
Efficient Java (with Stratosphere)

Arvid Heise,

Large Scale Duplicate Detection

Agenda

■ Bottlenecks

■ Mutable vs. Immutable

■ Caching/Pooling

■ Strings

■ Primitives

■ Final

■ Classloaders

■ Exception Handling

■ Concurrency

■ Debugging

■ Network

Efficient Java | Arvid Heise | May 27 2013

2

Bottlenecks

■ Java is not slow

□ But it is easier to write inefficient code

■ Before tweaking

□ Make sure you have a good algorithm

□ Detect bottlenecks (are you CPU, memory, or I/O bound?)

□ Create (micro-)benchmarks to measure the effects

□ Use benchmarks to pinpoint the problem

■ After tweaking

□ Very correctness with unit/integration tests

Efficient Java | Arvid Heise | May 27 2013

3

CPU-Bounds

■ Inefficient algorithm

■ Inefficient loops

■ Garbage collector

■ Unoptimizable code

■ (Un-)Boxing

■ Inefficient string handling

Efficient Java | Arvid Heise | May 27 2013

4

Memory bound

■ Inefficient algorithm

■ Caching unnecessary objects

■ Objects too large

■ Overallocated strings, collections, maps

■ Oversized data types

Efficient Java | Arvid Heise | May 27 2013

5

I/O bound

■ Inefficient algorithm

■ Too many file/network accesses

■ Sequential vs. random access

■ Serialization inefficient

■ Serialized objects too large

■ Inefficient caching

Efficient Java | Arvid Heise | May 27 2013

6

Mutable vs. Immutable

■ Immutable objects are needed for good API design

■ Easy to use in defensive API design

■ Address immutable

■ Person also immutable

Efficient Java | Arvid Heise | May 27 2013

7

class Person {
 private final String name;

 private final Address address;

 public Person(String name, Address address) {
 this.name = name;
 this.address = address;
 }
}

Mutable vs. Immutable #2

■ Mutable objects are better for fast code

■ Harder to use in defensive API design

■ Address mutable

■ What happens if we don’t copy the address?

Efficient Java | Arvid Heise | May 27 2013

8

class Person {
 private final String name;

 private final Address address;

 public Person(String name, Address address) {
 this.name = name;
 this.address = new Address(address);
 }
}

When to use mutable objects?

■ Fetching data becomes expensive with immutable objects

■ Need to create a new Person and Address for each log entry

Efficient Java | Arvid Heise | May 27 2013

9

 Map<Person, Integer> personOccurences = new HashMap<>();
 public void countOccurences(DataInput logFiles, int logCount)
 throws IOException {
 for (int index = 0; index < logCount; index++) {
 String name = logFiles.readUTF();
 String place = logFiles.readUTF();
 Person person = new Person(name, new Address(place));
 final Integer oldValue = this.personOccurences.get(person);
 this.personOccurences.put(person,
 oldValue == null ? 1 : (oldValue + 1));
 }
 }

When to use mutable objects?

■ Use lookup object

Efficient Java | Arvid Heise | May 27 2013

10

 Map<Person, Integer> personOccurences = new HashMap<>();
 public void countOccurences(DataInput logFiles, int logCount)
 throws IOException {
 Person person = new Person();
 for (int index = 0; index < logCount; index++) {
 String name = logFiles.readUTF();
 String place = logFiles.readUTF();
 person.setName(name);
 person.getAddress().setPlace(place);

 final Integer oldValue = this.personOccurences.get(person);
 this.personOccurences.put(person,
 oldValue == null ? 1 : (oldValue + 1));
 }
 }

Benefits

■ Constant number of objects

□ (Strings for name and address needed allocation in example)

■ No memory congestion

■ Slow performance gain for omitted object allocation

■ Garbage collector will not reduce performance

■ We can still get old behavior by object cloning

□ Remember this for PactRecords

Efficient Java | Arvid Heise | May 27 2013

11

Object Pools

■ Favorite anti-pattern

■ String literals and interned strings are managed by string pool

□ Can be tested for equality with ==

■ Similar Integer.valueOf maintains small pool

□ [-128, 127] by default

□ "java.lang.Integer.IntegerCache.high“

■ Maintain pool if few different objects

□ That needs to be looked up often

□ XML attributes
Efficient Java | Arvid Heise | May 27 2013

12

String name = new String("Peter");

