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Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 2 



Overview 
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for  
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purposes 

sample  
document 
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purpose 

B+ tree 
 
 

document  … 
15:  0.03 
43: 0.025 
51: 0.015 
53: 0.08 
55: 0.061 
… 

explanation  … 
11: 0.02 
16: 0.033 
43: 0.015 
54: 0.021 
… 

purpose …  sample 

17: 0.011 
43: 0.045 
58: 0.015 
… 

 9:  0.03 
12: 0.04 
21: 0.015 
43: 0.02 
… 

Thesaurus 

Queue of crawled 
documents 



Inverted index from the term-document matrix 
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 How to store a realistic term-document matrix with millions of terms  
     and hundreds of millions of documents? 
 
 Obviously a document contains relatively few terms. 
           Document vectors contain many zeros. 
  The whole matrix contains a lot more zeros than ones. 
 
 Store for each term only the IDs of 
      the documents in which it occurs, 
      along with scores. 

champion 

1: 0.23 

2: 0.14 

football 

1: 0.15 

goal 

1: 0.31 

2: 0.21 

4: 0.07 



Important steps for index constructions 

 Sort documents by terms. 
 

 Merge multiple term occurrences in a single document but maintain 
position information and add frequency information. 
 

 Construct corpus vocabulary with entries of the form 
𝑡𝑒𝑟𝑚, #𝑑𝑜𝑐𝑠, 𝑐𝑜𝑟𝑝𝑢𝑠_𝑐𝑜𝑢𝑛𝑡  

 

 Construct for every term postings with entries of the form  

      𝑑𝑜𝑐𝐼𝐷, 𝑐𝑜𝑢𝑛𝑡, 𝑙𝑖𝑠𝑡[pos1, offsets. . ]   

 Why are position-based postings better than postings that store     
 biwords or longer phrases (e.g., ‘stanford university’ or  ‘hasso 
 plattner institute’)? 

 

 All steps involve distributed computations (e.g., through MapReduce 
methods) 
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Example 
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term #docs # 

champion 2 5 

football 1 2 

goal 3 8 

law 2 5 

party 2 11 

politician 2 8 

rain 2 6 

score 2 9 

soccer 1 3 

weather 2 9 

wind  3 6 

docID freq 

1 3 

2 2 

1 2 

1 4 

2 3 

4 1 

3 2 

4 3 

3 6 

4 5 

. 

. 

. 

. 

. 

. 

Vocabulary Frequency-based 
postings (offsets 
omitted) Pointers 



Distributed index construction with MapReduce 

 Programming paradigm for scalable, highly parallel data analytics 
 

 Scheduling, load balancing and fault tolerance are core ingredients 
 

 Enables distributed computations on 1000’s of machines 
 

 Programming based on key-value pairs: 

 
𝑀𝑎𝑝:  𝐾 × 𝑉 → (𝐿 × 𝑊)∗ 
𝑘, 𝑣 ⟼ (𝑙1, 𝑤1), (𝑙2, 𝑤2), … 

 
𝑅𝑒𝑑𝑢𝑐𝑒:  𝐿 × 𝑊∗  → 𝑊∗ 
𝑙, (𝑥1, 𝑥2, … )  ⟼ 𝑦1, 𝑦2, … 
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 MapReduce implementations: PIG (Yahoo),  Hadoop (Apache),  DryadLinq (Microsoft), 

             Facebook Corona 

 

Possible MapReduce Infrastructure for Indexing 
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Source: Introduction to Information Retrieval 

http://research.yahoo.com/node/90
http://hadoop.apache.org/
http://research.microsoft.com/en-us/projects/DryadLINQ/
http://research.microsoft.com/en-us/projects/DryadLINQ/
https://github.com/facebook/hadoop-20/tree/master/src/contrib/corona
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/


TF computation with MapReduce 

 Step 1 

 Map:  

 (docID, content)    {((term, docID), 1), …} 

 

 Reduce: 

 ((term, docID), {1,…})  {((term, docID), count)} 

 

 Step 2 

 Map:   

 ((term, docID), count)  {(docID, (term, count))} 

  

 Reduce: 

