
INVERTED INDEX CONSTRUCTION

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 1

Outline

 Intro

 Basics of probability and information theory

 Retrieval models

 Retrieval evaluation

 Link analysis

 From queries to top-k results
 Query processing

 Index construction

 Top-k search

 Social search

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 2

Overview

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 3

Tokenization
Linguistic

processing

Indexing

Inverted index

This is a
sample

document
for

explanation
purposes

this
is
a
sample
document
for
explanation
purposes

sample
document
explanation
purpose

B+ tree

document …
15: 0.03
43: 0.025
51: 0.015
53: 0.08
55: 0.061
…

explanation …
11: 0.02
16: 0.033
43: 0.015
54: 0.021
…

purpose … sample

17: 0.011
43: 0.045
58: 0.015
…

 9: 0.03
12: 0.04
21: 0.015
43: 0.02
…

Thesaurus

Queue of crawled
documents

Inverted index from the term-document matrix

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 4

 How to store a realistic term-document matrix with millions of terms
 and hundreds of millions of documents?

 Obviously a document contains relatively few terms.
 Document vectors contain many zeros.
 The whole matrix contains a lot more zeros than ones.

 Store for each term only the IDs of
 the documents in which it occurs,
 along with scores.

champion

1: 0.23

2: 0.14

football

1: 0.15

goal

1: 0.31

2: 0.21

4: 0.07

Important steps for index constructions

 Sort documents by terms.

 Merge multiple term occurrences in a single document but maintain
position information and add frequency information.

 Construct corpus vocabulary with entries of the form
𝑡𝑒𝑟𝑚, #𝑑𝑜𝑐𝑠, 𝑐𝑜𝑟𝑝𝑢𝑠_𝑐𝑜𝑢𝑛𝑡

 Construct for every term postings with entries of the form

 𝑑𝑜𝑐𝐼𝐷, 𝑐𝑜𝑢𝑛𝑡, 𝑙𝑖𝑠𝑡[pos1, offsets. .]

 Why are position-based postings better than postings that store
 biwords or longer phrases (e.g., ‘stanford university’ or ‘hasso
 plattner institute’)?

 All steps involve distributed computations (e.g., through MapReduce
methods)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 5

Example

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 6

term #docs #

champion 2 5

football 1 2

goal 3 8

law 2 5

party 2 11

politician 2 8

rain 2 6

score 2 9

soccer 1 3

weather 2 9

wind 3 6

docID freq

1 3

2 2

1 2

1 4

2 3

4 1

3 2

4 3

3 6

4 5

.

.

.

.

.

.

Vocabulary Frequency-based
postings (offsets
omitted) Pointers

Distributed index construction with MapReduce

 Programming paradigm for scalable, highly parallel data analytics

 Scheduling, load balancing and fault tolerance are core ingredients

 Enables distributed computations on 1000’s of machines

 Programming based on key-value pairs:

𝑀𝑎𝑝: 𝐾 × 𝑉 → (𝐿 × 𝑊)∗
𝑘, 𝑣 ⟼ (𝑙1, 𝑤1), (𝑙2, 𝑤2), …

𝑅𝑒𝑑𝑢𝑐𝑒: 𝐿 × 𝑊∗ → 𝑊∗
𝑙, (𝑥1, 𝑥2, …) ⟼ 𝑦1, 𝑦2, …

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 7

 MapReduce implementations: PIG (Yahoo), Hadoop (Apache), DryadLinq (Microsoft),

 Facebook Corona

Possible MapReduce Infrastructure for Indexing

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 8

Source: Introduction to Information Retrieval

http://research.yahoo.com/node/90
http://hadoop.apache.org/
http://research.microsoft.com/en-us/projects/DryadLINQ/
http://research.microsoft.com/en-us/projects/DryadLINQ/
https://github.com/facebook/hadoop-20/tree/master/src/contrib/corona
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

TF computation with MapReduce

 Step 1

 Map:

 (docID, content) {((term, docID), 1), …}

 Reduce:

 ((term, docID), {1,…}) {((term, docID), count)}

 Step 2

 Map:

 ((term, docID), count) {(docID, (term, count))}

 Reduce:

 (docID, {(term, count), …}) {((docID, term), (count/doc_length)),…}

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 9

Example (1)

 Computing term counts: Map

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 10

example document,
simple example for

computation of term
frequency in document

example document
simple example

computation term
frequency document

document, 1
example, 1
example, 1
simple, 1

computation, 1
document, 1
frequency, 1

term, 1

Example (2)

 Computing term counts: Reduce

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 11

document, 1
example, 1
example, 1
simple, 1

computation, 1
document, 1
frequency, 1

term, 1

example,
{1, 1}

simple, {1}

computation, {1}

frequency, {1}

term, {1}

document,
{1,1}

example, 2

simple, 1

computation, 1

frequency, 1

term, 1

document, 2

document, 2
example, 2

simple, 1
computation, 1

frequency, 1
term, 1

Size estimation for the data to be indexed

 30 billion documents

 On avg. term occurs in

 ~ 100 documents

 10 Mio. distinct terms

 ~ 3 × 1012 entries for the

 postings

 10 Mio. entries for the

 vocabulary

 Assume ~5 Bytes per entry
 ~ 15 TB in total

Question:

 How are the vocabulary and

 the postings stored?