External Caching

■ EHCache provides map-like interface

□ Removes entries if a certain size is reached

□ Different strategies, LRU most often used

■ Data is spilled to disk if configured

■ Can use third tier caches as well

■ Useful if you want to maintain object pool and you don’t know

what is needed most

Efficient Java | Arvid Heise | May 27 2013

13

String Concatenation

■ Second favorite anti-pattern

■ Use String + only when you know what you are doing

□ Worst language decision in Java

□ Never use += inside a loop

■ Remember String is immutable, needs lots of copying

■ Use StringBuilder instead

□ Compiler does it on its own for

Efficient Java | Arvid Heise | May 27 2013

14

 String alphabet = "";
 for (char letter = 'a'; letter <= 'z'; letter++)
 alphabet += letter;

String name = firstName + " " + lastName;

(Un-)Boxing

■ Beware of boxing and unboxing

□ Strongly degrades performance

■ Use fastutil or trove instead

Efficient Java | Arvid Heise | May 27 2013

15

 Map<Person, Integer> personOccurences = new HashMap<>();
 Person person = new Person(name, new Address(place));
 final Integer oldValue = this.personOccurences.get(person);
 this.personOccurences.put(person,
 oldValue == null ? 1 : (oldValue + 1));

 Object2IntMap<Person> personOccurences = new Object2IntOpenHashMap<>();
 this.personOccurences.defaultReturnValue(0);
 Person person = new Person(name, new Address(place));
 final int oldValue = this.personOccurences.getInt(person);
 this.personOccurences.put(person, oldValue + 1);

Double vs. Float

■ Often double is not needed and float is sufficient

■ Halves memory consumption

■ CPUs usually can perform more floating operation or with less

cycles

■ Don’t ever use one of these types for currencies

Efficient Java | Arvid Heise | May 27 2013

16

Final

■ Use final as often as possible

■ Helps to find programming errors

■ Helps compiler/JIT to inline

■ Imho final parameters and variables should work most of the time

■ Final classes are also good if you don’t devise APIs

Efficient Java | Arvid Heise | May 27 2013

17

Classloaders

■ Classloaders load classes when needed

■ During startup of Java program most time is spent here

■ You can use your own Classloaders to load plugins later

■ Saves startup time (less classes to manage)

■ Cleaner, as you can then actually unload classes

■ Look at URLClassLoader for more information

■ Also used by Nephele to execute programs

■ Be aware that sometimes classes don’t see each other, when in

different classloaders

Efficient Java | Arvid Heise | May 27 2013

18

Exception Handling

■ Anti-pattern

■ To show errors, exceptions are essential and good

■ Should not be part of normal workflow

■ Primitive return times are better if the result is expected

■ Most time is spent in creating stack trace

Efficient Java | Arvid Heise | May 27 2013

19

 int index = 0;
 List<String> strings;
 try {
 while(true)
 System.out.println(strings.get(index++));
 } catch(IndexOutOfBoundsException e) {
 }

Debugging Tricks

■ Always implement hashCode(), equals(), toString()

□ Eclipse helps to implement them (not easy manually)

■ Use Logging, especially in a multithreading environment

■ Use constant boolean expressions for debug statements

□ Changing it to false allows compiler to remove all debug

branches

Efficient Java | Arvid Heise | May 27 2013

20

public final static boolean DEBUG = true;

jVisualVM

■ Monitors your application

■ Shows memory consumption

■ Can be used for profiling (install sampler plugins)

■ Very useful to create memory dumps and to query them

□ Finds overallocated strings and collections

□ Quickly shows you when your datastructures are larger than

expected

■ Can also be used for remote sessions

Efficient Java | Arvid Heise | May 27 2013

21

Concurrency

■ Try java.util.concurrent package first before custom solution

■ Use lock-free structures

□ ConcurrentLinkedQueue, ConcurrentHashMap

□ Note that size() is not constant

■ Never use Vector, Hashtable

□ Synchronized versions of ArrayList, HashMap

□ But only for atomar operations

■ Never use volatile as substitution for synchronized blocks

□ Does not help with write-write conflicts

□ Useful for stop flags

Efficient Java | Arvid Heise | May 27 2013

22

Network Traffic

■ Most Stratosphere programs are network bound

■ Combine where possible

■ Try to minimize size of data structures

□ Always use more specific type instead of strings if possible

■ Use dictionary encodings where possible

□ When processing RDF, replace URLs by IDs

■ Use generic compression algorithms

Efficient Java | Arvid Heise | May 27 2013

23

