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Distributed Data Management ﬂHasso
Plattner
Streams Institut

Data Stream
= Any data that is incrementally made available over time
= Examples:
= Unix stdin and stdout
= Filesystem APIs (e.g. Java’s FileInputStream)
= Online media delivery (audio/video streaming)
= Creation from ...
= static data: files or databases (read records line-wise) Distributed Data

= dynamic data: sensor readings, service calls, transmitted data, logs, ... 'Management

Stream Processing

Event

= = an immutable record in a stream (often with timestamp) ThorstenPapenbrock
= "“Something that happened” Any format that allows

= Encoded in Json, XML, CSV, ... maybe in binary formatg incremental appends
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Distributed Data Management

Types of Systems

Services (online systems)

= Accept requests and send responses

= Performance measure: response time and availability

= Expected runtime: milliseconds to seconds

Batch processing systems (offline systems)

= Take (large amounts of) data; run (complex) jobs; produce some output
= Performance measure: throughput (i.e., data per time)

= Expected runtime: minutes to days

Stream processing systems (near-real-time systems)

= Consume volatile inputs; operate stream jobs; produce some output
= Performance measure: throughput and precision

= Expected runtime: near-real-time (i.e., as data arrives)

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 5



Distributed Data Management Hasso
Pl
Batch vs. Stream Institut

Streams

' Write once,
ead often

Distributed Data
Management

Stream Processing

Send once,

. ThorstenPapenbrock
recelive once

Slide 6
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Types of Systems Plattner
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one result

Batch processing systems (offline systems) —

bounded;
persistent; fix size

one or a series of results

cannot re-execute

unbounded;
volatile; any size




Distributed Data Management Hasso
Use Cases for Streaming Data Inatitut

Sensor Processing
= Continuous and endless readings by nature
Process Monitoring

= Side effects of processes that are continuously observed ‘E‘W . -C-PUM]% *Em I—m -'cmw _
Location Tracking -

= Continuous location updates of certain devices

Log Analysis

= Digital footprints of applications that grow continuously
User Interaction

= Continuous and oftentimes bursty click- and call-events
Market and Climate Prediction

= Changing stock market prices and weather characteristics




Cia- 1Java Message Service
Transmitting Event Streams (IMS) 2.0 Specification

M essa g e B rO ke rS . Pe rS | St O I FO rg et ZA(CAI\lillaSESECISgIeiSifSingo%ueuing Protocol

Persist Forget

= Keep all queue content = Remove processed queue content
(until reaching size or time limit) (immediately after acknowledgement)
. = Track consumers to forget old content
» Let consumers go back in time "
» Database-like > Volatile, light-weight
» Log-based Message Broker = JMS! or AMQP2 Message Brokers Distributed Data
(e.g. Kafka, Kinesis or DistributedLog) (e.g. RabbitMQ, ActiveMQ or HornetQ) Management

Stream Processing

§8 kafka  EaRabbit
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Transmitting Event Streams
Message Brokers: Persist or Forget

https://content.pivotal.io/blog/
understanding-when-to-use-rabbitmqg-or-apache-kafka

http://kth.diva-portal.org/smash/get/
diva2:813137/FULLTEXTO1.pdf

.
b

group 1

\
Replicas "

Distributed Data

(brokers) ‘l'. ﬁ?_ﬂ Management
EH \4 Stream Processing
d .

e
3 Consumer
- group 2 ThorstenPapenbrock
_____________________________ Slide 10

Apache Kafka
architecture



Cia- 1Java Message Service
Transmitting Event Streams (JMS) 2.0 Specification

M essa g e B rO ke rS . Pe rS | St O I FO rg et Z,A(CAI\&ags;acIS;deisifsingO%ueuing Protocol

Forget

Keep all queue content
(until reaching size or time limit)

Remove processed queue content
(immediately after acknowledgement)

Track consumers to forget old content
Let consumers go back in time
» Database-like

Log-based Message Broker
(e.g. Kafka, Kinesis or DistributedLog)

> Volatile, light-weight

JMS?! or AMQPZ2 Message Brokers Distributed Data
(e.g. RabbitMQ, ActiveMQ or HornetQ) Management
Stream Processing

E R a b b | t ThorstenPapenbrock
Slide 11




Transmitting Event Streams

Log-based Massage Broker

Partitioned Logs

= Message Broker that persist queues as logs on disk

(distributed, replicated)
= Recall ...

