
Research Process
Practical Hints and Clues Dr. Thorsten Papenbrock

Information Systems Group, HPI



Slide 2

R
e
s
e
a
r
c
hSolution 1 Solution 2

Innovation!



Research Process

Science vs. Engineering

Slide 3



Research Process

Science vs. Engineering

Science Engineering

Science is concerned with understanding 
fundamental laws of nature and the 
behavior of materials and living things.

Engineering is the application of science 
and technology to create useful 

products and services for the whole 
community, within economic, 

environmental and resource constraints.

■ What does this mean for us?

□ Solve general problems!

– Do not optimize for very specific data, situations, use cases, … 

(e.g. key discovery for only the ncvoter dataset)

Slide 4



Research Process

Science vs. Engineering

Science Engineering

Science is concerned with understanding 
fundamental laws of nature and the 
behavior of materials and living things.

Engineering is the application of science 
and technology to create useful 

products and services for the whole 
community, within economic, 

environmental and resource constraints.

Slide 5

■ To understand, we need good software that correctly/efficiently analyses 

nature/materials/things

➢ For good software, we need good engineering

➢Good science implicitly requires good engineering

(although we rarely talk about the engineering efforts)



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 6



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 7



■ Identify the problem

□ Performance?

□ Scalability?

□ Precision?

□ Completeness?

□ …

■ A concrete use case or application can help to …

□ Find a problem

□ Identify your contribution

□ State why your contribution is relevant

□ See what aspects of your contribution need to evaluated

Research Process

Definition of goals

Slide 8



■ SMART goals

□ Specific: What shall be the contribution of your algorithm?

– Properties: efficiency, robustness, scalability, security, …

– Solve a new problem or enter a new dimension of a problem

□ Measurable: How can you evaluate your progress?

– Even better: can you monitor your progress?

□ Assignable: Formulate sub-goals and solve them iteratively.

– E.g. 1. correctness, 2. efficiency, 3. scalability, 4. robustness

□ Realistic: Have a certain confidence in your ideas before taking them up.

□ Time-boxed:  Answers give rise to new questions, so consider time limitations.

Research Process

Definition of goals

Slide 9



■ Write an exposé

□ Abstract: 5 sentences

– Motivation, Problem Statement, Approach, Results, Conclusion

– E.g. http://users.ece.cmu.edu/~koopman/essays/abstract.html

□ Introduction: Basically an extended abstract

□ Related Work: What is already done?

Why is the problem not solved yet?

What we do as well?

What we do differently?

□ Approach: The new idea that may solve the problem

□ Evaluation: How to evaluate the idea (experiments and datasets)

Research Process

Definition of goals

Slide 10

http://users.ece.cmu.edu/~koopman/essays/abstract.html


Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 11



■ Good research requires good engineering

□ We sell new ideas, not the engineering of these ideas

□ But even good ideas cannot be sold, if they are not properly engineered

■ “Premature optimization is the root of all evil.” – Donald E. Knuth

□ It is likely to obfuscate your code

□ Measure, then optimize where it pays off (pareto principle)

□ Know your bottlenecks!

■ Design for performance

□ Performance Patterns: Smith, C. U., & Williams, L. G. (2001). Performance Solutions: A 

Practical Guide to Creating Responsive, Scalable Software. ISBN 0201722291

□ Performance Antipatterns: Smith, C. U., & Williams, L. G. (2000, September). Software 

performance antipatterns. In Workshop on Software and Performance (pp. 127-136).

Research Process

Engineering of ideas

Slide 12



■ Know your programming language!

□ Know when costly operations happen

– Call by reference/value

– Autoboxing

– (Tail-)Recursions

– …

□ Java vs. Scala vs. Python vs. C

Research Process

Engineering of ideas

Slide 13



■ Pitfalls

□ Mind your I/O operations: latency vs. throughput

– 10 000 * (tlatency + twrite) > tlatency + 10 000 * twrite

– Bundle I/O operations into batches, employ latency hiding when necessary

□ File and network operations are expensive

– Reduce the number of file/connection handles 

(number of simultaneously open file handles is also limited)

□ If I/O is a problem, there are some optimization opportunities

– Avoid standard frameworks like Java serialization or Python pickle

– Employ binary serialization instead of JSON/XML

– Store text as UTF-8

– Got free CPU cycles? Compression can pay off…

Research Process

Engineering of ideas

Slide 14



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 15



■ Test your theory/hypothesis

□ Write test cases!

