

IT Systems Engineering | Universität Potsdam

Track 1 – Matrix Factorization **Implementation Details**

Collaborative Filtering

Markus Freitag, Jan-Felix Schwarz

9 June 2011

Agenda

1. Recap

- 2. Roadmap & Implementation Status
- 3. SGD Implementation: Performance Details
- 4. Implementation of Biases
- 5. Algorithm Parameters
- 6. Submissions & RMSEs
- 7. Implementation Outlook
- 8. Discussion

Recap: Matrix Factorization

Recap: Matrix Factorization

4					fe	user ature	s									
	item features		(1.9	20.1	9.4		(10	50			0	0		25		
			23.1	0.1	4.2				0		100			0		
	(5.1	10.0	21.3	Т	10.2	4.0	1.9		100		80					
	4.7	9.2	1.9		1.2	0.7	12.2		0			50	30			
	0.0	21.9	14.7		7.3	9.3	13.7							20		0
	7.9	8.5	40.2		6.3	28.1	7.2		20	100		0		50	60	
	10.1	0.2	2.9	•	9.0	5.3	3.2	=			0		90			
	9.1	8.1	8.7		5.2	11.1	12.0		10	50		20				
	16.6	20.1	4.1		5.7	3.9	2.7						90	100		20
	7.8	1.0	0.1		0.3	0.0	0.1					20			100	0
					6.7	21.2	0.0		0		0		40			
					6.4	7.9	3.2				70	10			10)

Recap: Matrix Factorization

5	user features															
		item			(1.9	20.1	9.4		(10	50	80	90	0	0	100	25
	features		23.1	0.1	4.2		70	55	0	90	100	15	10	0		
	(5.1	10.0	21.3	Т	10.2	4.0	1.9		100	76	80	90	10	30	20	0
	4.7	9.2	1.9		1.2	0.7	12.2		0	90	10	50	30	90	100	10
	0.0	21.9	14.7		7.3	9.3	13.7		0	10	100	70	40	20	10	0
	7.9	8.5	40.2		6.3	28.1	7.2		20	100	100	0	10	50	60	90
	10.1	0.2	2.9		9.0	5.3	3.2	=	80	20	0	80	90	76	0	10
	9.1	8.1	8.7		5.2	11.1	12.0		10	50	90	20	10	90	100	10
	16.6	20.1	4.1		5.7	3.9	2.7		0	0	10	50	90	100	40	20
	7.8	1.0	0.1	ļ	0.3	0.0	0.1		60	70	50	20	90	10	100	0
					6.7	21.2	0.0		0	10	0	90	40	20	50	30
					6.4	7.9	3.2		40	80	70	10	100	0	10	10

Recap: SGD Algorithm

6

Stochastic Gradient Descent (SGD)

- Approximation procedure for learning one feature
- For each rating in the training set the feature values are modified relative to the prediction error
 - □ User value += Learning Rate * Error * Item value
 - □ Item value += Learning Rate * Error * User Value
- Iterate over the training set until the sum of squared errors (SSE) converges
- Training set split into 4 subsets (track, album, artist, genre)
 Don't presume a common underlying model
 Interim Presentation | Markus Freitag, Jan-Felix Schwarz | 09.06.2011

Roadmap & Implementation Status

- Ratings are read once, then cached in memory
 - □ For largest subset: ~120MIO * 3 * Integer = **1.44 GB**
- Learned vectors are persisted every 10 dimensions
 - □ Save intermediate results, limit number of UPDATE statements

□ User vectors: \sim 1MIO * 10 * Float =	40 MB
Item vectors: ~625K * 10 * Float =	25 MB
Optimization: store interims of dot products	
For largest subset: ~120MIO * Float =	480 MB
Cache biases: \sim (1MIO + 625K) * Float =	6.5 MB

Total (for track set):

2 GB

- Feature values are stored in (sparse) arrays
 - Constant access times (ID is index)
 - Only 6.5 MB needed per feature
- Optimizations of operations
 - E.g.: error * error instead of Math.pow(error, 2)
- Avoid object instantiation, use primitive data types
- Memory consumption leaves room for parallelization
 □ One process per type → use up to 4 cores
 □ Requires no implementation effort

Baseline_{u,i} = TypeAvg + UserBias_u + ItemBias_i

- UserBias_u = UserAvg_u GlobalAvg
- ItemBias_i = ItemAvg_i TypeAvg
- Calculated for each item type

Algorithm Parameters

- Learning rate
 - Almost never changed
- Limit for the number of iterations
 - □ Tried many between 1 and 2500
 - Not fix anymore
- Improvement threshold for sum of squared errors (SSE)
 - \Box Very low in the beginning (0.1)
 - Changed to 10,000 (fast but too high)
 - □ Currently set to 0.001%
- Number of features
 - □ Started with only 1
 - □ 10/20/40 already tested (10 works best)
 - 100 is meant to be a good value Interim Presentation | Markus Freitag, Jan-Felix Schwarz | 09.06.2011

Submissions & RMSEs

13

Starting with one feature

#	Description	LR	Iterations	RMSE		
1	Test with 50	-	-	37.8262		
2	First complete run	0.01	100	28.3295		
5	With biases	0.001	446	28.9182		
6	Used item types	0.001	100	29.6343		

Submissions & RMSEs (ctd.)

14

Using more features

#	Description	LR	Features	RMSE		
7	Test with more f.	0.002	10	27.3462		
9	20 features	0.002	20	27.5172		
11	40 features	0.002	40	28.0550		
12	With validation set	0.002	10	26.5217		

- Idea: best guess is a linear blend between the user/item mean and the global mean
 - Better baseline for items/users with few ratings in the training set
- *V_a*: *Variance of all the items*' *average ratings*
- *V_b*: Variance of individual item ratings
- $K = V_a / V_b$

 $BetterItemAvg = K * GlobalAvg + \frac{sum(ObservedRatings)}{K * count(ObservedRating)}$

- For now we have 4 different prediction models
- Combine these models to improve predictions
- Blend prediction with
 - Ratings by the user for associated items
 - **Predictions** for associated items and the user
 - Averages for associated items
- Calculate confidences based on number of observed ratings
- Machine learning for weighting factors

Outlook: Make Use of Hierarchy

- Implemented SGD algorithm for matrix fatorization
 - Parallel processing of the four subsets using 6GB RAM
- Using simple biases to improve predictions
 - Planned: Improve bias calculation
- Experimented with different algorithm parameters
 - Submissions to validate on test set
 - □ Best RMSE so far: 26.5217
- Upcoming: Use hierachy to improve predictions
 - □ Linear (weighted) blend of associated:
 - ratings by the same user
 - predictions for the same user
 - item averages

- Identify weaknesses and strengths of each approach
- Collaborate for
 - Identifying samples (good predictions/bad predictions)
 - Calculating item and user statistics (metrics)
- Find correlations between metrics and prediction errors
- Linearly blend predictions of both approaches weighted according to significant metrics

Discussion: Combine Approaches

21

User Metrics	Item Metrics					
 number of distinct rating values (+ variance) 	 number of distinct rating values (+ variance) 					
 average rating (+ variance) 	 average rating (+ variance) 					
 difference to global average 	 difference to global average 					
 absolute number of ratings 	 absolute number of ratings 					