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What is Big Data? 

“collection of data sets so large and complex that it becomes difficult 

to process using on-hand database management tools or traditional 

data processing applications” [http://en.wikipedia.org/wiki/Big_data] 

  terabytes, petabytes, in a few years exabytes 

 

Challenges 

■ Capturing, storage, analysis, search, ... 

 

Sources 

■ Web, social platforms 

■ Science 
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PS,1,1,0,Pa, surface pressure 

T_2M,11,105,0,K,air_temperature 

TMAX_2M,15,105,2,K,2m maximum temperature 

TMIN_2M,16,105,2,K,2m minimum temperature 

U,33,110,0,ms-1,U-component of wind 

V,34,110,0,ms-1,V-component of wind 

QV_2M,51,105,0,kgkg-1,2m specific humidity 

CLCT,71,1,0,1,total cloud cover 

… 

(Up to 200 parameters) 

950km, 
2km resolution 

10TB 

Example: Climate Data Analysis 
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■ Analysis Tasks on Climate Data Sets 

□ Validate climate models 

□ Locate „hot-spots“ in climate models 

◊ Monsoon 

◊ Drought 

◊ Flooding 

□ Compare climate models 

◊ Based on different parameter settings 

 

■ Necessary Data Processing Operations 

□ Filter, aggregation (sliding window), join 

□ Advanced pattern recognition 
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Big Data Landscape 
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Programming Model 

■ Inspired by functional programming concepts map and reduce 

■ Operates on key/value pairs 

 

Map 

■ Process key/value pairs individually  

■ Generate intermediate key/value pairs 

■ Example (LISP):   

(mapcar ’1+ ’(1 2 3 4)) ⇒ (2 3 4 5) 

 

Reduce 

■ Merge intermediate key/value pairs with same key 

■ Example (LISP): 

(reduce ’+ ’(1 2 3 4)) ⇒ 10 
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Programmer’s Perspective: Word Count 

9 1 to be, or not to be, that is the question: 

2 whether 'tis nobler in the mind to suffer 

3 the slings and arrows of outrageous fortune, 

4 or to take arms against a sea of troubles 

… … 

To 4 

Be 2 

Or 2 

Not 1 

… … 
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Programmer’s Perspective: WC Map 

1 to be, or not to be, that is the question: 
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Map UDF 

2 whether 'tis nobler in the mind to suffer 

to 1 

be 1 

or 1 

not 1 

to 1 

… … 

whether  1 

'tis 1 

nobler  1 

in  1 

the  1 

… … 
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Programmer’s Perspective: WC Reduce 
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Reduce UDF 

to 1 

to 1 

… … 

to 2 

be 2 

not 1 

… … 

be 1 

be 1 

… … 

not 1 

… … 
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Behind the Scenes 

■ Map/Reduce framework takes care of 

□ Data partitioning 

□ Data distribution 

□ Data replication 

□ Parallel execution of tasks 

□ Fault tolerance 

□ Status reporting 
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Master 

Hadoop Architecture 
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Map/Reduce 
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HDFS Upload 

■ First step: User uploads data to HDFS 
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HDFS Upload 

■ Block/split-based format (usually 64 MB) 

■ Splits are replicated over several nodes (usually 3 times) 

■ In average: each slave receives #Split*3/#Slaves splits 
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Job Submission 

■ Second step: User submits job 
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Job Submission 

■ Job tracker allocates resources for submitted job 

■ Uses name node to determine which nodes processes what 

■ Distributes tasks to nodes 
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Slave 1 Slave N 

Job Execution 

■ Third step: job execution 
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Map 

Input splits 

Map 

Reduce Reduce 

Map 

Reduce 

Shuffle 

Output splits 

… 



Map tasks 

■ Third step: job execution, map task 

■ Nodes process tasks indepently 

■ Task tracker receives tasks and spawn one map process per task 
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Map Execution  

■ Task tracker receives input as map waves 

■ Each wave consists of at most #processors splits 

■ Spawns a new JVM(!) for each split 

■ Each wave has at least ~6s overhead 

 

■ For each split, the map task reads the key value pairs 

■ Invokes the map UDF for each map task 

■ Collects emitted results and spills them immediately to a local file 

 

■ Optionally reuses JVM to reduce time per wave 
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Slave 1 Slave N 

