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Distributed Data 
Management 

Data Stream 

 Any data that is incrementally made available over time 

 Examples: 

 Unix stdin and stdout 

 Filesystem APIs (e.g. Java’s FileInputStream) 

 Online media delivery (audio/video streaming) 

 Creation from … 

 static data: files or databases (read records line-wise) 

 dynamic data: sensor readings, service calls, transmitted data, logs, … 

Event 

 = an immutable record in a stream (often with timestamp) 

 “Something that happened” 

 Encoded in Json, XML, CSV, … maybe in binary format 

Any format that allows 
incremental appends 
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Distributed Data 
Management 

Services (online systems) 

 Accept requests and send responses 

 Performance measure:  response time and availability 

 Expected runtime:  milliseconds to seconds 

Batch processing systems (offline systems) 

 Take (large amounts of) data; run (complex) jobs; produce some output 

 Performance measure:  throughput (i.e., data per time) 

 Expected runtime:  minutes to days 

Stream processing systems (near-real-time systems) 

 Consume volatile inputs; operate stream jobs; produce some output 

 Performance measure:  throughput and precision 

 Expected runtime:  near-real-time (i.e., as data arrives) 
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Batches Streams 

Write once, 
read often 

Send once, 
receive once 



Batch processing systems (offline systems) 

 

 

 

 

 

Stream processing systems (near-real-time systems) 

 

 

Distributed Data Management 

Types of Systems 

map map reduce map map reduce map reduce 

map map reduce map map reduce map reduce 

bounded; 
persistent; fix size 

unbounded; 
volatile; any size 

one result 

one or a series of results 

can re-execute 

cannot re-execute 
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Sensor Processing 

 Continuous and endless readings by nature 

Process Monitoring 

 Side effects of processes that are continuously observed 

Location Tracking 

 Continuous location updates of certain devices 

Log Analysis 

 Digital footprints of applications that grow continuously 

User Interaction 

 Continuous and oftentimes bursty click- and call-events 

Market and Climate Prediction 

 Changing stock market prices and weather characteristics 

… 
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       Persist 

 

 

 Keep all queue content 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed queue content 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 JMS1 or AMQP2 Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 

1Java Message Service  
  (JMS) 2.0 Specification 
2Advanced Message Queuing Protocol  
  (AMQP) Specification 
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https://content.pivotal.io/blog/ 
understanding-when-to-use-rabbitmq-or-apache-kafka 
 
http://kth.diva-portal.org/smash/get/ 
diva2:813137/FULLTEXT01.pdf 
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       Persist 

 

 

 Keep all queue content 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed queue content 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 JMS1 or AMQP2 Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 

1Java Message Service  
  (JMS) 2.0 Specification 
2Advanced Message Queuing Protocol  
  (AMQP) Specification 
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Partitioned Logs 

 Message Broker that persist queues as logs on disk 

(distributed, replicated) 

 Recall … 

 LSM-Trees with B-Trees  

and SSTables 

 

 

 

 Leader-based replication 
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Topics and Partitions 

 Topics are logical groupings for event streams 

 e.g. click-events, temperature-readings, location-signals 

 Every topic is created with a fixed number of partitions 

 Partitions are ordered lists of logically dependent events in a topic  

 e.g. click-events by user, temperature-readings by sensor, location-signals by car 

 Provide “happens-before semantic” for these events 

 Order is valid within each partition, not across different partitions 

 Are accessed sequentially 

 Producers write new events sequentially 

 Consumers read events  sequentially 

 Purpose: 

 Parallelism: to read a topic in parallel 

 Load-balancing: to store the events of one topic on multiple nodes 

In many cases, event ordering is not a 
concern and partitions are simply 

arbitrary splits of a topic 
(for parallelization and load-balancing) 
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Topics and Partitions 

Every partition has a leader that 
accepts all writes to that partition and 
forwards them to its follower replicas. 

Leaders for different partitions are 
distributed in the cluster to allow 

parallel writes to one topic. 