= | SM-Trees with B-Trees
and SSTables

= Leader-based replication

CoTree (4 Tree C_Tree

InMemory :  Merge Multi-Page Blocks On Disk

read O
e
upd2s Ej abd
write Follower User 8
U dafe
User 4 Leader 8

Follower
read read

2 &

User 2 User 7

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 12



Transmitting Event Streams

Log-based Massage Broker

Topics and Partitions

Topics are logical groupings for event streams

Every topic is created with a fixed number of partitions y
Partitions are ordered lists of logically dependent events in a topic

Hasso
Plattner
Institut

e.g. click-events, temperature-readings, location-signals

In many cases, event ordering is not a
concern and partitions are simply
arbitrary splits of a topic
(for parallelization and load-balancing)

e.g. click-events by user, temperature-readings by sensor, location-signals by car
Provide “happens-before semantic” for these events
Order is valid within each partition, not across different partitions
Are accessed sequentially
= Producers write new events sequentially
= Consumers read events sequentially
Purpose:
= Parallelism: to read a topic in parallel

= Load-balancing: to store the events of one topic on multiple nodes

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 13



Transmitting Event Streams

Log-based Massage Broker

Hasso
Plattner
Institut

Topics and Partitions

Every partition has a leader that
accepts all writes to that partition and
forwards them to its follower replicas.

Leading broker :
for this partition -—-:._.__‘/

Leaders for different partitions are
distributed in the cluster to allow
parallel writes to one topic.

A producer uses ZooKeeper to
= locate the leader of a partition
Pfﬂd”“e’ﬂ that it wants to write to.

Message for
partition 3
Broker 2 Broker 3
+
. D . Distributed Data
y ' Management
A A e . Stream P i
b= R ream Processing
i S e e
‘Part.2 Part.3: ' Part1 Par 3!
e U e ' ThorstenPapenbrock
ISR ~ Slide 14

Replication from
leader to replica



Transmitting Event Streams

Hasso
Log-based Massage Broker ﬂ Inatitut

Producers and Consumers
= Producers
= Post to concrete partitions within a topic (only one leader can take these posts)
= Define a Partitioner-strategy (on the producer side) to decide which partition is next
= Round-Robin Partitioner-strategy is used by default
= Custom Partitioner-strategies let producers define semantic grouping functions
= Consumers
» Read concrete partitions within a topic (all broker with that partition can take these reads)

= Hold an offset pointer for every partition that they read (on consumer side) Distributed Data

= Poll and wait (no callback registration) N Management
Stream Processing

“Kafka does not track acknowledgments from
consumers [...]. Instead, it allows consumers to use
Kafka to track their position (offset) in each partition.” ThorstenPapenbrock

(Book: Kafka - The Definite Guide) | Slide 15




Transmitting Event Streams

Log-based Massage Broker

Producers and Consumers

Producers

= Post to concrete partitions within a topic (onl

= Define @ioner-str@an the produce retumMetadata

Consumers

Round—RobiWstrategy iS uSE

When successful,

/

Custom Partitioner-strategies let produ

» Read concrete partitions within a topic (all br

= Hold an offset pointer for every partition that

= Poll and wait (no callback registration)

ProducerRecord

Topic

[Partition]

i ______________\______-..

If can't retry,

[Key]

Value

____________________ vPend 0

throw exception

Serializer

v

Partitioner

v

¥

TopicA
Partition 0

Batch 0
Batch 1

Batch 2

Topic B
Partition 1

Batch 0
Batch 1
Batch 2

Kafka Broker




Transmitting Event Streams

Hasso
Log-based Massage Broker ﬂ Inetitut

Producers and Consumers

Partition 0

Partition 1

Partition 2

Partition 3

And in this way, Kafka kind of knows its consumers ...

Consumer Groups

A group of consumers that processes all events of one topic in parallel
The offsets for a consumer group can be managed by Kafka on server side
= A dedicated group coordinator manages offsets, membership, scheduling etc.