 (docID, {(term, count),  …})  {((docID, term), (count/doc_length)),…} 
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Example (1) 

 Computing term counts: Map 
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example document, 
simple example for 

computation of term 
frequency in document 

example document 
simple example 

computation term 
frequency document 

document, 1 
example,  1 
example, 1  
simple, 1  

computation, 1 
document, 1 
frequency, 1  

term, 1 



Example (2) 

 Computing term counts: Reduce 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 11 

document, 1 
example,  1 
example, 1  
simple, 1  

computation, 1 
document, 1 
frequency, 1  

term, 1 

example, 
{1, 1} 

simple, {1} 

computation, {1} 

frequency, {1} 

term, {1} 

document, 
{1,1} 

example, 2 

simple, 1 

computation,  1 

frequency,  1 

term, 1 

document, 2 

document, 2 
example,  2 

simple, 1 
computation, 1 

frequency, 1 
term, 1   



Size estimation for the data to be indexed  

 30 billion documents 

 On avg. term occurs in 

     ~ 100 documents 

 10 Mio. distinct terms 

 
 ~ 3 ×  1012 entries for the  

     postings 

 10 Mio. entries for the  

      vocabulary 

 

 Assume ~5 Bytes per entry 
 ~ 15 TB in total 

 

Question: 

 How are the vocabulary and  

      the postings stored? 
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term #docs # 

champion 2 5 

football 1 2 

goal 3 8 

law 2 5 

party 2 11 

politician 2 8 

rain 2 6 

score 2 9 

soccer 1 3 

weather 2 9 

wind  3 6 

docID freq 

1 3 

2 2 

1 2 

1 4 

2 3 

4 1 

3 2 

4 3 

3 6 

4 5 

. 

. 

. 

. 

. 

. 

Vocabulary Frequency-based 
postings (offsets 
omitted) 



Storing the vocabulary: B+ trees 

 Balanced search tree over the key space with high node fanout 
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𝑝1 𝑘1 𝑝2 𝑘2                            … 𝑝3 

𝑝11 𝑘11 𝑝12 … 𝑝21 𝑘21 𝑝22 … 

. 

. 

. 

𝑝21 𝑘21 𝑝22 … 

𝑝ℎ1 𝑘ℎ1 𝑝ℎ2 … 𝑝ℎ𝑘 𝑝ℎ1 𝑘ℎ1 𝑝ℎ2 … 𝑝ℎ𝑘 

. 

. 

. 

... 

𝒕𝟏, 𝐢𝐝𝐟 𝐭𝟏  𝒕𝟐, 𝐢𝐝𝐟(𝒕𝟐)  𝒕𝒎, 𝐢𝐝𝐟 𝐭𝒎  𝒕𝒎+𝟏, 𝐢𝐝𝐟(𝒕𝒎+𝟏)  



Properties of B+ trees 

 Every B+ tree is balanced 

 

 Ordered partitioning of the  

      key space 

 

 

 In a B+ tree of order 𝑛  (i.e.,  with fanout size 𝑛) every internal node, exept 
the root, has  𝑚 children, with 𝑛/2 ≤ 𝑚 ≤ 𝑛  

 

 For the root:  2 ≤ 𝑚 ≤ 𝑛  

 

 For the leaf nodes:  𝑛/2 ≤ 𝑚 ≤ 𝑛 − 1  

 

  How could the insertion, deletion of keys be done? 
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𝑝1 𝑘1 𝑝2 𝑘2                            … 𝑝3 

𝑘 < 𝑘1 𝑘1 ≤ 𝑘 < 𝑘2 



Properties of B+ trees 

 The maximum number of entries stored in B+ tree of order 𝑛 and height ℎ 
is 𝑛ℎ − 𝑛ℎ−1 

  a 4-level B+ tree of order 𝑛 =100  would be sufficient to store 10 
       Mio. term keys 

 

 The minimum number of entries stored in B+ tree of order 𝑛 and height ℎ 

is 2
𝑛

2

ℎ−1
 

 

 Space required: 𝑂(|𝐾|), where 𝐾 is the set of keys 

 Insertion, deletion, finding: 𝑂(log𝑛(|𝐾|)) 

 

 Typically, the upper levels (up to the leaf level) of the B+ tree are loaded in 
main memory, the information linked with the leaves resides on disk. 
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B+ tree construction through bulk-loading 

 

 Sort the entries by key values. 

