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Query processing overview 
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query document  (same process for document indexing)  
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Structure 
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Tokenization 



Query normalization: clean query 

 Remove punctuations, comas, semicolons, unnecessary spaces…  

 Upper-case vs. lower-case spellings (language-dependent)  

 Normalize and expand acronyms (e.g.: N.Y. NY  New York) 

 Normalize language dependent characters (e.g.: ü  ue) 

 

 

4 



Query normalization: remove stop words 

 Typically, maintained in so-called stop word lists, e.g.: 
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Named-entity recognition in query 

 Task 

 Identify named entities such as persons, locations, organizations, dates, etc. in 
query 

 Example: “flights to John F. Kennedy airport” 
 

 Solutions 

 Look-up in dictionary or knowledge base (mapping is still difficult) 

 Shallow parsing (exploit internal structure of names and local context in which 
they appear) 

 Shallow parsing + probabilistic graphical models for sequential tagging (e.g.: 
Hidden Markov Models (HMMs), Conditional Random Fields (CRFs)) 

 Example: HMM with 2 states {entity, non-entity}, find max
𝐗
𝑃(𝐗, 𝐘) 
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𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 

𝑌1
= 𝑛𝑜𝑢𝑛 

𝑌2
= 𝑝𝑟𝑒𝑝 

𝑌3
= 𝑛𝑎𝑚𝑒 

𝑌4
= 𝑛𝑎𝑚𝑒 

𝑌5
= 𝑛𝑎𝑚𝑒 

𝑌6
= 𝑛𝑜𝑢𝑛 



Query normalization: stemming  

 Morphological reduction to the stem of a term (i.e., the ground form) 
 

 Lemmatization algorithms determine the part of speech (e.g., noun, verb, 
adjective, etc.) of a term and apply stemming rules to map terms to their 
grammatical lemma (≡ ground form)   
 

 There are different stemming rules for adjectives, verbs, nouns, … 
 

 Simple rules for stemming 

 [.]{3, }+ies  y            (countries  country, ladies  lady, …) 

 [.]{4, }+ing              (fishing  fish,  sing  sing, applying  apply, …)   

 [.]{2, }+ss|sses  ss                 (press  press, guesses  guess, less  less,  
     chess  chess, …) 

 [.]{3, }[^s]+s             (books  book, symbols  symbol, …) 

 

 Notes  
 Order in which stemming rules are applied is important 

 Indexed documents undergo the same stemming process as the query 
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 Derivational morphology, e.g.: 
 ational   ate  
 ization  ize  
 biliti  ble  

 

The Porter Stemmer 

 Stemming algorithm proposed by Martin Porter in 1980 

 Standard algorithm for English stemming 

 Uses different steps for 
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 Mapping plural to singular form, e.g.: 
 sses  ss 
 ies  i 
 ss  ss 
 s  є 

 Mapping past and progressive tense to simple present tense, e.g.: 
 eed  ee 
 ed  є  
 ing  є  

 Clean-up and handle endings  (e.g.: y i ) 



Query reformulation on Google 
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Query normalization: spelling correction 

 Check spelling 

 E.g., by using similarity measures and occurrence frequencies on entries from 
dictionaries, query logs, web corpus 

 

 Propose correction of misspelled words, e.g.: 

 recieve  receive 

 dissapoiting  disappointing 

         acomodation  accommodation 

 mulitplayer  multiplayer  

         Playstaton  Playstation 

 Schwarznegger  Schwarzenegger 
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Google’s  
instant autocorrection 



Example: misspellings for Britney Spears on Google 
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 Observation: most used spelling is typically correct  
     (“Wisdom-of-the-Crowds” effect) 
 
 Can this observation be used for spellchecking and auto-correction? 

 
 

Source:  http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html 
 

http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html
http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html
http://www.cse.unl.edu/~lksoh/Classes/CSCE410_810_Spring06/sup1.html


Google’s spelling correction approach (1) 

 Preprocessing  

 Goal: generate triples of the form 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑠𝑡𝑟, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑠𝑡𝑟, 𝑜𝑏𝑠_𝑓𝑟𝑒𝑞  
 

 Build a term list with frequent terms occurring on the web. 
 

 Remove non-words (e.g., too many punctuations, too short or too long). 
 

 For each term in the list, find all other terms in the list that are “close” to it and 
create pairs 𝑠𝑡𝑟1, 𝑠𝑡𝑟2 , where 𝑠𝑡𝑟1, 𝑠𝑡𝑟2 are “close enough” to each other. 
 