= Consumer commit successfully processed offsets to the group coordinator
so that the coordinator can re-assign partitions to consumers

Topic "topicName" Consumer Event we are processing right now
1 345 |6]7]s]ow[n[ufni .--Tw_, _
¥ : : These events will be reprocessed
g et in case of rebalance, causing duplicates
1 3lals|e]7]s}o i i
* 1 1
T Heonmer1 |0 Lo f 123 als5 el 78 ]9 f10]mn
1 s[a]sel7[s]o]w0fnm i i T
[} [}
s e | Events returned
1 3lalslsel7l8lol10ln1tn2 b m H Last committed offset by last poll




Transmitting Event Streams

Log-based Massage Broker

Institut

Producers and Consumers

#partitions > #consumer

= Consumer take multiple
partitions and process them

#partitions = #consumer

» Every consumer takes one
partition; maximum

#partitions < #consumer

= Some consumers idle,
because the group reads

alternatingly parallelism every partition exactly once
TopicT1 Consumer Group 1 TopicT1 Consumer Group 1 TopicT1 Consumer Group 1

Partition 0 Consumer 1 Partition 0 | Consumer 1 Partition 0 »{ Consumer 1

Partition 1 Consumer 2 Partition 1 »| Consumer 2 Partition 1 »| Consumer 2

Partition 2 / Partition 2 ' »| Consumer 3 Partition 2 l » Consumer 3

Partition 3 Partition 3 »| Consumer 4 Partition 3 »| Consumer4
_poiins | | artion o] Gmmers || [ poon3 o] conumers |
Consumer 5 l




Transmitting Event Streams

Hasso
Log-based Massage Broker ﬂ Inatitut

Producers and Consumers ' )
Data Source TopicT1 Consumer Group 1
writes] Partition 0 p| Consumer 1 l
Log Partition 1 Consumer 2 .
0 ‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 7 Partition 2 | Consumer3 l
reads reads Partition 3 —»| Consumer 4 |
\
( Destination 1 Destination 2 ] Distributed Data
cmmmt || e Management
ﬂ A 3 Stream Processing
Different consumers that read Different consumer groups that
the same partition in parallel read same partitions in parallel ThorstenPapenbrock
and at different locations. (and at different locations). Slide 19
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Transmitting Event Streams

Log-based Massage Broker

Kafka APIs

= Communication with Kafka happens via a specific APIs

= The API can manage the specifics of the reading/writing process transparently
» e.g. offset-tracking (consumers) and partition-scheduling (producers)

= Two options:
= A rich API that offers high abstraction, but limited control functions.

= A low-level API that provides access to offsets and allows consumers to rewind
them as the need.

Event lifetime
= Configurable:
= By time of event

= Max partition size

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 20



Transmitting Event Streams Hasso
Log-based Massage Broker Inetitut

send message by

appending to log
Log-based Massage Broker ]

sequence offsets to ensure ordering
e e e TSy S ]
Partitiono | 1 |2 |3 [ 4|56 |7 |89 [t0] ¥i e ™ Producerclient
< - - Only one-to-many
- < .
§' | Producer client messagmg!
Partition1 |1 |23 |4 |56 |7 |8 Receive message by
) reading log sequentially;
Partition0 | 112 | 3 | 4 Consumergroup | When reaching the end,
-, ([ i wait and poll again
——] ——— : ; [ ——
@ . [ p——— Consumer client 1 ' Distributed Data
3 { Partiton1 |1 |23 |4|5[6|7 |V / | offsetforBo=a | - Management
R — -/ , | offsetforBi=5 Stream Processing
partition2 | 1| 2|3 4|56 |7 |89 [10[11]12 _~—+»| Consumer client | .
L C——> 7 | ofsetiorBa=g |- ThorstenPapenbrock
\ read sequentially (DS s Slide 21

= Stream B | | partitioning (and replication)




Transmitting Event Streams

Log-based Massage Broker

Example:

6 TB of disk capacity (= log size)

Log-based Massage Broker

Storing a history for
events costs memory

150 MB/s write throughput

~

11 h until an event is forgotten
(at maximum event throughput!)