 

 Start with empty page as root node and insert a pointer to the first page of 
entries. 

 

 Continue with the next page, insert its smallest key value into the root as 
separation key and insert pointer to this page. Repeat this step until the 
root is full. 

 

 When the root is full, split it and create a new root. 

 

 Keep inserting entries into the right most index node above the leaves, 
split the node when it is full and continue recursively 
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Index merging 
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Source: Modern Information Retrieval 

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X
http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X


Dynamic Index 

 On the web, pages are constantly added, deleted, modified 
 

 

 Solution 

 Use index 𝐼0 for the static pages 

 Use index 𝐼+ for documents that are added 

 Use index 𝐼~ for documents that are frequently modified  

 Use index 𝐼− for documents that are deleted 

 

 Complete index:  𝐼0 ∪ 𝐼+ ∪ 𝐼~ \𝐼− 
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Final Index 
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B+ tree (or other search tree on vocabulary) 
 
 

(document, 𝑖𝑑𝑓1)  … 

15:  0.03 
43: 0.025  
51: 0.015  
53: 0.018 
55: 0.061 
. 
. 
. 

(explanation, 𝑖𝑑𝑓2) … 

11: 0.02 
16: 0.033 
43: 0.015 
54: 0.021 
. 
. 
. 

(purpose, 𝑖𝑑𝑓3) … 

17: 0.011 
43: 0.045 
58: 0.015 
. 
. 
. 

Inverted lists (posting lists) 
… may contain hundreds of  
thousands of entries 

Term IDs 

Vocabulary 
terms  

 How to store the vocabulary efficiently? 



Vocabulary compression (1) 

 With naive dictionary storage: 

 

 

 

 

 

 

 

 

 

 In Unicode: (2×20 + 4 + 4) bytes per term 

 For 10 Mio. terms: ~ 460 MB needed 

  fixed-width entries too wasteful 
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Source: Introduction to Information Retrieval 

http://nlp.stanford.edu/IR-book/


Vocabulary compression (2) 

 Better strategy: 

      Vocabulary as sequence  

      of terms 

 

 

 

 

 

 

 

 

 

 

 

 Pointers mark the beginning and the end of a vocabulary term. 
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… much more space-
efficient than previous 
scheme 

Source: Introduction to Information Retrieval 

http://nlp.stanford.edu/IR-book/


 Save more space by 

 Grouping k subsequent terms (k-1 pointers are saved per group) 

 Prefix replacement 

 

 

 

 

 

 

 

 

 

 

Vocabulary compression (3) 
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Source: Introduction to Information Retrieval 

http://nlp.stanford.edu/IR-book/


Comparison of vocabulary compression strategies 
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Source: Introduction to Information Retrieval 

 Compression of vocabulary with ~400,000 terms: 

 

 

 

 

 

 

 

 

 

 

http://nlp.stanford.edu/IR-book/


Vocabulary compression with prefix trees 

 For vocabularies of moderate size (e.g., for in-memory processable size) 
use tries (conceptually the same as the previous scheme) 
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This is a text. This text has many letters. Terms are made of letters. 

d1 d2 d3 

letters: (d2, 1, [5]), (d3, 1, [5]) 

m a 
d 

n 

made: (d3, 1, [3]) 

many: (d2, 1, [4]) 
t 

e 
text: (d1, 1, [4]), (d2, 1, [2])  

terms: (d3, 1, [1])  

x 

r 

l 



Tries vs. hash tables 
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Source:  
Wikipedia 

Tries 

Hash tables 



Final Index 
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B+ tree (or other search tree on vocabulary) 
 
 

(document, 𝑖𝑑𝑓1)  … 

15:  0.03 
43: 0.025  
51: 0.015  
53: 0.018 
55: 0.061 
. 
. 
. 

(explanation, 𝑖𝑑𝑓2) … 

11: 0.02 
16: 0.033 
43: 0.015 
54: 0.021 
. 
. 
. 

