Hasso
Platther
Institut

IT Systems Engineering | Universitat Potsdam

Track 1 — Matrix Factorization

Implementation Details

Collaborative Filtering

Markus Freitag, Jan-Felix Schwarz 9 June 2011



H Hasso
Plattner
Agenda Institut

Recap

Roadmap & Implementation Status

. SGD Implementation: Performance Details
Implementation of Biases

. Algorithm Parameters

. Submissions & RMSEs

. Implementation Outlook

. Discussion

Interim Presentation | Markus Freitag, Jan-Felix Schwarz | 09.06.2011



Recap: Matrix Factorization
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Recap: Matrix Factorization
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Recap: Matrix Factorization
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Hasso
Recap: SGD Algorithm E institut

Stochastic Gradient Descent (SGD)
m Approximation procedure for learning one feature

m For each rating in the training set the feature values are modified
relative to the prediction error

o User value += Learning Rate * Error * Item value
o Item value += Learning Rate * Error * User Value

m Iterate over the training set until the sum of squared errors (SSE)
converges

m Training set split into 4 subsets (track, album, artist, genre)
o Don’t presume a common underlying model



Roadmap & Implementation Status
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Hasso
SGD Algorithm: Memory L institut

m Ratings are read once, then cached in memory
o For largest subset: ~120MIO * 3 * Integer = 1.44 GB
m Learned vectors are persisted every 10 dimensions
0 Save intermediate results, limit number of UPDATE statements

o User vectors: ~1MIO * 10 * Float = 40 MB

o Item vectors: ~625K * 10 * Float = 25 MB
m Optimization: store interims of dot products

o For largest subset: ~120MIO * Float = 480 MB
m Cache biases: ~(1MIO + 625K) * Float = 6.5 MB

m Total (for track set): 2 GB
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SGD Algorithm: CPU E Institut

m Feature values are stored in (sparse) arrays
o Constant access times (ID is index)
o Only 6.5 MB needed per feature

m Optimizations of operations
o E.g.: error * error instead of Math.pow(error, 2)
m Avoid object instantiation, use primitive data types

m Memory consumption leaves room for parallelization
0 One process per type - use up to 4 cores
0 Requires no implementation effort
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m A Bias is a user- or item-specific offset
0 Items that are constantly rated higher than others
0 Users who rate mostly critical

m Estimation is based on training ratings

m Biases for each user and each item
m Biases are precalculated
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Baseline, ;= TypeAvg + UserBias, + ItemBias;

m UserBias, = UserAvg, — GlobalAvg
m ItemBias; = ItemAvg; — TypeAvg

m Calculated for each item type

Interim Presentation | Markus Freitag, Jan-Felix Schwarz | 09.06.2011



12

Algorithm Parameters E

Learning rate
o Almost never changed
Limit for the number of iterations
o Tried many between 1 and 2500
o Not fix anymore
Improvement threshold for sum of squared errors (SSE)
o Very low in the beginning (0.1)
o Changed to 10,000 (fast but too high)
0 Currently set to 0.001%
Number of features
o Started with only 1
0 10/20/40 already tested (10 works best)
o 100 is meant to be a good value
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Starting with one feature

e ]

Test with 50 37.8262
2 First complete run 0.01 100 28.3295
5 With biases 0.001 446 28.9182
6 Used item types 0.001 100 29.6343
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Submissions & RMSEs (ctd.) T
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Using more features

e e

Test with more f. 0.002 27.3462
9 20 features 0.002 20 27.5172
11 40 features 0.002 40 28.0550
12 With validation set 0.002 10 26.5217
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Outlook: Improve Biases Institut

Idea: best guess is a linear blend between the user/item mean
and the global mean

- Better baseline for items/users with few ratings in the training
set

V,: Variance of all the items' average ratings
V,: Variance of individual item ratings
K=V,/V,

sum(ObservedRatings)

BetterltemAvg = K * GlobalAvg + :
K * count(ObservedRating)
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Outlook: Make Use of Hierarchy E

For now we have 4 different prediction models
Combine these models to improve predictions

Blend prediction with
o Ratings by the user for associated items
o Predictions for associated items and the user
o Averages for associated items

Calculate confidences based on number of observed ratings
Machine learning for weighting factors
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Outlook: Make Use of Hierarchy

17

use
<

@ user ratings

@ predictions

@ averages

genre

Hasso
Plattner
Institut

artist <

§

album

track

Interim Presentation | Markus Freitag, Jan-Felix Schwarz | 09.06.2011



Outlook: Make Use of Hierarchy
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m Implemented SGD algorithm for matrix fatorization
o Parallel processing of the four subsets using 6GB RAM
m Using simple biases to improve predictions
o Planned: Improve bias calculation
m Experimented with different algorithm parameters
0 Submissions to validate on test set
o Best RMSE so far: 26.5217
m Upcoming: Use hierachy to improve predictions

o Linear (weighted) blend of associated:
- ratings by the same user
- predictions for the same user
- item averages
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Discussion: Combine Approaches H Institut

Identify weaknesses and strengths of each approach

Collaborate for

o Identifying samples (good predictions/bad predictions)
o Calculating item and user statistics (metrics)

Find correlations between metrics and prediction errors

Linearly blend predictions of both approaches weighted according
to significant metrics
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= number of distinct rating values = number of distinct rating values

(+ variance) (+ variance)

= average rating (+ variance) = average rating (+ variance)
= difference to global average » difference to global average
= absolute number of ratings = absolute number of ratings
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