’

Partition O

Topic A
-

Partition 1

\
r

Partition O

Partition 1

Topic B
-

\

Partition 2

5| Consumer client | -

Producer cIient‘]\‘

Producer clien

Consumer client

offset forB.0 =4
offset forB.1=5

X offsetforB.2=9

..........

Events with high processing costs block all subsequentevents |

No one-to-one
scheduling:

Max parallelism bound
by number of partitions

in a topic!

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 22
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Log-based Massage Broker

Hasso
Plattner
Institut

Further reading
= Kafka: The Definitive Guide

»  https://www.oreilly.com/library/
view/kafka-the-definitive/
9781491936153/

s s ; Distributed Data
The Definitive Guide Management

Stream Processing

REAL-TIME DATA AND STREAM PROCESSING AT SCALE

Neha Narkhede, Thorsten Papenbrock
Gwen Shapira & Todd Palino Slide 23



https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/

Transmitting Event Streams _ 13(%\@5343?8;33&2;%;?0” |
Message Brokers: Persist or Forget Advanced Hessage Queting Protocd

Persist Forget

= Keep all queue content = Remove processed queue content
(until reaching size or time limit) (immediately after acknowledgement)
. = Track consumers to forget old content
» Let consumers go back in time "
» Database-like > Volatile, light-weight
» Log-based Message Broker = JMS! or AMQP2 Message Brokers Distributed Data
(e.g. Kafka, Kinesis or DistributedLog) (e.g. RabbitMQ, ActiveMQ or HornetQ) Management

Stream Processing

Use if throughput matters, Use if one-to-one scheduling is needed,

event processing costs are similar and event processing costs differ and

the order of messages is important the order of messages is insignificant ThorstenPapenbrock
Slide 24




Cia- 1Java Message Service
Transmitting Event Streams (IMS) 2.0 Specification

M essa g e B rO ke rS . Pe rS | St O I FO rg et ZA(CAI\lillaSESECISgIeiSifSingo%ueuing Protocol

Persist Forget

» Keep all queue content
(until reaching size or time limit)

Wait throughput?

Yes, because ...

" Let consumers go back in time » dumping events to storage instead of

» Database-like routing them to consumers is faster

= Log-based Message Broker > broker does not need to track Distributed Data
(e.g. Kafka, Kinesis or DistributedLog) acknowledgements for every event Management
(only consumers track their queue offset)

Stream Processing
> broker can utilize batching and pipelining

if th hput tt
Use i roughput matters, e Tl

event processing costs are similar and

the order of messages is important ThorstenPapenbrock
Slide 25




Processing Streams ﬂ Hasso
Scenarios Inatitut

Stream Analytics Approximation is
“ _ often used for
= “Transform or aggregate a stream; continuously output current results” optimization, but

. - . e . ) Stream Processing
Often uses statistical metrics and probabilistic algorithms: is not inherently

= Bloom filters (set membership) approximate!
_ Bounded memory

= HyperLoglLog (cardinality estimation) consumption

= HDHistogram, t-digest, decay (percentile approximation)

= Implementations: Storm, Flink, Spark Streaming, Concord, Samza, ThorstenPapenbrock
Kafka Streams, Google Cloud Dataflow, Azure Stream Analytics Slide 26
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Processing Streams

Hasso
Plattner
Institut

Scena ros Stream = Database Usually consider
(using log compaction etc.) =~ entire stream, i.e.,
Maintaining Materialized Views .
&

= "“Serve materialized views with up-to-date data from a stream”
= Views are also caches, search indexes, data warehouses, and any derived data system
= Implementations: Samza, Kafka Streams (but also works with Flink, Spark, and co.)