A producer uses ZooKeeper to 
locate the leader of a partition 

that it wants to write to. 
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Producers and Consumers 

 Producers 

 Post to concrete partitions within a topic (only one leader can take these posts) 

 Define a Partitioner-strategy (on the producer side) to decide which partition is next 

 Round-Robin Partitioner-strategy is used by default 

 Custom Partitioner-strategies let producers define semantic grouping functions  

 Consumers  

 Read concrete partitions within a topic (all broker with that partition can take these reads) 

 Hold an offset pointer for every partition that they read (on consumer side) 

 Poll and wait (no callback registration) 

 

 

 

 

“Kafka does not track acknowledgments from 
consumers […]. Instead, it allows consumers to use 

Kafka to track their position (offset) in each partition.” 

(Book: Kafka - The Definite Guide) 
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Producers and Consumers 

 Producers 

 Post to concrete partitions within a topic (only one leader can takes these posts) 

 Define a Partitioner-strategy (on the producer side) to decide which partition is next 

 Round-Robin Partitioner-strategy is used by default 

 Custom Partitioner-strategies let producers define semantic grouping functions  

 Consumers  

 Read concrete partitions within a topic (all broker with that partition can take these reads) 

 Hold an offset pointer for every partition that they read (on consumer side) 

 Poll and wait (no callback registration) 
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Producers and Consumers 

 Consumer Groups 

 A group of consumers that processes all events of one topic in parallel 

 The offsets for a consumer group can be managed by Kafka on server side 

 A dedicated group coordinator manages offsets, membership, scheduling etc. 

 Consumer commit successfully processed offsets to the group coordinator 

so that the coordinator can re-assign partitions to consumers 

 

 

 

And in this way, Kafka kind of knows its consumers … 
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Producers and Consumers 

 

 

#partitions > #consumer 

 Consumer take multiple 
partitions and process them 
alternatingly 

#partitions = #consumer 

 Every consumer takes one 
partition; maximum 
parallelism 

#partitions < #consumer 

 Some consumers idle, 
because the group reads 
every partition exactly once 
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Different consumers that read 
the same partition in parallel 

and at different locations. 

Producers and Consumers 

 

 

Different consumer groups that 
read same partitions in parallel 

(and at different locations). 
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Kafka APIs 

 Communication with Kafka happens via a specific APIs 

 The API can manage the specifics of the reading/writing process transparently 

 e.g. offset-tracking (consumers) and partition-scheduling (producers)  

 Two options: 

 A rich API that offers high abstraction, but limited control functions. 

 A low-level API that provides access to offsets and allows consumers to rewind 

them as the need. 

 

Event lifetime 

 Configurable: 

 By time of event  

 Max partition size 
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Log-based Massage Broker 

 

= Stream B 

send message by 
appending to log 

Receive message by 
reading log sequentially; 
when reaching the end, 

wait and poll again 

partitioning (and replication) 

sequence offsets to ensure ordering 

Only one-to-many 
messaging! 



Transmitting Event Streams 

Log-based Massage Broker 

Slide 22 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Log-based Massage Broker 

 

No one-to-one 
scheduling: 

Max parallelism bound 
by number of partitions 

in a topic! 

Events with high processing costs block all subsequent events 

Storing a history for 
events costs memory 

Example: 

6 TB of disk capacity (= log size) 
150 MB/s write throughput 

 

11 h until an event is forgotten 
(at maximum event throughput!) 
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Further reading 

 Kafka: The Definitive Guide 

 

 https://www.oreilly.com/library/ 

view/kafka-the-definitive/ 

9781491936153/  

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
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       Persist 

 

 

 Keep all queue content 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed queue content 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 JMS1 or AMQP2 Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 

1Java Message Service  
  (JMS) 2.0 Specification 
2Advanced Message Queuing Protocol  
  (AMQP) Specification 

Use if throughput matters,  
event processing costs are similar and 
the order of messages is important 

Use if one-to-one scheduling is needed, 
event processing costs differ and  
the order of messages is insignificant 
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       Persist 

 

 

 Keep all queue content 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

1Java Message Service  
  (JMS) 2.0 Specification 
2Advanced Message Queuing Protocol  
  (AMQP) Specification 

Use if throughput matters,  
event processing costs are similar and 
the order of messages is important 

Wait throughput? 

