
Seminar

Mining Streaming Data
Alexander Albrecht

bakdata

Thorsten Papenbrock

Hasso Plattner Institut

 Recap (DDA / DDM)

Distributed Data Management

Streams

Slide 4

Stream Processing

Thorsten Papenbrock

Distributed Data
Management

Data Stream

 Any data that is incrementally made available over time

 Examples:

 Unix stdin and stdout

 Filesystem APIs (e.g. Java’s FileInputStream)

 Online media delivery (audio/video streaming)

 Creation from …

 static data: files or databases (read records line-wise)

 dynamic data: sensor readings, service calls, transmitted data, logs, …

Event

 = an immutable record in a stream (often with timestamp)

 “Something that happened”

 Encoded in Json, XML, CSV, … maybe in binary format

Any format that allows
incremental appends

Distributed Data Management

Types of Systems

Slide 5

Stream Processing

Thorsten Papenbrock

Distributed Data
Management

Services (online systems)

 Accept requests and send responses

 Performance measure: response time and availability

 Expected runtime: milliseconds to seconds

Batch processing systems (offline systems)

 Take (large amounts of) data; run (complex) jobs; produce some output

 Performance measure: throughput (i.e., data per time)

 Expected runtime: minutes to days

Stream processing systems (near-real-time systems)

 Consume volatile inputs; operate stream jobs; produce some output

 Performance measure: throughput and precision

 Expected runtime: near-real-time (i.e., as data arrives)

Distributed Data Management

Batch vs. Stream

Slide 6

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

Batches Streams

Write once,
read often

Send once,
receive once

Batch processing systems (offline systems)

Stream processing systems (near-real-time systems)

Distributed Data Management

Types of Systems

map map reduce map map reduce map reduce

map map reduce map map reduce map reduce

bounded;
persistent; fix size

unbounded;
volatile; any size

one result

one or a series of results

can re-execute

cannot re-execute

Distributed Data Management

Use Cases for Streaming Data

Slide 8

Thorsten Papenbrock

Sensor Processing

 Continuous and endless readings by nature

Process Monitoring

 Side effects of processes that are continuously observed

Location Tracking

 Continuous location updates of certain devices

Log Analysis

 Digital footprints of applications that grow continuously

User Interaction

 Continuous and oftentimes bursty click- and call-events

Market and Climate Prediction

 Changing stock market prices and weather characteristics

…

Transmitting Event Streams

Message Brokers: Persist or Forget

Slide 9

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

 Persist

 Keep all queue content

(until reaching size or time limit)

 No need to track consumers

 Let consumers go back in time

 Database-like

 Log-based Message Broker

(e.g. Kafka, Kinesis or DistributedLog)

Forget i

 Remove processed queue content

(immediately after acknowledgement)

 Track consumers to forget old content

 The past is past

 Volatile, light-weight

 JMS1 or AMQP2 Message Brokers

(e.g. RabbitMQ, ActiveMQ or HornetQ)

1Java Message Service
 (JMS) 2.0 Specification
2Advanced Message Queuing Protocol
 (AMQP) Specification

Transmitting Event Streams

Message Brokers: Persist or Forget

Slide 10

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

https://content.pivotal.io/blog/
understanding-when-to-use-rabbitmq-or-apache-kafka

http://kth.diva-portal.org/smash/get/
diva2:813137/FULLTEXT01.pdf

Transmitting Event Streams

Message Brokers: Persist or Forget

Slide 11

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

 Persist

 Keep all queue content

(until reaching size or time limit)

 No need to track consumers

 Let consumers go back in time

 Database-like

 Log-based Message Broker

(e.g. Kafka, Kinesis or DistributedLog)

Forget i

 Remove processed queue content

(immediately after acknowledgement)

 Track consumers to forget old content

 The past is past

 Volatile, light-weight

 JMS1 or AMQP2 Message Brokers

(e.g. RabbitMQ, ActiveMQ or HornetQ)

1Java Message Service
 (JMS) 2.0 Specification
2Advanced Message Queuing Protocol
 (AMQP) Specification

Transmitting Event Streams

Log-based Massage Broker

Slide 12

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Partitioned Logs

 Message Broker that persist queues as logs on disk

(distributed, replicated)

 Recall …

 LSM-Trees with B-Trees

and SSTables

 Leader-based replication

Transmitting Event Streams

Log-based Massage Broker

Slide 13

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Topics and Partitions

 Topics are logical groupings for event streams

 e.g. click-events, temperature-readings, location-signals

 Every topic is created with a fixed number of partitions

 Partitions are ordered lists of logically dependent events in a topic

 e.g. click-events by user, temperature-readings by sensor, location-signals by car

 Provide “happens-before semantic” for these events

 Order is valid within each partition, not across different partitions

 Are accessed sequentially

 Producers write new events sequentially

 Consumers read events sequentially

 Purpose:

 Parallelism: to read a topic in parallel

 Load-balancing: to store the events of one topic on multiple nodes

In many cases, event ordering is not a
concern and partitions are simply

arbitrary splits of a topic
(for parallelization and load-balancing)

Transmitting Event Streams

Log-based Massage Broker

Slide 14

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Topics and Partitions

Every partition has a leader that
accepts all writes to that partition and
forwards them to its follower replicas.