I —————
Processing Streams

Hasso
Challenges and Limits ﬂﬁ!z&‘i?ﬂ

Goal
= Query and analyze streaming data in real-time (i.e. as data passes by)
Challenges
= Limited memory resources (but endlessly large volumes of data)
= Only a fixed-size window of the stream is accessible at a time
= Old data is permanently gone (and not accessible any more)
= Only one-pass algorithms can be used
= Endlessness contradicts certain operations Distributed Data

= E.g. sorting makes no sense, i.e., no sort-merge-joins or —groupings  'anagement

' St P i
(on the entire stream!) ream Processing

= Input cannot be re-read or easily back-traced
. ThorstenPapenbrock
= Fault tolerance must be ensured differently Slide 28






Mining Streaming Data ﬂ Hasso
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Learning Goals

a) Understand, implement, and deploy a challenging research algorithm.
(no optimization required)
b) Learn about state-of-the-art streaming techniques.
c) Build an algorithm for data streams using Kafka and Kafka Streams.
d) Solve problems that arise from distributed computing.
e) Evaluate the quality and performance of your algorithm.
f)  Write a scientific documentation.
g) Reveal new research questions for distributed computing (at best).
Prerequisites
= Database knowledge (ideally Database System I and Database Systems II)

. . . ) ThorstenPapenbrock
= Data streaming and distributed programming knowledge Slide 30

(ideally Distributed Data Analytics or Distributed Data Management)
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Tasks: From Paper to Production

1)
2)
3)
4)
5)

Choose a paper.

Study the literature of your topic (books, papers, and online material).

Design a distributed algorithm with Kafka Streams that solves the problem of your paper.

Evaluate your solution w.r.t. accuracy/quality and performance.

Document your approach by writing a scientific documentation about as a GitHub page.

Grading

10%
00%
10%
15%
15%
20%
30%

Active participation during all seminar events.

Regular meetings with advisor.

Short presentation of the selected research paper.

Intermediate presentation demonstrating insights regarding your research prototype.
Final presentation demonstrating your solution.

Implementation of a research prototype with Kafka and Kafka Streams (on GitHub).
Documentation (on GitHub).



Mining Streaming Data ﬂ Hasso
Organization Plattner

Institut
Metadata
= Extent: 4 SWS
= Location: Campus II, Building F, Room F-2-10
= Dates: Wednesdays, 11 - 12:30 PM
= C(Class: At most 8 participants (4 teams a 2 students)
= Register: Informal email to thorsten.papenbrock@hpi.de by April 12 (notification April 15)

Registration Email

= Add your distributed programming experience (e.g. DDA, DDM, some other course, or project).

= Add a ranking of up to three papers that interest you (from the list shown today or own suggestions).
= We do the final paper assignment in our first Kick-off meeting; so this is not a commit!

= <optional> Add a team partner; you get either accepted or rejected together if seats get tight.

Slide 32


mailto:thorsten.papenbrock@hpi.de

Mining Streaming Data ﬂ Hasso
Organization Inetitut

Small team meetings

= Regular meetings with supervisor (Alexander or Thorsten)

Schedule (tentative)

= April 12: (Email) Registration

= April 15: (Email) Notification

= April 17: Kick-off: Paper Selection & Team Building

= April 24: Guest Speaker Michael Noll (Confluent): "Kafka in Theory and Practice®
= May 1: -

= May 8: Guest Speaker Arvid Heise (bakdata): "Kafka Streams with Q&A"

= May 15: First Presentations: Paper & Implementation Approach

Project duration
. . ThorstenPapenbrock
= Intermediate presentation: ~5. June Slide 33

= Final presentation: ~10. July



Mining Streaming Data
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Paper Suggestions ﬂ Inetitut

» Clustering Stream Data by Exploring the Evolution of Density Mountain
Shufeng Gong, Yanfeng Zhang, and Ge Yu, VLDB 2017.

= Scalable Kernel Density Estimation-based Local OutlierDetection over Large Data Streams
Xiao Qin, Lei Cao, Elke A. Rundensteiner, and Samuel Madden, EDBT 2019.

= Extremely Fast Decision Tree
Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi, KDD 2018.

= Sketching Linear Classifiers over Data Streams
Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant, SIGMOD 2018.

= Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing
Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig, SIGMOD 2018.

= Graphlet: Real-Time Content Recommendations at Twitter
Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larso, and Jimmy Lin, VLDB 2016.