Yes, because … 

 dumping events to storage instead of 
routing them to consumers is faster 

 broker does not need to track 
acknowledgements for every event   
(only consumers track their queue offset) 

 broker can utilize batching and pipelining 
internally 



Complex Event Processing (CEP) 

 “Check a stream for patterns; whenever something special happens, raise a flag” 

 Similar to pattern matching with regular expressions (often SQL-dialects) 

 Implementations: Esper, IBM InfoSphere, Apama, TIBICO StreamBase, SQLstream 

Stream Analytics 

 “Transform or aggregate a stream; continuously output current results” 

 Often uses statistical metrics and probabilistic algorithms: 

 Bloom filters (set membership) 

 HyperLogLog (cardinality estimation) 

 HDHistogram, t-digest, decay (percentile approximation) 

 Implementations: Storm, Flink, Spark Streaming, Concord, Samza,  

     Kafka Streams, Google Cloud Dataflow, Azure Stream Analytics 
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Bounded memory  
consumption 

Approximation is 
often used for 

optimization, but 
Stream Processing 
is not inherently 

approximate! 



Maintaining Materialized Views 

 “Serve materialized views with up-to-date data from a stream” 

 Views are also caches, search indexes, data warehouses, and any derived data system  

 Implementations: Samza, Kafka Streams (but also works with Flink, Spark, and co.) 

Search on Streams 

 “Search for events in the stream; emit any event that matches the query” 

 Similar to CEP but the standing queries are indexed, less complex, and more in number 

 Implementations: Elasticsearch 

Message Passing 

 “Use the stream for event communication; actors/processes consume and produce events” 

 Requires non-blocking one-to-many communication 

 Implementations: Any message broker; RPC systems with one-to-many support 

 

Processing Streams 

Scenarios 
Usually consider 

entire stream, i.e., 
no window! 

Stream = Database 
(using log compaction etc.)  
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Goal 

 Query and analyze streaming data in real-time (i.e. as data passes by) 

Challenges 

 Limited memory resources (but endlessly large volumes of data) 

 Only a fixed-size window of the stream is accessible at a time 

 Old data is permanently gone (and not accessible any more) 

 Only one-pass algorithms can be used 

 Endlessness contradicts certain operations 

 E.g. sorting makes no sense, i.e., no sort-merge-joins or –groupings 

(on the entire stream!) 

 Input cannot be re-read or easily back-traced 

 Fault tolerance must be ensured differently 
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Mining Streaming Data 

Seminar 

Learning Goals 

a) Understand, implement, and deploy a challenging research algorithm. 

(no optimization required) 

b) Learn about state-of-the-art streaming techniques. 

c) Build an algorithm for data streams using Kafka and Kafka Streams. 

d) Solve problems that arise from distributed computing. 

e) Evaluate the quality and performance of your algorithm. 

f) Write a scientific documentation. 

g) Reveal new research questions for distributed computing (at best). 

Prerequisites 

 Database knowledge (ideally Database System I and Database Systems II) 

 Data streaming and distributed programming knowledge  

(ideally Distributed Data Analytics or Distributed Data Management) 
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Tasks: From Paper to Production 

1) Choose a paper. 

2) Study the literature of your topic (books, papers, and online material). 

3) Design a distributed algorithm with Kafka Streams that solves the problem of your paper. 

4) Evaluate your solution w.r.t. accuracy/quality and performance. 

5) Document your approach by writing a scientific documentation about as a GitHub page. 

Grading 

 10%     Active participation during all seminar events. 

 00%     Regular meetings with advisor. 

 10%     Short presentation of the selected research paper. 

 15%     Intermediate presentation demonstrating insights regarding your research prototype. 

 15%     Final presentation demonstrating your solution. 

 20%     Implementation of a research prototype with Kafka and Kafka Streams (on GitHub). 

 30%     Documentation (on GitHub).  

 

 The documentation should contain information on how to execute and evaluate your solution. 