Leaders for different partitions are
distributed in the cluster to allow

parallel writes to one topic.

A producer uses ZooKeeper to
locate the leader of a partition

that it wants to write to.

Transmitting Event Streams

Log-based Massage Broker

Slide 15

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Producers and Consumers

 Producers

 Post to concrete partitions within a topic (only one leader can take these posts)

 Define a Partitioner-strategy (on the producer side) to decide which partition is next

 Round-Robin Partitioner-strategy is used by default

 Custom Partitioner-strategies let producers define semantic grouping functions

 Consumers

 Read concrete partitions within a topic (all broker with that partition can take these reads)

 Hold an offset pointer for every partition that they read (on consumer side)

 Poll and wait (no callback registration)

“Kafka does not track acknowledgments from
consumers […]. Instead, it allows consumers to use

Kafka to track their position (offset) in each partition.”

(Book: Kafka - The Definite Guide)

Transmitting Event Streams

Log-based Massage Broker

Slide 16

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Producers and Consumers

 Producers

 Post to concrete partitions within a topic (only one leader can takes these posts)

 Define a Partitioner-strategy (on the producer side) to decide which partition is next

 Round-Robin Partitioner-strategy is used by default

 Custom Partitioner-strategies let producers define semantic grouping functions

 Consumers

 Read concrete partitions within a topic (all broker with that partition can take these reads)

 Hold an offset pointer for every partition that they read (on consumer side)

 Poll and wait (no callback registration)

Transmitting Event Streams

Log-based Massage Broker

Slide 17

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Producers and Consumers

 Consumer Groups

 A group of consumers that processes all events of one topic in parallel

 The offsets for a consumer group can be managed by Kafka on server side

 A dedicated group coordinator manages offsets, membership, scheduling etc.

 Consumer commit successfully processed offsets to the group coordinator

so that the coordinator can re-assign partitions to consumers

And in this way, Kafka kind of knows its consumers …

Transmitting Event Streams

Log-based Massage Broker

Slide 18

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Producers and Consumers

#partitions > #consumer

 Consumer take multiple
partitions and process them
alternatingly

#partitions = #consumer

 Every consumer takes one
partition; maximum
parallelism

#partitions < #consumer

 Some consumers idle,
because the group reads
every partition exactly once

Transmitting Event Streams

Log-based Massage Broker

Slide 19

Stream Processing

Distributed Data
Management

Thorsten Papenbrock
Different consumers that read
the same partition in parallel

and at different locations.

Producers and Consumers

Different consumer groups that
read same partitions in parallel

(and at different locations).

Transmitting Event Streams

Log-based Massage Broker

Slide 20

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Kafka APIs

 Communication with Kafka happens via a specific APIs

 The API can manage the specifics of the reading/writing process transparently

 e.g. offset-tracking (consumers) and partition-scheduling (producers)

 Two options:

 A rich API that offers high abstraction, but limited control functions.

 A low-level API that provides access to offsets and allows consumers to rewind

them as the need.

Event lifetime

 Configurable:

 By time of event

 Max partition size

Transmitting Event Streams

Log-based Massage Broker

Slide 21

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Log-based Massage Broker

= Stream B

send message by
appending to log

Receive message by
reading log sequentially;
when reaching the end,

wait and poll again

partitioning (and replication)

sequence offsets to ensure ordering

Only one-to-many
messaging!

Transmitting Event Streams

Log-based Massage Broker

Slide 22

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Log-based Massage Broker

No one-to-one
scheduling:

Max parallelism bound
by number of partitions

in a topic!

Events with high processing costs block all subsequent events

Storing a history for
events costs memory

Example:

6 TB of disk capacity (= log size)
150 MB/s write throughput

11 h until an event is forgotten
(at maximum event throughput!)