Job Execution, Shuffle 
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Shuffle 

■ Partitioner distributes data to the different nodes 

□ Uses unique mapping from key to node 

□ Often: key.hashCode() % numReducer 

 

■ Key/Value-pairs are serialized and sent over network 

■ Spilled to local disk of the reducer 

■ Sorted by key with two-phase merge sort 

 

■ Usually most costly phase 
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Slave 1 Slave N 

Job Execution, Shuffle 
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Reducer Execution 

■ Basic idea 

□ Scans over sorted list 

□ Invokes reducer UDF for subset of data with same keys 

 

■  In reality, a bit more complicated 

□ Provides reducer UDF with iterator 

□ Iterator returns all values with same key 

□ UDF is invoked as long as there is one element left 

□ Only one scan with little memory overhead 

 

■ Stores result on local disk 

■ Replicates splits (two times) 
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Combiner 

■ Local reducer 

■ Invoked in map phase for smaller groups of keys 

□ Not the complete list of values in general 

□ Preaggregates result to reduce network cost! 

 

■ Can even be invoked recursively on preaggregated results 
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Word Count Recap, Data Upload 

■ During upload, split input 

■ (In general, more than one line) 
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1 to be, or not to be, that is the question: 

2 whether 'tis nobler in the mind to suffer 

3 the slings and arrows of outrageous fortune, 

4 or to take arms against a sea of troubles 

… … 

1 to be, or not to be, that is the question: 

2 whether 'tis nobler in the mind to suffer 



Word Count Recap, Map Phase 

■ For each input split invoke map task 

■ Map task receives each line in the split 

■ Tokenizes line, emits (word, 1) for each word 

■ Locally combines results! 

□ Decreases I/O from #word to #distinct words per split (64MB) 
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Word Count Recap, Shuffle+Reduce 

■ Assigns each word to reducer 

■ Sends all preaggregated results to reducer 

□ For example, (to, 3512) 

■ Reducer sorts results and UDF sums preaggregated results up 

■ Each reducer outputs a partial word histogram 

 

■ Client is responsible for putting output splits together 
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Behind the Scenes 

■ Map/Reduce framework takes care of 

□ Data partitioning 

□ Data distribution 

□ Data replication 

□ Parallel execution of tasks 

□ Fault tolerance 

□ Status reporting 
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Fault Tolerance 

On Map/Reduce level 

■ Each task tracker sends progress report 

■ If a node does not respond within 10 minutes (configurable) 

□ It is declared dead 

□ The assigned tasks are redistributed over the remaining nodes 

□ Because of replication, 2 nodes can be down at any time 

 

On HDFS level 

■ Each data node sends periodic heartbeat to name node 

■ In case of down time 

□ Receives no new I/O 

□ Lost replications are restored at other nodes 
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Record Reader 

■ For WC, we used LineRecordReader 

□ Splits text files at line ends (‘\n’) 

□ Generates key/value pair of (line number, line) 

 

■ Hadoop users can supply own readers 

□ Could already tokenize the lines 

□ Emits (word, 1) 

□ No mapper needed 

 

■ Necessary for custom/complex file formats 

■ Useful when having different file formats but same mapper 
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Dealing with Multiple Inputs 

■ Map and reduce take only one input 

■ Operations with two inputs are tricky to implement 

 

■ Input splits of map can originate in several different files 

□ Logical concatenation of files 

■ Standard trick: tagged union 

□ In record reader/mapper output (key, (inputId, value)) 

□ Mapper and reducer UDFs can distinguish inputs 
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Join 

■ Reduce-side join 

□ Tagged union (joinKey, (inputId, record)) 

□ All records with same join key are handled by same reducer 

□ Cache all values in local memory 

□ Perform inner/outer join 

◊ Emit all pairs of values with different inputIds 

□ May generate OOM for larger partitions 

 

■ Map-side join 

□ Presort and prepartition input 

□ All relevant records should reside in same split 

□ Load and cache split 

□ Perform inner/outer join 
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Secondary Grouping/Sort 

■ Exploit that partitioner and grouping are two different UDFs 

 

■ Map emits ((key1, key2), value) 

■ Partitioner partitions data only on first key1 

■ All KV-pairs ((keyX, ?), ?) are on the same physical machine 

■ However, reducer is invoked on partitions ((keyX, keyY), ?) 