= Online Social Media Recommendation over Streams

Xiangmin Zhou, Dong Qin, Xiaolu Lu, Lei Chen, and Yanchun Zhang, ICDE 2019. ThorstenPapenbrock

= SpotLight: Detecting Anomalies in Streaming Graphs Slide 34
Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra, KDD 2018.
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Problem

Clustering Stream Data by Exploring the Evolution of

Density Mountain

Shuteng Gong*#, Yanfeng Zhang*, Ge Yur»*

'Northeastern University, “Liaoning Universi

9Key laboratory of Medical Image Computing (Northeastern University), Ministry of Education

Shenyang, China

gongsf@stumail.neu.edu.cn, {zhangyf, yuge}@mail.neu.edu.cn

ABSTRACT

Stream clustering is a fundamental problem in many stream-
ing data analysis applications. Comparing to classical bateh-
mode clustering, there are two key challenges in stream
clustering: (i) Given that input Astalsssishanmine rmntinm

ously, how to incrementally upc
efficiently? (ii) Given that clusty
the evolution of data, how to e
activities? Unfortunately, mosty
algorithms can neither update ]
nor track the evolution of cluste
Tn this paper, we propcse a
EDMSiream by exploring the By
The density mountain is used
tribution, the changes of whiel
evolution. We track the evolutic
the changes of density mount
efficient data structures and f
that the update of density mow
makes online clustering possiblé
on synthetic and real datasets
the state-of-the-art stream clug
Stream, DenStream, DBSTRE
algorithm is able to response
faster (say T-15x faster than tl
and at the same time achieve |
Furthermore, EDMStream sueet
evolution activities.
PVLDB Reference Format:
Shufeng Gong, Yanfeng Zhang, Ge
by Exploring the Evolution of Dens
393-405, 2017.
DOI: 10.1145/3164135.3164136

1. INTRODUCTION

Recent advances in both hardware and software have

over time are referred to as data streams [2]. Clustering
stream data is one of the most fundamental problems in
many streaming data analysis applications. Basically, it
groups streaming data on the basis of their similarity, where

active cluster-cell
inactive cluster-cell
e stream point

— dependent-distance

stream

D

ugisse’ |

outlier-
reservoir

Figure 5: EDMStream Overview.

TO LmE UINU CHALENEE, INOSU eXISUNG SOuons [0, i) r

summarize data points in stream using summary structures
(e.g., micro-clusters [3, 5], grids[7]) and update these sum-

data evolves over time and arrives in an unbounded stream. L

= Efficient and dynamic clustering of multi-dimensional

stream data

Solution

EDMStream, an algorithm that continuously updates
the clusters (described by “Density Mountains”) with
newly arriving stream data

-valley

density

point pdint
. @ | (b)
Figure 1: The shape of density mountain changes as the

(1-dimension) data distribution evolves.

ThorstenPapenbrock
Slide 35
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Problem
= Efficient outlier detection in stream data

Scalable Kernel Density Estimation-based Local Outlier
Detection over Large Data Streams’

Solution
Xiao Qin', Lei Cao®, Elke A. Rundensteiner' and Samuel Madden®
Department of Computer Science, Worcester Polytechnic Institute
2(CSAIL, Massachusetts Institute of Te: chnology
eqin, rundenstj@cs.wpi.edu *{lcao,madden}@csail mit.edu

= KELOS, a windowing-based algorithm that aggressively

ABSTRACT

Local outlier techniques are known to be effective for detecting
outliers in skewed data, where subsets of the data exhibit diverse
distribution properties. However, existing methods are not well
equipped to support modemn high-velocity data streams due to the
high complexity of the detection algorithms and their volatility
to data updates. To tackle these shortcomings, we propose local
outlier semantics that operate at an abstraction level by lever-
aging kernel density estimation (KDE) to effectively detect local
outliers from streaming data. A strategy to continuously detect
top-N KDE-based local outliers over streams is designed, called
KELOS - the first linear time complexity streaming local outlier
detection approach. The first imnovation of KELOS is the abstract
kemel center-based KDE (aKDE) strategy. alDE accurately yet
efficiently estimates the data density at each point - essential for
local outlier detection. This is based on the observation that a
cluster of points close to each other tend to have a similar influ-
ence on a target pomt’s density estimation when used as kernel
centers. These points thus can be represented by one abstract
kernel center. Next, the KELOS's inlier pruning strategy early
prunes points thathave no chance to become top-N outliers. This
empowers KELOS to skip the computation of their data density
and of the outlier status for every data point. Together ¢KDE and
the inlier pruning strategy eliminate the performance bottleneck
of streaming local outlier detection. The experimental evaluation
demonstrates that KELOS is up to 6 orders of magnitude faster
than existing solutions, while being highly effective in detecting
local outliers from streaming data,