 From all pairs of the form 𝑠𝑡𝑟1, 𝑠𝑡𝑟2  and maintain only those pairs (𝑠𝑡𝑟′, 𝑠𝑡𝑟), for 
which  𝑓𝑟𝑒𝑞 𝑠𝑡𝑟′ ≥ 10 ∗ 𝑓𝑟𝑒𝑞 𝑠𝑡𝑟 . 
 

 Return list of remaining triples  𝑠𝑡𝑟′, 𝑠𝑡𝑟, 𝑓𝑟𝑒𝑞(𝑠𝑡𝑟) . 
 

 Note: computation can be done in parallel and is easy to distribute. 
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Source: Whitelaw et al. “Using the Web for Language Independent Spellchecking and 
Autocorrection”. EMNLP 2009 

http://dl.acm.org/citation.cfm?id=1699629
http://dl.acm.org/citation.cfm?id=1699629
http://dl.acm.org/citation.cfm?id=1699629


Google’s spelling correction approach (2) 

 Input  

 Observed word 𝑤,  

 Candidate corrections 𝑐  𝑐 “is close to” 𝑤} 

 Data given by the set of triples  𝑐, 𝑤, 𝑓𝑟𝑒𝑞 𝑤  | 𝑤 is observed   
 

 Output 

 Candidate corrections, ranked decreasingly by  

 
𝑃(𝑐|𝑤) ∝ 𝑃 𝑤 𝑐 𝑃(𝑐) 

 

 

 

 

 Estimation of error model: for adjacent-substring partitions  𝑅 of 𝑐 and 𝑇 of 𝑤 
estimate  

𝑃 𝑤|𝑐 ≈ max
𝑅,𝑇: 𝑅 =|𝑇|

 𝑃 𝑇𝑖|𝑅𝑖
|𝑅|

𝑖=1
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Error model (word likelihood) N-gram language model  
derived from the web   

e.g., with  |𝑅𝑖 , |𝑇𝑖 ≤ 3  



Google’s spelling correction approach (3) 

 Context of a word can also be taken into account 

 Generate triples of the form 𝑤𝑙𝑐𝑤𝑟 , 𝑤𝑙  𝑤 𝑤𝑟, 𝑓𝑟𝑒𝑞 𝑤  

 

 Language model can be down-weighted (relatively to the error model), in 
case errors are common, e.g.: 

  
𝑃 𝑐 𝑤 ∝ 𝑃 𝑤 𝑐 𝑃 𝑐 𝜆 

 

 Reported error rates < 4% when error model trained on corpus size of 

      ~10 Mio. terms 

 

 How to find “close” strings? 

 Use similarity measures on strings (e.g., based on edit distance, Jaccard 
similarity on substring partitions, …) 
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with  𝜆 ≥ 0  



String distance measures: edit distance (1) 

 Minimal number of editing operations to turn a string 𝑠1into another string 𝑠2 
 

 Levenshtein distance (edit distance) 
 Uses replacement, deletion, insertion of a character as editing operations 

 Input: 𝑠1[1. . 𝑖] and 𝑠2 1. . 𝑗  

 Conditions:  

 𝑒𝑑𝑖𝑡 0, 0 = 𝑑𝑖𝑓𝑓 𝑖, 𝑗 ,    

 𝑒𝑑𝑖𝑡 𝑖, 0 =  𝑖 + 𝑒𝑑𝑖𝑡 0, 0 ,    
 𝑒𝑑𝑖𝑡 0, 𝑗 =  𝑗 + 𝑒𝑑𝑖𝑡 0, 0 .  

 Output: 𝑒𝑑𝑖𝑡(𝑖, 𝑗)  =  min { 𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗)  +  1,  

              𝑒𝑑𝑖𝑡 𝑖, 𝑗 − 1 +  1,  
              𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗 − 1)  +  𝑑𝑖𝑓𝑓(𝑖, 𝑗) }  

         

 e.g.,  with 𝑑𝑖𝑓𝑓 𝑖, 𝑗 =  
1     𝑖𝑓 𝑠1[𝑖] ≠ 𝑠2[𝑗]
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

→efficient computation by dynamic programming 
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// replace 

// insert 

// delete 



String distance measures: edit distance (2) 

 Levenshtein distance 
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K N I T T I N G 