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 12

term #docs #

champion 2 5

football 1 2

goal 3 8

law 2 5

party 2 11

politician 2 8

rain 2 6

score 2 9

soccer 1 3

weather 2 9

wind 3 6

docID freq

1 3

2 2

1 2

1 4

2 3

4 1

3 2

4 3

3 6

4 5

.

.

.

.

.

.

Vocabulary Frequency-based
postings (offsets
omitted)

Storing the vocabulary: B+ trees

 Balanced search tree over the key space with high node fanout

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 13

𝑝1 𝑘1 𝑝2 𝑘2 … 𝑝3

𝑝11 𝑘11 𝑝12 … 𝑝21 𝑘21 𝑝22 …

.

.

.

𝑝21 𝑘21 𝑝22 …

𝑝ℎ1 𝑘ℎ1 𝑝ℎ2 … 𝑝ℎ𝑘 𝑝ℎ1 𝑘ℎ1 𝑝ℎ2 … 𝑝ℎ𝑘

.

.

.

...

𝒕𝟏, 𝐢𝐝𝐟 𝐭𝟏 𝒕𝟐, 𝐢𝐝𝐟(𝒕𝟐) 𝒕𝒎, 𝐢𝐝𝐟 𝐭𝒎 𝒕𝒎+𝟏, 𝐢𝐝𝐟(𝒕𝒎+𝟏)

Properties of B+ trees

 Every B+ tree is balanced

 Ordered partitioning of the

 key space

 In a B+ tree of order 𝑛 (i.e., with fanout size 𝑛) every internal node, exept
the root, has 𝑚 children, with 𝑛/2 ≤ 𝑚 ≤ 𝑛

 For the root: 2 ≤ 𝑚 ≤ 𝑛

 For the leaf nodes: 𝑛/2 ≤ 𝑚 ≤ 𝑛 − 1

 How could the insertion, deletion of keys be done?

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 14

𝑝1 𝑘1 𝑝2 𝑘2 … 𝑝3

𝑘 < 𝑘1 𝑘1 ≤ 𝑘 < 𝑘2

Properties of B+ trees

 The maximum number of entries stored in B+ tree of order 𝑛 and height ℎ
is 𝑛ℎ − 𝑛ℎ−1

 a 4-level B+ tree of order 𝑛 =100 would be sufficient to store 10
 Mio. term keys

 The minimum number of entries stored in B+ tree of order 𝑛 and height ℎ

is 2
𝑛

2

ℎ−1

 Space required: 𝑂(|𝐾|), where 𝐾 is the set of keys

 Insertion, deletion, finding: 𝑂(log𝑛(|𝐾|))

 Typically, the upper levels (up to the leaf level) of the B+ tree are loaded in
main memory, the information linked with the leaves resides on disk.

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 15

B+ tree construction through bulk-loading

 Sort the entries by key values.

 Start with empty page as root node and insert a pointer to the first page of
entries.

 Continue with the next page, insert its smallest key value into the root as
separation key and insert pointer to this page. Repeat this step until the
root is full.

 When the root is full, split it and create a new root.

 Keep inserting entries into the right most index node above the leaves,
split the node when it is full and continue recursively

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 16

Index merging

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 17

Source: Modern Information Retrieval

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X
http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X

Dynamic Index

 On the web, pages are constantly added, deleted, modified

 Solution

 Use index 𝐼0 for the static pages

 Use index 𝐼+ for documents that are added

 Use index 𝐼~ for documents that are frequently modified

 Use index 𝐼− for documents that are deleted

 Complete index: 𝐼0 ∪ 𝐼+ ∪ 𝐼~ \𝐼−

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 18

Final Index

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 19

B+ tree (or other search tree on vocabulary)

(document, 𝑖𝑑𝑓1) …

15: 0.03
43: 0.025
51: 0.015
53: 0.018
55: 0.061
.
.
.

(explanation, 𝑖𝑑𝑓2) …

11: 0.02
16: 0.033
43: 0.015
54: 0.021
.
.
.

(purpose, 𝑖𝑑𝑓3) …

17: 0.011
43: 0.045
58: 0.015
.
.
.

Inverted lists (posting lists)
… may contain hundreds of
thousands of entries

Term IDs

Vocabulary
terms

 How to store the vocabulary efficiently?

Vocabulary compression (1)

 With naive dictionary storage:

 In Unicode: (2×20 + 4 + 4) bytes per term

 For 10 Mio. terms: ~ 460 MB needed

 fixed-width entries too wasteful

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 20

Source: Introduction to Information Retrieval

http://nlp.stanford.edu/IR-book/

Vocabulary compression (2)

 Better strategy:

 Vocabulary as sequence

 of terms

 Pointers mark the beginning and the end of a vocabulary term.