 

■ Useful to further subdivide partitions 

□ Join data could also be tagged ((joinKey, inputId), record) 

□ Only need to cache one input and iterate over other partition 

■ Hadoop Reducer always sorts data 

□ Data is grouped by first key and sorted by second key 
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Side-effect Files 

■ Sometimes even these tricks are not enough 

■ Example: triangle enumeration/three way join 

■ SELECT x, y, z WHERE x.p2=y.p1 AND y.p2=z.p1 AND z.p2=x.p1 

 

■ Cohen’s approach with two map/reduce jobs 

■ Generate triad (SELECT x, y, z WHERE x.p2=y.p1 AND y.p2=z.p1) 

■ Probe missing edge with a reducer on input data 

■ Huge intermediate results on skewed data sets! 

 

■ Way faster: one map/reduce job 

■ Generate triad and immediately test if missing edge is in data 

■ Needs to load data set into main memory in reducer 

■ Might run into OOM 
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Complete pipeline in  

Hadoop++: Making a 

Yellow Elephant Run 

Like a Cheetah 

(Without It Even 

Noticing). Jens Dittrich, 

Jorge-Arnulfo Quiané-

Ruiz, Alekh Jindal, Yagiz 

Kargin, Vinay Setty, Jörg 

Schad. PVLDB 3(1): 518-

529 (2010) 

 

More than 10 UDFs! 
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Overview over Stratosphere  

■ Research project by HU, TU, and HPI 

■ Overcome shortcomings of Map/Reduce 

■ Allow optimization of queries similar to DBMS 
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Extensions of Map/Reduce 

■ Additional second-order functions 

■ Complex workflows instead of Map/Reduce pipelines 

■ More flexible data model 

■ Extensible operator model 

■ Optimization of workflows 

■ Sophisticated check pointing 

■ Dynamic machine booking 
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Intuition for Parallelization Contracts 

Map and reduce are second-order functions 

■ Call first-order functions (user code) 

■ Provide first-order functions with  
subsets of the input data 
 

Define dependencies between the 
records that must be obeyed when 
splitting them into subsets 

■ Contract: required partition properties 

 

Map 

■ All records are independently 
processable 

 

Reduce 

■ Records with identical key must 
be processed together 
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Input set 

Independent 
subsets 

Key Value 



Contracts beyond Map and Reduce 

Cross 

■ Two inputs 

■ Each combination of records from the two inputs 

is built and is independently processable 

 

Match 

■ Two inputs, each combination of records with 

equal key from the two inputs is built 

■ Each pair is independently processable 

 

CoGroup 

■ Multiple inputs 

■ Pairs with identical key are grouped for each input 

■ Groups of all inputs with identical key  

are processed together 
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Complex Workflows 

■ Directed acyclic graphs 

■ More natural programming 

 

■ Holistic view on query 

□ Map/Reduce queries scattered 

over several jobs 

■ Higher abstraction 

□ Allows optimization 

□ Less data is shipped 
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Motivation for Record Model 

■ Key/Value-pairs are not very flexible 

■ In Map/Reduce 

□ Map performs calculation and sets key 

□ Reducer uses key and performs aggregation 

■ Strong implicit interdependence between Map and Reduce 

 

■ In Stratosphere, we want to reorder Pacts 

□ Need to reduce interdependence 

 

■ Record data model 

□ Array of values 

□ Keys are explicitly set by contract (Reduce, Match, CoGroup) 
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Record Model 

■ All fields are serialized into a byte stream 

■ User code is responsible for 

□ Managing the indices 

□ Knowing the correct type of the field 

 

■ Huge performance gain through lazy deserialization 

□ Deserialize only accessed fields 

□ Serialize only modified fields 
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Composite Keys 

■ Composite keys in Map/Reduce 

□ New tuple data structure 

□ Map copies values into the fields 

□ Emits (keys, value) 

 

■ Stratosphere allows to specify composite keys 

□ Reduce, Match, CoGroup can be configured to take several 

indices/types in the record as key 
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More Documentation 

■ Project website https://stratosphere.eu/  

 

■ MapReduce and PACT - Comparing Data Parallel 

Programming Models  

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian 

Hueske, Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke  

In Proceedings of Datenbanksysteme für Business, Technologie 

und Web (BTW) 2011, pp. 25-44 
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