S 1 2 3 4 5 6 7 8 

I 2 2 2 3 4 5 6 7 

T 3 3 3 2 3 4 5 6 

T 4 4 4 3 2 3 4 5 

I 5 5 4 4 3 2 3 4 

N 6 5 5 5 4 3 2 3 

G 7 6 6 6 5 4 3 2 



Approximate string containment with edit distance 

 Levenshtein distance for approximate string containment 

 Slightly different starting conditions 

 “colour” is contained in “kolorama” with 2 errors 
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Source: Modern Information Retrieval, 
              Baeza-Yates, Ribeiro-Neto 

http://www.amazon.com/Modern-Information-Retrieval-Concepts-Technology/dp/0321416910/ref=dp_ob_title_bk/186-7252165-2891925


String distance measures: edit distance (3) 

Demerau-Levenshtein distance  

 Uses replacement, deletion, insertion, and transposition of character as 
editing operations 

 Input: 𝑠1[1. . 𝑖] and 𝑠2 1. . 𝑗  

 Conditions: 

 𝑒𝑑𝑖𝑡 0, 0 = 𝑑𝑖𝑓𝑓 𝑖, 𝑗 ,   

 𝑒𝑑𝑖𝑡 𝑖, 0 =  𝑖 + 𝑒𝑑𝑖𝑡 0, 0 ,    

 𝑒𝑑𝑖𝑡 0, 𝑗 =  𝑗 + 𝑒𝑑𝑖𝑡 0, 0 .  

 Output: 𝑒𝑑𝑖𝑡(𝑖, 𝑗)  =  min { 𝑒𝑑𝑖𝑡(𝑖 − 1, 𝑗)  +  1,  

              𝑒𝑑𝑖𝑡 𝑖, 𝑗 − 1 +  1,  

              𝑒𝑑𝑖𝑡 𝑖 − 1, 𝑗 − 1 +  𝑑𝑖𝑓𝑓 𝑖, 𝑗  

              𝑒𝑑𝑖𝑡 𝑖 − 2, 𝑗 − 2 + 1}  

         

 with 𝑑𝑖𝑓𝑓 𝑖, 𝑗 =  
1     𝑖𝑓 𝑠1[𝑖] ≠ 𝑠2[𝑗]
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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// transpose 



Other useful string distance measures 

 Hamming distance  

𝑑𝐻 𝑠1, 𝑠2 = # 𝑖  𝑠1[𝑖] ≠ 𝑠2[𝑖]} ,   for |𝑠1| = |𝑠2| 

 

 Jaccard distance 

       𝐺𝑁 𝑠 : = {substrings of length 𝑁} , i.e., subset of N-grams  

       Example  

 𝐺3 "schwarzenegger" := {sch, chw, hwa, war, arz, rze, zen, ene …} 

       𝑑𝐽 𝑠1, 𝑠2 = 1 −
𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2

𝐺𝑁 𝑠1 ⋃𝐺𝑁 𝑠2
 

 

 Simple N-gram-based distance 

𝑑 𝑠1, 𝑠2 = 𝐺𝑁 𝑠1 + 𝐺𝑁 𝑠2 − 2 𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2   

 

 Theorem 1: for string 𝑠1 and a target string 𝑠2  
𝐺𝑁 𝑠1 ⋂𝐺𝑁 𝑠2 < 𝑠1 − 𝑁 − 1 − 𝑑𝑁 ⇒ 𝑑𝑒𝑑𝑖𝑡 𝑠1, 𝑠2 > 𝑑 
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Phonetic similarities 

 Soundex algorithm 

Idea: map words onto 4-letter codes, such that words with similar pronunciation 
have the same code  

 

 First letter of the word becomes first code letter  

 Then map  

  b, p, f, v  1 

  c, s, g, j, k, q, x, z  2 

  d, t  3 

  l  4 

  m, n  5 

  r  6 

 For letters with the same soundex number that are immediately next to each 
other, only one is mapped  

 a, e, i, o, u, y, h, w are ignored (exept for the first character) 

 If code length > 4, keep only first four characters of the code 
 

 Examples:  Penny →P500, Ponny→P500, Powers→P620 , Perez →P620 
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Query reformulation (1) 

 A specific search need can be expressed in different ways, some formulations 
lead to better results than others 

 

 Already discussed some strategies for (implicit) query reformulation 
 

 Integration of relevance feedback (e.g., Rocchio algorithm), implicit feedback 
(using clicks and similar queries from query log), pseudo-relevance feedback 
(assuming top-k results are relevant) 

