with 2 errors

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 17

Source: Modern Information Retrieval,
 Baeza-Yates, Ribeiro-Neto

http://www.amazon.com/Modern-Information-Retrieval-Concepts-Technology/dp/0321416910/ref=dp_ob_title_bk/186-7252165-2891925

String distance measures: edit distance (3)

Demerau-Levenshtein distance

 Uses replacement, deletion, insertion, and transposition of character as
editing operations

 Input: 𝑠1[1. . 𝑖] and 𝑠2 1. . 𝑗

 Conditions:

 𝑒𝑑𝑖𝑡 0, 0 = 𝑑𝑖𝑓𝑓 𝑖, 𝑗 ,

 𝑒𝑑𝑖𝑡 𝑖, 0 = 𝑖 + 𝑒𝑑𝑖𝑡 0, 0 ,

 𝑒𝑑𝑖𝑡 0, 𝑗 = 𝑗 + 𝑒𝑑𝑖𝑡 0, 0 .

 Output: 𝑒𝑑𝑖𝑡(𝑖, 𝑗) = min { 𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗) + 1,

 𝑒𝑑𝑖𝑡 𝑖, 𝑗 − 1 + 1,

 𝑒𝑑𝑖𝑡 𝑖 − 1, 𝑗 − 1 + 𝑑𝑖𝑓𝑓 𝑖, 𝑗

 𝑒𝑑𝑖𝑡 𝑖 − 2, 𝑗 − 2 + 1}

 with 𝑑𝑖𝑓𝑓 𝑖, 𝑗 =
1 𝑖𝑓 𝑠1[𝑖] ≠ 𝑠2[𝑗]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 18

// transpose

Other useful string distance measures

 Hamming distance

𝑑𝐻 𝑠1, 𝑠2 = # 𝑖 𝑠1[𝑖] ≠ 𝑠2[𝑖]} , for |𝑠1| = |𝑠2|

 Jaccard distance

 𝐺𝑁 𝑠 : = {substrings of length 𝑁} , i.e., subset of N-grams

 Example

 𝐺3 "schwarzenegger" := {sch, chw, hwa, war, arz, rze, zen, ene …}

 𝑑𝐽 𝑠1, 𝑠2 = 1 −
𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2

𝐺𝑁 𝑠1 ⋃𝐺𝑁 𝑠2

 Simple N-gram-based distance

𝑑 𝑠1, 𝑠2 = 𝐺𝑁 𝑠1 + 𝐺𝑁 𝑠2 − 2 𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2

 Theorem 1: for string 𝑠1 and a target string 𝑠2
𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2 < 𝑠1 − 𝑁 − 1 − 𝑑𝑁 ⇒ 𝑑𝑒𝑑𝑖𝑡 𝑠1, 𝑠2 > 𝑑

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 19

Phonetic similarities

 Soundex algorithm

Idea: map words onto 4-letter codes, such that words with similar pronunciation
have the same code

 First letter of the word becomes first code letter

 Then map

 b, p, f, v  1

 c, s, g, j, k, q, x, z  2

 d, t  3

 l  4

 m, n  5

 r  6

 For letters with the same soundex number that are immediately next to each
other, only one is mapped

 a, e, i, o, u, y, h, w are ignored (exept for the first character)

 If code length > 4, keep only first four characters of the code

 Examples: Penny →P500, Ponny→P500, Powers→P620 , Perez →P620

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 20

Query reformulation (1)

 A specific search need can be expressed in different ways, some formulations
lead to better results than others

 Already discussed some strategies for (implicit) query reformulation

 Integration of relevance feedback (e.g., Rocchio algorithm), implicit feedback
(using clicks and similar queries from query log), pseudo-relevance feedback
(assuming top-k results are relevant)

 Example: estimate the probability of 𝑤′ given 𝑤 ∈ 𝑞 from query log

𝑃 𝑤′|𝑤 ≈ 𝑃 𝑤′|𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞) ∙ 𝑃 𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞)|𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠 𝑤
𝑑

 where 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞) and 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑤) are the documents that were (implicitly)
 rated as relevant for the query and the keyword 𝑤 respectively

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 21

Query reformulation (2)

 Linguistic techniques that use

 stemming/lemmatization and spelling correction (through edit distance)

 thesauri or dictionaries for term expansion or replacement by synonyms,
hypernyms, hyponyms, meronyms, holonyms, …

 Naive reformulation

 Substitute (or expand) keyword 𝑤 with 𝑆𝑤 = 𝑤1, … , 𝑤𝑘 such
 that for each 𝑤𝑖 ∈ 𝑆𝑤 ∶ 𝑠𝑖𝑚 𝑤,𝑤𝑖 ≥ 𝜏 (with threshold 𝜏)

 𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑑,∪𝑤∈𝑞 𝑆𝑤 = 𝑠𝑖𝑚 𝑤,𝑤𝑖 ∗ 𝑆𝑐 𝑤𝑖 , 𝑑𝑤𝑖∈𝑆𝑤𝑤∈𝑞

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 22

Query reformulation: example (1)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 23

Query reformulation: example (2)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 24

 Instant query reformulation (thesaurus-based?)

Careful thesaurus-based query reformulation

 Find important phrases in query (or from best initial query results)

 Try to map found phrases onto synonyms, hyponyms, hypernyms from
some thesaurus

 If a phrase is mapped to one concept expand it with synonyms and
hyponyms

 Compute score as

𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑑, 𝑇ℎ: 𝑡ℎ𝑒𝑠𝑎𝑢𝑟𝑢𝑠 = max
𝑐∈𝑇ℎ
𝑠𝑖𝑚 𝑤, 𝑐 ∗ 𝑆𝑐 𝑐, 𝑑

𝑤∈𝑞

  avoids unfair expansion of terms that have many concepts

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 25

Thesaurus-based query reformulation

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 26

Source:
http://wordnetweb.princeton.edu/perl/webwn

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn

Possible similarity measures

 Dice

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
2 ∙ 𝑑𝑜𝑐𝑠(𝑤𝑖) ∩ 𝑑𝑜𝑐𝑠(𝑤𝑗)

𝑑𝑜𝑐𝑠(𝑤𝑖) + 𝑑𝑜𝑐𝑠(𝑤𝑗)

 Jaccard

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
𝑑𝑜𝑐𝑠(𝑤𝑖) ∩ 𝑑𝑜𝑐𝑠(𝑤𝑗)

𝑑𝑜𝑐𝑠(𝑤𝑖) ∪ 𝑑𝑜𝑐𝑠(𝑤𝑗)

 Point-wise mutual information (PMI)

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
𝑓𝑟𝑒𝑞(𝑤𝑖 𝑎𝑛𝑑 𝑤𝑗)

𝑓𝑟𝑒𝑞 𝑤𝑖 ∙ 𝑓𝑟𝑒𝑞 𝑤𝑗

 Similarity on ontology graphs

𝑠𝑖𝑚∗ 𝑤,𝑤′ = max 𝑠𝑖𝑚 𝑐𝑖 , 𝑐𝑗
𝑐𝑖,𝑐𝑗 ∈𝑝

| 𝑝 𝑖𝑠 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑤 𝑡𝑜 𝑤′

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 27

Summary

 Query analysis
 Parsing, tokenisation

 Query cleaning (remove punctuations, comas, stop words)

 Named-entity/noun-group recognition (dictionaries, shallow parsing,
HMMs)

 Stemming

 Spelling correction
 Similarity/distance measures (edit distance, n-gram-based Dice, Jaccard, …)

 Query reformulation (linguistic, thesaurus-based)
 Thesaurus-based similarity

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 28