(purpose, 𝑖𝑑𝑓3) … 

17: 0.011 
43: 0.045 
58: 0.015 
. 
. 
. 

Inverted lists (posting lists) 
… may contain hundreds of  
thousands of entries 

Term IDs 

Terms  

 How are the inverted lists stored? 



Storing inverted lists 
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11 
( … )    

17 
( … )    

23 
( … )    

27 
( … )    

59 
( … )    

71 
( … )    

73 
( … )    

90 
( … )    

103 
( … )    

 Partition the list in blocks of same size 

 

 Blocks are stored sequentially  

 We will see later that for Boolean queries sorting by ID is sufficient, for ranking 
sorting by scores (i.e., term frequencies) is better  

 

 Skip pointers at the beginning of each block point either to the next block 
or a few blocks ahead 

 

 

 

 

 
103 
( … )    



Compressing inverted lists 

 Given a Zipf-distribution of terms over the indexed documents, the lengths 
of the inverted lists will follow the same distribution. 

  Unbalanced latencies for reading lists of highly varying sizes from 
       disk 

 

 Is it possible to mitigate these latencies? 

  Effective compression needed 

 

 Could we apply Ziv-Lempel compression to inverted list entries? 

 

 Ziv-Lempel is good for continuous text but not for postings 

 

 For inverted lists, gaps between successive doc IDs are encoded 
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Unary encoding of gaps 

 Gap size 𝑘 is is encoded by (𝑘 − 1)-times 0 followed by one 1 

 

 

 

 

 

 

 

 

 

 

 

 

 Optimal for 𝑃 ∆= 𝑘 =
1

2

𝑘
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Decimal Unary 

1 1 

2 01 

3 001 

4 0001 

5 00001 

6 000001 

7 0000001 

8 00000001 

9 000000001 

10 0000000001 
𝑘 

Freq. 

1.0 

0.5 

1 2 3 



Binary encoding of gaps 

 Gap size 𝑘 is encoded by its binary representation 

 

 

 

 

 

 

 

 

 

 

 

 

 Good for long gaps (but not prefix-free) 
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Decimal Unary Binary  

1 1 1 

2 01 10 

3 001 011 

4 0001 100 

5 00001 101 

6 000001 110 

7 0000001 111 

8 00000001 1000 

9 000000001 1001 

10 0000000001 1010 



Elias Gamma encoding of gaps 

 Gap size 𝑘 is encoded by 1 + log2 𝑘  in unary followed by binary 
representation, without the most significant bit 

 E.g.: 9  0001 001 
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Decimal Unary Binary  Gamma 

1 1 1 1 

2 01 10 01 0 

3 001 011 01 1 

4 0001 100 001 00 

5 00001 101 001 01 

6 000001 110 001 10 

7 0000001 111 001 11 

8 00000001 1000 0001 000 

9 000000001 1001 0001 001 

10 0000000001 1010 0001 010 

 Optimal for  

𝑃 ∆= 𝑘 ≈
1

2𝑘2
 

 



Google’s Gamma encoding scheme 
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Source: WSDM 2009 keynote by J. Dean 

tf info 

Position 
info 

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/WSDM09-keynote.pdf


Other types of indeces 

 Suffix trees 

 

 Index for regular expression queries (e.g. Permuterm Index for wildcard 
queries) 

 

 R+ trees for spatial data 

 

 

 

 

 

 

 

 Index with temporal information (for temporal queries)  

 

 … 
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http://wp.soulwasted.net/wp-content/uploads/2009/08/r-tree.png


Summary 

 Steps to index construction 

 Sorting docs by terms 

  vocabulary construction 

  postings construction 

 (Parallelization through MapReduce) 

 

 Making the vocabulary efficiently searchable with B+ trees 

 Vocabulary compression (sequential term storage with blocking and prefix 
replacement)  

 

 Prefix trees for maintaining vocabulary of moderate size in main memory 

 

 Storing and compressing inverted lists 

 Equal-size blocks with pointers between subsequent blocks 

 Gap-based encoding within blocks (Unary, Gamma, Rice, …) 
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