1 INTRODUCTION

Motivation. The growth of digital devices coupled with their
ever-increasing capabilities to generate and transmit live data
presents an exciting new opportunity for real time data analytics.
As the volume and velocity of data streams contmue to grow,
S T e (T T SN

to conform to the increasingly expected behavior exemplified by
the new data. Thus, in streaming environments, it is critical to
design a mechanism to efficiently identify outliers by monitoring
the statistical properties of the data relative to each other as it
changes over time.

State-of-the-Art. To satisfy this need, several methods [20, 21]
have been proposed in recent years that leverage the concept
of local outlier [6] to detect outliers from data streams. The lo-
cal outlier notion is based on the observation that real world
datasets tend to be skewed, where different subspaces of the data
exhibit different distribution properties. It is thus often more
meaningful to decide on the outlier status of a point based on its
difference with the points i its local neighborhood as opposed
to using a global density [9] or frequency [5] cutoff threshold
to detect outliers [11]. More specifically, a point x is considered
to be a local outlier if the data density at x is low relative to that
at the points in x’s local neighborhood. Unfortunately, existing
streaming local outlier solutions [20, 21] are not scalable tohigh
volume data streams. The root cause is that they measure the
data density at each point x based on the point’s distance to
its k nearest neighbors (kNN). Unfortunately, kNN is very sen-
sitive to data updates, meaning that the msertion or removal
of even a small number of points can cause the kNN of many
points in the dataset to be updated [20]. Since the complexity
of the kNN search [6] is quadratic in the number of the points,
significant resources may be wasted on a large number of un-
necessary kNN re-computations. Therefore, those approaches
suffer from a high response time when handling high-speed
streams. For example, it takes [20, 21] 10 minutes to process just
100k tuples as shown by their experiments. Intuitively, kemel
density estimation (KDE) [26]. an established probability density
approximation method, could be leveraged for estimating the
data density at each point [16, 23, 27]. Unlike kNN-based density
estimation that is sensitive to data changes, KDE estimates data

density based on the statistical properties of the dataset. There-
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Figure 1: An illustration of KELOS approach.
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ABSTRACT

‘We introduce a novel incremental decision tree learning algorithm,
Hoeffding Anytime Tree, that is statistically more efficient than
the current state-of-the-art, Hoeffding Tree. We demonstrate that
an implementation of Hoeffding Anytime Tree— ‘Extremely Fast
Decision Tree”, aminor modification to the MOA implementation of
Hoeffding Tree—obtains significantly superior prequential accuracy
on most of the largest classification datasets from the UCI repository.
Hoeffding Anytime Tree produces the asymptotic batch tree in the
limit, is naturally resilient to concept drift, and can be used as a
higher accuracy replacement for Hoeffding Tree in most scenarios,
at a small additional computational cost.
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1 INTRODUCTION

We present a novel stream learning algorithm, Hoeffding Anytime
Tree (HATT)?. The de facto standard for learning decision trees
from streaming data is Hoefiding Tree (HT) [11], which is used as
a base for many state-of-the-art drift leamers [3, 6. 8,10, 16, 18, 24]
We improve upen HT by leaming more rapidly and guaranteeing
convergence to the asymptotic batch decision tree on a stationary
distribution.

Our implementation of the Hoeffding Anytime Tree algorithm,
the Extremely Fast Decision Tree (EFDT), achieves higher prequen-
tial accuracy than the Hoeffding Tree implementation Very Fast
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(a) VFDT: the current de facto standard for incremental tree learning
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(b) EFDT: our more statistically efficient variant

Figure 1.1: The evelution of prequential error over the du-
ration of a data stream. For each learner we plot error for
4 different levels of complexity, resulting from varying the
number of classes from 2 to 5. The legend includes time in
CPU seconds (T) and the total error rate over the entire du-
ration of the stream (E). This illustrates how EFDT learns
much more rapidly than VFDT and is less affected by the
complexity of the learning task, albeit incurring a modest
computational overhead to do so. The data are generated by
MOA RandomTreeGenerator, 5 classes, 5 nominal attr ibutes,
5 values per attribute, 10 stream average.