– TDD, tests first, unit testing, continuous testing, …

□ Compare results to some naïve baseline or some other reference implementation

– In the best case: reference implementation of a different programmer and language

□ The ultimate verification: proof correctness of your algorithm

– If formal proof is hard, make an informal proof to yourself

Research Process

Testing for correctness

Slide 16



■ Component tests

□ Write unit tests for your utilities (e.g., parsers, helpers, calculators, data structures …)

■ Artificial test examples

□ Good to get a first running version

□ Hardly will contain all the edge cases       add edge cases to your tests while they occur

■ Reference implementation

□ Automatic result comparison with reference implementation

□ Helpful for debugging: output your delta with reference result

□ Do it on as many datasets as possible

Research Process

Testing for correctness

Slide 17



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 18



■ Monitor your progress

□ Measure first, then optimize (cf. Engineering pitfalls)

□ Measure often

– Use many different datasets for testing to avoid optimizing for specific 

dataset characteristics

– Explore your parameters

→Tip: Write a measurement framework early on!

■ If your goals are SMART, you know when you are done!

Research Process

Evaluation of performance

Slide 19



■ Evaluation should provide …

□ empirical evidence for your claims/goals/contributions

■ Evaluation results should therefore be …

□ … credible, significant, relevant, realistic, general/generalizable, repeatable

Research Process

Evaluation of performance

Slide 20



■ The fine art of evaluation is to …

□ put performance into context: 

– Compare performance measurements to related work

– Ensure fair comparison settings

– You might need to re-implement and re-evaluate related work algorithms/approaches

□ support your claims with as few experiments as possible

□ isolate and show the effects of your design choices, innovations, and optimizations

□ use a variety of datasets:

– different domains and dataset characteristics

– real-world and synthetic data

Research Process

Evaluation of performance

Slide 21



■ Result interpretation

Research Process

Evaluation of performance

Assumption           Hypothesis           Example           Interpretation           Conclusion           Proof

0

5

10

15

20

0 5 10 15R
u

n
ti

m
e
 [

m
in

]

Data size [GB]

?

„Maybe it‘s because 

of the memory 

consumption.“

„If the data did not fit into 

main memory any more, 

the algorithm might 

have started paging.“

„The same happens when 

I run some other algorithm on 

large data with too less RAM.“

„The data became larger than

main memory capacity at exactly

that point; we know the algorithm

starts paging then.“

„At 5 GB the algorithm had to

page 4 GB to disk, which costs

5 min that we see in the chart.“

„Given X GB to page. 

It follows that … this 

costs Y min that we 

see in the chart. qed.“



■ Repeatability Tracks

□ SIGMOD since 2008: Repeatability

□ VLDB since 2008: Experiments and Evaluation

□ Consolidation and Validation

– „Motivated by these surprisingly excellent results, we take a look into the rearview mirror. We have re-

implemented the Dwarf index from scratch and make three contributions. First, we successfully repeat 

several of the experiments of the original paper. Second, we substantially correct some of the 

experimental results reported by the inventors. Some of our results differ by orders of 

magnitude.”
From: Jens Dittrich, Lukas Blunschi, Marcos Antonio Vaz Salles. Dwarfs in the rearview mirror: how big are they really? VLDB 2008

– “… Allerdings konnte ebenfalls gezeigt werden, dass die Autoren bei dem Vergleich ihrer Verfahren mit 

der SNM offensichtlich nicht die transitive Hülle berücksichtigten, denn nur so konnten die großen 

Unterschiede in den Vergleichen nachvollzogen werden. Unter Berücksichtigung der transitiven Hülle 

schneidet die SNM dagegen im Vergleich zu den vorgestellten Verfahren [Adaptive Sorted 

Neighborhood Method] sehr gut oder sogar besser ab.” 
From: Oliver Wonneberg, HPI, BTW 2009 Studierendenprogramm

Research Process

Evaluation of performance



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 24



■ Research is usually data driven

➢Data is important to …

– define the problem and your goals 

– develop ideas for good solutions

– test for correctness

– test for performance

□ But data owners usually do not give their data away

– Data is the core capital of companies (strategic resource)

– Data is private property (sensitive information)

□ How to get data?