Furthermore, it should also show strengths and weaknesses of the implementation. 



Mining Streaming Data 

Organization 

Metadata 

 Extent:   4 SWS 

 Location:  Campus II, Building F, Room F-2-10 

 Dates:   Wednesdays, 11 - 12:30 PM 

 Class:  At most 8 participants (4 teams á 2 students) 

 Register: Informal email to thorsten.papenbrock@hpi.de by April 12 (notification April 15) 

 

Registration Email 

 Add your distributed programming experience (e.g. DDA, DDM, some other course, or project). 

 Add a ranking of up to three papers that interest you (from the list shown today or own suggestions). 

 We do the final paper assignment in our first Kick-off meeting; so this is not a commit! 

 <optional> Add a team partner; you get either accepted or rejected together if seats get tight. 
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Small team meetings 

 Regular meetings with supervisor (Alexander or Thorsten) 

 

Schedule (tentative) 

 April 12:  (Email) Registration 

 April 15:  (Email) Notification 

 April 17:  Kick-off: Paper Selection & Team Building 

 April 24:  Guest Speaker Michael Noll (Confluent): "Kafka in Theory and Practice“ 

 May 1: - 

 May 8: Guest Speaker Arvid Heise (bakdata): "Kafka Streams with Q&A" 

 May 15: First Presentations: Paper & Implementation Approach 

 

Project duration 

 Intermediate presentation: ~5. June 

 Final presentation:  ~10. July 
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 Clustering Stream Data by Exploring the Evolution of Density Mountain 

Shufeng Gong, Yanfeng Zhang, and Ge Yu, VLDB 2017. 

 Scalable Kernel Density Estimation-based Local OutlierDetection over Large Data Streams 

Xiao Qin, Lei Cao, Elke A. Rundensteiner, and Samuel Madden, EDBT 2019. 

 Extremely Fast Decision Tree  

Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi, KDD 2018. 

 Sketching Linear Classifiers over Data Streams 

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant, SIGMOD 2018. 

 Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing 

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig, SIGMOD 2018. 

 GraphJet: Real-Time Content Recommendations at Twitter 

Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larso, and Jimmy Lin, VLDB 2016. 

 Online Social Media Recommendation over Streams  

Xiangmin Zhou, Dong Qin, Xiaolu Lu, Lei Chen, and Yanchun Zhang, ICDE 2019. 

 SpotLight: Detecting Anomalies in Streaming Graphs 

Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra, KDD 2018. 
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Problem 

 Efficient and dynamic clustering of multi-dimensional 

stream data 

Solution 

 EDMStream, an algorithm that continuously updates 

the clusters (described by “Density Mountains”) with 

newly arriving stream data 
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Problem 

 Efficient outlier detection in stream data 

Solution 

 KELOS, a windowing-based algorithm that aggressively 

prunes non-outliers and calculates outliers based on 

their distance to kernels (clusters of high density) 
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Problem 

 Efficiently training a decision tree with streaming data 

Solution 

 Constructs a decision tree incrementally, based on the 

standard method for learning decision trees from 

streaming data, i.e., Hoeffding tree.  

 Hoeffding trees exploit the fact that a small sample can 

often be enough to choose an optimal splitting 

attribute. This idea is supported mathematically by the 

Hoeffding bound, which quantifies the number of 

observations (in our case, examples) needed to 

estimate the goodness of a splitting attribute. 

 The method in this papers achives higher accuracy for 

because splitting attributes will be replaced as soon as 

a better alternative is identified. 
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Problem 

 Social item (Youtube videos, news, tweets etc.) 

recommendation over high speed social media streams: 

Given a new incoming social item v, a relevance 

function on social item and users, we aim to deliver the 

item v to the top-k users that have the highest 

relevance scores.  

Solution 

 Novel Bi-Layer Hidden Markov Model (BiHMM) that 

adaptively captures the behaviors of social users and 

their interactions for predicting the users’ long-term 

interest patterns 

 A new probabilistic entity matching scheme for 

effectively identifying the relevance score of a 

streaming item to a user 