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 21

… much more space-
efficient than previous
scheme

Source: Introduction to Information Retrieval

http://nlp.stanford.edu/IR-book/

 Save more space by

 Grouping k subsequent terms (k-1 pointers are saved per group)

 Prefix replacement

Vocabulary compression (3)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 22

Source: Introduction to Information Retrieval

http://nlp.stanford.edu/IR-book/

Comparison of vocabulary compression strategies

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 23

Source: Introduction to Information Retrieval

 Compression of vocabulary with ~400,000 terms:

http://nlp.stanford.edu/IR-book/

Vocabulary compression with prefix trees

 For vocabularies of moderate size (e.g., for in-memory processable size)
use tries (conceptually the same as the previous scheme)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 24

This is a text. This text has many letters. Terms are made of letters.

d1 d2 d3

letters: (d2, 1, [5]), (d3, 1, [5])

m a
d

n

made: (d3, 1, [3])

many: (d2, 1, [4])
t

e
text: (d1, 1, [4]), (d2, 1, [2])

terms: (d3, 1, [1])

x

r

l

Tries vs. hash tables

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 25

Source:
Wikipedia

Tries

Hash tables

Final Index

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 26

B+ tree (or other search tree on vocabulary)

(document, 𝑖𝑑𝑓1) …

15: 0.03
43: 0.025
51: 0.015
53: 0.018
55: 0.061
.
.
.

(explanation, 𝑖𝑑𝑓2) …

11: 0.02
16: 0.033
43: 0.015
54: 0.021
.
.
.

(purpose, 𝑖𝑑𝑓3) …

17: 0.011
43: 0.045
58: 0.015
.
.
.

Inverted lists (posting lists)
… may contain hundreds of
thousands of entries

Term IDs

Terms

 How are the inverted lists stored?

Storing inverted lists

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 27

11
(…)

17
(…)

23
(…)

27
(…)

59
(…)

71
(…)

73
(…)

90
(…)

103
(…)

 Partition the list in blocks of same size

 Blocks are stored sequentially

 We will see later that for Boolean queries sorting by ID is sufficient, for ranking
sorting by scores (i.e., term frequencies) is better

 Skip pointers at the beginning of each block point either to the next block
or a few blocks ahead

103
(…)

Compressing inverted lists

 Given a Zipf-distribution of terms over the indexed documents, the lengths
of the inverted lists will follow the same distribution.

 Unbalanced latencies for reading lists of highly varying sizes from
 disk

 Is it possible to mitigate these latencies?

 Effective compression needed

 Could we apply Ziv-Lempel compression to inverted list entries?

 Ziv-Lempel is good for continuous text but not for postings

 For inverted lists, gaps between successive doc IDs are encoded

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 28

Unary encoding of gaps

 Gap size 𝑘 is is encoded by (𝑘 − 1)-times 0 followed by one 1

 Optimal for 𝑃 ∆= 𝑘 =
1

2

𝑘

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 29

Decimal Unary

1 1

2 01

3 001

4 0001

5 00001

6 000001

7 0000001

8 00000001

9 000000001

10 0000000001
𝑘

Freq.

1.0

0.5

1 2 3

Binary encoding of gaps

 Gap size 𝑘 is encoded by its binary representation

 Good for long gaps (but not prefix-free)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 30

Decimal Unary Binary

1 1 1

2 01 10

3 001 011

4 0001 100

5 00001 101

6 000001 110

7 0000001 111

8 00000001 1000

9 000000001 1001

10 0000000001 1010

Elias Gamma encoding of gaps

 Gap size 𝑘 is encoded by 1 + log2 𝑘 in unary followed by binary
representation, without the most significant bit

 E.g.: 9 0001 001

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 31

Decimal Unary Binary Gamma

1 1 1 1

2 01 10 01 0

3 001 011 01 1

4 0001 100 001 00

5 00001 101 001 01

6 000001 110 001 10

7 0000001 111 001 11

8 00000001 1000 0001 000

9 000000001 1001 0001 001

10 0000000001 1010 0001 010

 Optimal for

𝑃 ∆= 𝑘 ≈
1

2𝑘2

Google’s Gamma encoding scheme

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 32

Source: WSDM 2009 keynote by J. Dean

tf info

Position
info

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf

Other types of indeces

 Suffix trees

 Index for regular expression queries (e.g. Permuterm Index for wildcard
queries)

 R+ trees for spatial data

 Index with temporal information (for temporal queries)

 …

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 33

http://wp.soulwasted.net/wp-content/uploads/2009/08/r-tree.png

Summary

 Steps to index construction

 Sorting docs by terms

 vocabulary construction

 postings construction

 (Parallelization through MapReduce)

 Making the vocabulary efficiently searchable with B+ trees

 Vocabulary compression (sequential term storage with blocking and prefix
replacement)

 Prefix trees for maintaining vocabulary of moderate size in main memory

 Storing and compressing inverted lists

 Equal-size blocks with pointers between subsequent blocks

 Gap-based encoding within blocks (Unary, Gamma, Rice, …)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 34