HT constructs a tree incrementally, delaying the selection of a
split at a node until it is confident it has identified the best split, and
never revisiting that decision. In contrast, HATT seeks to select and
depl plit it is confident th it i ful, and then

2000 2500 3000

standard method for learning decision trees from
streaming data, i.e., Hoeffding tree.

Hoeffding trees exploit the fact that a small sample can
often be enough to choose an optimal splitting
attribute. This idea is supported mathematically by the
Hoeffding bound, which quantifies the number of
observations (in our case, examples) needed to
estimate the goodness of a splitting attribute.

The method in this papers achives higher accuracy for
because splitting attributes will be replaced as soon as

a better alternative is identified. ThorstenPapenbrock
Slide 37
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Abstract—As one of the most popular services over online
communities, the social recommendation has attracted increasing

commercials via the stream recommender systems to potential
customers to boost the sales of their products. For news

research efforts recently. Among all the dation tasks,
an important one is social item recommendation over hlgh

brc ing, users can be notified in time what is happening
by and take prompt action in crises. Practi-

speed social media streams. Existing i
techniques are not effective for handling social users with diverse
interests. Meanwhile, approaches for recommending items to a
particular user are not efficient when applied to a huge number
of users over high speed streams. In this  paper, we propose a
novel framework for the social over
environments. Specifically, we first propose a novel Bl-l.nyer
Hidden Markov Model (BiHMM) that adaptively captures the
behaviors of social users and their interactions with influential
official accounts to predict their long-term and short-term inter-
ests. Then, we design a new probabilistic entity matching scheme
for effectively identifying the relevance score of a streaming
item to a user. Following that, we propose a novel indexing
scheme called CPPse-index for improving the efficiency of our
solution. Extensive experiments are conducted to prove the high
performance of our approach in terms of the recommendation
quality and time cost.

Index Terms—User interests, Bi-Layer HMM, Social stream.

I. INTRODUCTION

With the explosive growth of online service platforms, an
increasing number of people and enterprises are undertaking
personal and professional tasks online. Recent statistics shows
there are now 15 million active Australians on Facebook,
which is 60% of the Australian population [3]. The digital
universe is doubling in size every two years, and by 2020
the data users create and copy annually will reach 44 tril-
lion gigabytes [1]. In order for organizations, governments,
and individuals to understand their users. and promote their

cally, these applications are time-critical, which demands the
development of efficient stream recommendation approaches.

We study the problem of continuous recommendation over
social communities. Given a new incoming social item v, a
relevance function on social item and users, we aim to deliver
the item v to the top k users that have the highest relevance
scores. For example, a clip on a new KFC dessert can be
broadcasted to the top interested users immediately after the
uploading, which directly increases the product purchase and
brand recall. For stream recommendation, three key issues
need to be addressed. First, we need to construct a robust
model that effectively predicts the short-term and long-term
interests of different social users. While users’ long-term
interests keep relatively stable, their short-term interests can
be changed rapidly due to the frequent social activities. Users’
behaviors can be affected by their previous activities and
their interacted media producers as well. For instance, a user
interested in football games may become interested in music
after watching a broadcasting from a producer on the family
of David Beckham and Victoria Beckham. A good model
should be able to capture the users’ temporal involvement over
their own activities and their media producers to reflect users’
current preferences for high quality recommendation. Then,
we need to design a novel solution for matching the streaming
items with social users. As a large number of near duplicate

Problem

Social item (Youtube videos, news, tweets etc.)
recommendation over high speed social media streams:
Given a new incoming social item v, a relevance
function on social item and users, we aim to deliver the
item v to the top-k users that have the highest
relevance scores.

Solution

Novel Bi-Layer Hidden Markov Model (BiHMM) that
adaptively captures the behaviors of social users and
their interactions for predicting the users’ long-term
interest patterns

A new probabilistic entity matching scheme for
effectively identifying the relevance score of a
streaming item to a user ThorstenPapenbrock
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