Transmitting Event Streams

Log-based Massage Broker

Slide 23

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Further reading

 Kafka: The Definitive Guide

 https://www.oreilly.com/library/

view/kafka-the-definitive/

9781491936153/

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/

Transmitting Event Streams

Message Brokers: Persist or Forget

Slide 24

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

 Persist

 Keep all queue content

(until reaching size or time limit)

 No need to track consumers

 Let consumers go back in time

 Database-like

 Log-based Message Broker

(e.g. Kafka, Kinesis or DistributedLog)

Forget i

 Remove processed queue content

(immediately after acknowledgement)

 Track consumers to forget old content

 The past is past

 Volatile, light-weight

 JMS1 or AMQP2 Message Brokers

(e.g. RabbitMQ, ActiveMQ or HornetQ)

1Java Message Service
 (JMS) 2.0 Specification
2Advanced Message Queuing Protocol
 (AMQP) Specification

Use if throughput matters,
event processing costs are similar and
the order of messages is important

Use if one-to-one scheduling is needed,
event processing costs differ and
the order of messages is insignificant

Transmitting Event Streams

Message Brokers: Persist or Forget

Slide 25

Thorsten Papenbrock

Stream Processing

Distributed Data
Management

 Persist

 Keep all queue content

(until reaching size or time limit)

 No need to track consumers

 Let consumers go back in time

 Database-like

 Log-based Message Broker

(e.g. Kafka, Kinesis or DistributedLog)

Forget i

1Java Message Service
 (JMS) 2.0 Specification
2Advanced Message Queuing Protocol
 (AMQP) Specification

Use if throughput matters,
event processing costs are similar and
the order of messages is important

Wait throughput?

Yes, because …

 dumping events to storage instead of
routing them to consumers is faster

 broker does not need to track
acknowledgements for every event
(only consumers track their queue offset)

 broker can utilize batching and pipelining
internally

Complex Event Processing (CEP)

 “Check a stream for patterns; whenever something special happens, raise a flag”

 Similar to pattern matching with regular expressions (often SQL-dialects)

 Implementations: Esper, IBM InfoSphere, Apama, TIBICO StreamBase, SQLstream

Stream Analytics

 “Transform or aggregate a stream; continuously output current results”

 Often uses statistical metrics and probabilistic algorithms:

 Bloom filters (set membership)

 HyperLogLog (cardinality estimation)

 HDHistogram, t-digest, decay (percentile approximation)

 Implementations: Storm, Flink, Spark Streaming, Concord, Samza,

 Kafka Streams, Google Cloud Dataflow, Azure Stream Analytics

Processing Streams

Scenarios

Slide 26

Thorsten Papenbrock

Bounded memory
consumption

Approximation is
often used for

optimization, but
Stream Processing
is not inherently

approximate!

Maintaining Materialized Views

 “Serve materialized views with up-to-date data from a stream”

 Views are also caches, search indexes, data warehouses, and any derived data system

 Implementations: Samza, Kafka Streams (but also works with Flink, Spark, and co.)

Search on Streams

 “Search for events in the stream; emit any event that matches the query”

 Similar to CEP but the standing queries are indexed, less complex, and more in number

 Implementations: Elasticsearch

Message Passing

 “Use the stream for event communication; actors/processes consume and produce events”

 Requires non-blocking one-to-many communication

 Implementations: Any message broker; RPC systems with one-to-many support

Processing Streams

Scenarios
Usually consider

entire stream, i.e.,
no window!

Stream = Database
(using log compaction etc.)

Processing Streams

Challenges and Limits

Slide 28

Stream Processing

Distributed Data
Management

Thorsten Papenbrock

Goal

 Query and analyze streaming data in real-time (i.e. as data passes by)

Challenges

 Limited memory resources (but endlessly large volumes of data)

 Only a fixed-size window of the stream is accessible at a time

 Old data is permanently gone (and not accessible any more)

 Only one-pass algorithms can be used

 Endlessness contradicts certain operations

 E.g. sorting makes no sense, i.e., no sort-merge-joins or –groupings

(on the entire stream!)

 Input cannot be re-read or easily back-traced

 Fault tolerance must be ensured differently

 Mining Streaming Data

Mining Streaming Data

Seminar

Learning Goals

a) Understand, implement, and deploy a challenging research algorithm.

(no optimization required)

b) Learn about state-of-the-art streaming techniques.

c) Build an algorithm for data streams using Kafka and Kafka Streams.

d) Solve problems that arise from distributed computing.

e) Evaluate the quality and performance of your algorithm.

f) Write a scientific documentation.

g) Reveal new research questions for distributed computing (at best).

Prerequisites

 Database knowledge (ideally Database System I and Database Systems II)

 Data streaming and distributed programming knowledge

(ideally Distributed Data Analytics or Distributed Data Management)

Slide 30

Thorsten Papenbrock

Mining Streaming Data

Organization

Tasks: From Paper to Production

1) Choose a paper.

2) Study the literature of your topic (books, papers, and online material).

3) Design a distributed algorithm with Kafka Streams that solves the problem of your paper.

4) Evaluate your solution w.r.t. accuracy/quality and performance.

5) Document your approach by writing a scientific documentation about as a GitHub page.

Grading

 10% Active participation during all seminar events.

