
Kafka & Kafka Streams
MINING STREAMING DATA

kafka.apache.org

Apache Kafka

https://kafka.apache.org/

Introduction
A streaming platform has three key capabilities:

● Publish and subscribe to streams of records, similar to a message queue.
● Store streams of records in a fault-tolerant durable way.
● Process streams of records as they occur.

Few basic Kafka concepts

● Kafka is run as a cluster on one or more servers (Kafka brokers)
● The Kafka cluster stores streams of records in categories called topics.
● Each record consists of a key (optional), a value and timestamp

Kafka Topic
A Kafka topic ...

● Is a named stream of records
● Can have zero, one, or many consumers that subscribe to the data written to it.

For each topic, the Kafka cluster maintains
a partitioned log.

Records are stored in a partition based on
record key or round-robin if the key
is missing.

Kafka Topic Partitions
Many partitions can handle an arbitrary amount of data and writes.

Records in the partitions are each assigned a sequential id number called the offset.

An offset uniquely identifies each record within the partition

Kafka Consumers
A consumer is a subscriber to a Kafka topic

Consumers are grouped into a consumer group

A consumer group maintains its offset per topic partition

Scaling Kafka Consumers
Kafka scales consumers by partition

Each consumer gets its share of partitions.

A partition can only be used by one consumer in a consumer group at a time

A consumer can have more than one partition

Kafka Producer
A Kafka producer sends records to topics.

Records are send to a partition based on record key or round-robin if the key
is missing.

Records with the same key get sent to the same partition.

More to learn
● Replication
● Consistency and durability levels
● Serializer/Deserializer
● Kafka brokers
● Storage
● Zookeeper
● ...

Download Apache Kafka
kafka.apache.org

https://kafka.apache.org/

Start Zookeeper
bin/zookeeper-server-start.sh config/zookeeper.properties

Small Demo
Start Kafka cluster on your machine.

Write example input data to a Kafka topic, using the console producer

Process the input data with WordCountDemo, an example Java application that
uses the Kafka Streams library.

Inspect the output data of the application, using the console consumer

Start Apache Kafka
bin/kafka-server-start.sh config/server.properties

Create a Kafka input topic
bin/kafka-topics.sh --create \

--zookeeper localhost:2181 \
--replication-factor 1 \
--partitions 1 \
--topic streams-plaintext-input

Create a Kafka output topic
bin/kafka-topics.sh --create \

--zookeeper localhost:2181 \
--replication-factor 1 \
--partitions 1 \
--topic streams-wordcount-output

Publish data to input topic
bin/kafka-console-producer.sh \

--broker-list localhost:9092 \
--topic streams-plaintext-input

Subscribe data from input topic
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \

--from-beginning \
--topic streams-plaintext-input

Process data in input topic with Kafka Streams App
bin/kafka-run-class.sh
org.apache.kafka.streams.examples.wordcount.WordCountDemo

Kafka Streams Processing

Writing a Kafka Streams Application
Create a new Maven project in your Java IDE, for example IntelliJ IDEA

Add dependencies to pom.xml, see
https://kafka.apache.org/10/documentation/streams/developer-guide/write-streams

Run WordCoutDemo in your Java IDE
https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/ap
ache/kafka/streams/examples/wordcount/WordCountDemo.java

https://kafka.apache.org/10/documentation/streams/developer-guide/write-streams
https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples/wordcount/WordCountDemo.java
https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples/wordcount/WordCountDemo.java

Kafka Streams Applications
Kafka Streams is a library for developing applications for processing records from
Apache Kafka topics.

Any Java application that makes use of the Kafka Streams library is considered a
Kafka Streams application.

public final class WordCountDemo {
public static void main(final String[] args) {

…
final StreamsBuilder builder = new StreamsBuilder();
final KStream<String, String> source = builder.stream("streams-plaintext-input");
...

}
}

WordCountDemo
KStream<String, String> <null, "cat fish fish">

flatMapValues <null, "cat">, <null, "fish">, <null, "fish">

groupBy((key, value) -> value) (<"cat", "cat">), (<"fish", "fish">, <"fish", "fish">)

Count occurences in each group <"cat", 1>, <"fish", 2>

KStream & KGroupedStream
Abstraction of a record stream (of key-value pairs), where each data record
represents an INSERT

Created directly from one or many Kafka topics
final KStream<String, String> source = builder.stream("streams-plaintext-input");

Comes with a rich set of operators (KStream API)

● filter
● flatMapValues
● join
● groupBy
● ...

KTable
Abstraction of a record stream (of key-value pairs), where each data record
represents an UPSERT (UPDATE or INSERT)

Related to Kafka Log Compaction, see
https://kafka.apache.org/documentation.html#compaction

Records with null values (so-called tombstone records) are deleted

https://kafka.apache.org/documentation.html#compaction

Putting it all together
final StreamsBuilder builder = new StreamsBuilder();
final KStream<String, String> source = builder.stream("streams-plaintext-input");

final KTable<String, Long> counts = source
 .flatMapValues(value ->

Arrays.asList(value.toLowerCase(Locale.getDefault()).split(" "))
.groupBy((key, value) -> value)

 .count();
// need to override value serde to Long type
counts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(),
Serdes.Long()));
final KafkaStreams streams = new KafkaStreams(builder.build(), props);

Boilerplate
Configuration (props),
for example APPLICATION_ID_CONFIG ("streams-wordcount")

Graceful shutdown: Java shutdown hook to run streams.close() when the stream
application terminates.

https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/ap
ache/kafka/streams/examples/wordcount/WordCountDemo.java

https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples/wordcount/WordCountDemo.java
https://github.com/apache/kafka/blob/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples/wordcount/WordCountDemo.java

More to learn
● High-level Streams DSL
● Low-level Processor API
● StateStores
● ...