 

 Example: estimate  the probability of 𝑤′ given 𝑤 ∈ 𝑞 from query log 

 

𝑃 𝑤′|𝑤 ≈ 𝑃 𝑤′|𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞) ∙ 𝑃 𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞)|𝑑 ∈ 𝑅𝑒𝑙𝐷𝑜𝑐𝑠 𝑤
𝑑

 

 

 where 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑞) and 𝑅𝑒𝑙𝐷𝑜𝑐𝑠(𝑤) are the documents that were (implicitly) 
 rated as relevant for the query and the keyword 𝑤 respectively  
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Query reformulation (2) 

 Linguistic techniques that use  
 

 stemming/lemmatization and spelling correction (through edit distance) 

 

 thesauri or dictionaries for term expansion or replacement by synonyms, 
hypernyms, hyponyms, meronyms, holonyms, …  

 

 Naive reformulation 

        Substitute (or expand) keyword 𝑤 with 𝑆𝑤 = 𝑤1, … , 𝑤𝑘  such  
        that for each 𝑤𝑖 ∈ 𝑆𝑤 ∶ 𝑠𝑖𝑚 𝑤,𝑤𝑖 ≥ 𝜏 (with threshold 𝜏) 

   

        𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑑,∪𝑤∈𝑞 𝑆𝑤 =   𝑠𝑖𝑚 𝑤,𝑤𝑖 ∗ 𝑆𝑐 𝑤𝑖 , 𝑑𝑤𝑖∈𝑆𝑤𝑤∈𝑞  
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Query reformulation: example (1) 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 23 



Query reformulation: example (2) 
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 Instant query reformulation (thesaurus-based?)  



Careful thesaurus-based query reformulation 

 Find important phrases in query (or from best initial query results) 

 

 Try to map found phrases onto synonyms, hyponyms, hypernyms from 
some thesaurus 

 

 If a phrase is mapped to one concept expand it with synonyms and 
hyponyms 

 

 Compute score as 

 

𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑑, 𝑇ℎ: 𝑡ℎ𝑒𝑠𝑎𝑢𝑟𝑢𝑠 = max
𝑐∈𝑇ℎ
𝑠𝑖𝑚 𝑤, 𝑐 ∗ 𝑆𝑐 𝑐, 𝑑

𝑤∈𝑞
 

 

             avoids unfair expansion of terms that have many concepts 
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Thesaurus-based query reformulation 
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Source:  
http://wordnetweb.princeton.edu/perl/webwn 

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn


Possible similarity measures 

 Dice 

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
2 ∙ 𝑑𝑜𝑐𝑠(𝑤𝑖) ∩ 𝑑𝑜𝑐𝑠(𝑤𝑗)

𝑑𝑜𝑐𝑠(𝑤𝑖) + 𝑑𝑜𝑐𝑠(𝑤𝑗)
 

 

 Jaccard 

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
𝑑𝑜𝑐𝑠(𝑤𝑖) ∩ 𝑑𝑜𝑐𝑠(𝑤𝑗)

𝑑𝑜𝑐𝑠(𝑤𝑖) ∪ 𝑑𝑜𝑐𝑠(𝑤𝑗)
 

 

 Point-wise mutual information (PMI) 

𝑠𝑖𝑚 𝑤𝑖 , 𝑤𝑗 =
𝑓𝑟𝑒𝑞(𝑤𝑖  𝑎𝑛𝑑 𝑤𝑗)

𝑓𝑟𝑒𝑞 𝑤𝑖 ∙ 𝑓𝑟𝑒𝑞 𝑤𝑗
 

 Similarity on ontology graphs 

𝑠𝑖𝑚∗ 𝑤,𝑤′ = max  𝑠𝑖𝑚 𝑐𝑖 , 𝑐𝑗
𝑐𝑖,𝑐𝑗 ∈𝑝

| 𝑝 𝑖𝑠 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑤 𝑡𝑜 𝑤′  
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Summary 

 Query analysis 
 Parsing, tokenisation 

 

 Query cleaning (remove punctuations, comas, stop words) 

 

 Named-entity/noun-group recognition (dictionaries, shallow parsing, 
HMMs) 

 

 Stemming  

 

 Spelling correction 
 Similarity/distance measures (edit distance, n-gram-based Dice, Jaccard, …) 

 

 Query reformulation (linguistic, thesaurus-based) 
 Thesaurus-based similarity 
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