 00% Regular meetings with advisor.

 10% Short presentation of the selected research paper.

 15% Intermediate presentation demonstrating insights regarding your research prototype.

 15% Final presentation demonstrating your solution.

 20% Implementation of a research prototype with Kafka and Kafka Streams (on GitHub).

 30% Documentation (on GitHub).

 The documentation should contain information on how to execute and evaluate your solution.

Furthermore, it should also show strengths and weaknesses of the implementation.

Mining Streaming Data

Organization

Metadata

 Extent: 4 SWS

 Location: Campus II, Building F, Room F-2-10

 Dates: Wednesdays, 11 - 12:30 PM

 Class: At most 8 participants (4 teams á 2 students)

 Register: Informal email to thorsten.papenbrock@hpi.de by April 12 (notification April 15)

Registration Email

 Add your distributed programming experience (e.g. DDA, DDM, some other course, or project).

 Add a ranking of up to three papers that interest you (from the list shown today or own suggestions).

 We do the final paper assignment in our first Kick-off meeting; so this is not a commit!

 <optional> Add a team partner; you get either accepted or rejected together if seats get tight.

Slide 32

mailto:thorsten.papenbrock@hpi.de

Mining Streaming Data

Organization

Slide 33

Thorsten Papenbrock

Small team meetings

 Regular meetings with supervisor (Alexander or Thorsten)

Schedule (tentative)

 April 12: (Email) Registration

 April 15: (Email) Notification

 April 17: Kick-off: Paper Selection & Team Building

 April 24: Guest Speaker Michael Noll (Confluent): "Kafka in Theory and Practice“

 May 1: -

 May 8: Guest Speaker Arvid Heise (bakdata): "Kafka Streams with Q&A"

 May 15: First Presentations: Paper & Implementation Approach

Project duration

 Intermediate presentation: ~5. June

 Final presentation: ~10. July

Mining Streaming Data

Paper Suggestions

Slide 34

Thorsten Papenbrock

 Clustering Stream Data by Exploring the Evolution of Density Mountain

Shufeng Gong, Yanfeng Zhang, and Ge Yu, VLDB 2017.

 Scalable Kernel Density Estimation-based Local OutlierDetection over Large Data Streams

Xiao Qin, Lei Cao, Elke A. Rundensteiner, and Samuel Madden, EDBT 2019.

 Extremely Fast Decision Tree

Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi, KDD 2018.

 Sketching Linear Classifiers over Data Streams

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant, SIGMOD 2018.

 Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig, SIGMOD 2018.

 GraphJet: Real-Time Content Recommendations at Twitter

Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larso, and Jimmy Lin, VLDB 2016.

 Online Social Media Recommendation over Streams

Xiangmin Zhou, Dong Qin, Xiaolu Lu, Lei Chen, and Yanchun Zhang, ICDE 2019.

 SpotLight: Detecting Anomalies in Streaming Graphs

Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra, KDD 2018.

Mining Streaming Data

Paper Suggestions

Slide 35

Thorsten Papenbrock

Problem

 Efficient and dynamic clustering of multi-dimensional

stream data

Solution

 EDMStream, an algorithm that continuously updates

the clusters (described by “Density Mountains”) with

newly arriving stream data

Mining Streaming Data

Paper Suggestions

Slide 36

Thorsten Papenbrock

Problem

 Efficient outlier detection in stream data

Solution

 KELOS, a windowing-based algorithm that aggressively

prunes non-outliers and calculates outliers based on

their distance to kernels (clusters of high density)

Mining Streaming Data

Paper Suggestions

Slide 37

Thorsten Papenbrock

Problem

 Efficiently training a decision tree with streaming data

Solution

 Constructs a decision tree incrementally, based on the

standard method for learning decision trees from

streaming data, i.e., Hoeffding tree.

 Hoeffding trees exploit the fact that a small sample can

often be enough to choose an optimal splitting

attribute. This idea is supported mathematically by the

Hoeffding bound, which quantifies the number of

observations (in our case, examples) needed to

estimate the goodness of a splitting attribute.

 The method in this papers achives higher accuracy for

because splitting attributes will be replaced as soon as

a better alternative is identified.

Mining Streaming Data

Paper Suggestions

Slide 38

Thorsten Papenbrock

Problem

 Social item (Youtube videos, news, tweets etc.)

recommendation over high speed social media streams:

Given a new incoming social item v, a relevance

function on social item and users, we aim to deliver the

item v to the top-k users that have the highest

relevance scores.

Solution

 Novel Bi-Layer Hidden Markov Model (BiHMM) that

adaptively captures the behaviors of social users and

their interactions for predicting the users’ long-term

interest patterns

 A new probabilistic entity matching scheme for

effectively identifying the relevance score of a

streaming item to a user