Research Process

Acquisition of data

Slide 25



■ “At some point, every company writes its own data generator”

□ HPI: dbtesma, hanaGenerator, …

□ IBM, SAP, …

■ Public data generators

□ www.tpc.org/tpch/

□ www.generatedata.com/

□ www.red-gate.com/products/sql-development/sql-data-generator/

■ Advantage:

□ As much data as you want!

□ Data fits your needs! (?)

Research Process

Acquisition of data

Slide 26

http://www.generatedata.com/
http://www.generatedata.com/
http://www.red-gate.com/products/sql-development/sql-data-generator/


■ Challenge: Generate data with real world characteristics

□ Benford Law Frequency, UCCs, INDs, FDs, …

■ Chicken-Egg-Problem

■ Usual problems

□ Less variety in INDs, UCCs, and FDs (e.g. fd_reduced dataset)

□ Data replication (at some point) due to the use of seed data

□ Specific optimization for only a few meta data characteristics

Research Process

Acquisition of data

Use profiling algorithms to 
generate data with natural 
meta data characteristics!

Use data with natural meta 
data characteristics to build 

and test profiling algorithms!

Slide 27



Enigma

https://public.enigma.com/

Data.Gov

https://www.data.gov/

Web Data Commons – Web Table Corpora

http://webdatacommons.org/webtables/index.html

MusicBrainz @BitBucket

https://bitbucket.org/metabrainz/musicbrainz-server

The GDELT Project

https://www.gdeltproject.org/

UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/index.php

Kaggle

https://www.kaggle.com/competitions

Awesome Data @GitHub

https://github.com/awesomedata/awesome-public-datasets

Quora

https://www.quora.com/Data/Where-can-I-find-large-datasets-open-to-the-public

Research Process

Acquisition of data

Slide 28

ThorstenPapenbrock

https://public.enigma.com/
https://www.data.gov/
http://webdatacommons.org/webtables/index.html
https://bitbucket.org/metabrainz/musicbrainz-server
https://www.gdeltproject.org/
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/competitions
https://github.com/awesomedata/awesome-public-datasets
https://www.quora.com/Data/Where-can-I-find-large-datasets-open-to-the-public


■ Good sources:

□ WDC web tables project: http://webdatacommons.org/webtables/index.html

□ UCI machine learning repository: http://archive.ics.uci.edu/ml/

□ Public competitions: www.kaggle.com/competitions

□ Collection: www.quora.com/Where-can-I-find-large-datasets-open-to-the-public

■ Which data to consider?

□ Use datasets from different domains

□ Use datasets of different size

□ Use datasets in different formats

□ Use datasets from different sources

Research Process

Acquisition of data

Slide 29

http://webdatacommons.org/webtables/index.html
http://archive.ics.uci.edu/ml/
http://www.kaggle.com/competitions
http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public


Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 30



■ We often optimize for efficiency

□ New complexity class: 

– e.g. O(n³) → O(n²)

– great, but do not try if complexity of problem is proven!

□ Factorial improvement:

– e.g. O(3n) → O(2n)

– great, but factor should be significant! 

(otherwise the performance gain could be due to engineering)

■ Consider edge cases

□ worst case, best case, and average case complexity

Research Process

Analysis of complexity

Slide 31



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Agenda

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 32



Research Process

Presentation of results

Slide 33

■ Good and well-engineered ideas go unnoticed without good presentation

□ Talks & Write-ups

– True for seminars, master theses, and scientific publications



Research Process

Presentation of results

Slide 34

■ Bugs in writing

□ Personal Pronoun: We vs. I

– We

□ Time: Present vs. Past

– Present

– Past only if it is not avoidable

□ Abbreviations:

– Progressive Sorted Neighborhood Method (PSNM) → is OK



Research Process

Presentation of results

Slide 35

■ Introducing a new topic

1. Motivate the new topic and describe the problem

2. Place the new topic in the overall picture of your work

3. Describe your solution

4. Consider and discuss alternative solutions/approaches

5. Justify your decisions

6. Conclude how your work solves the problem



Research Process

Presentation of results

Slide 36

■ Evaluating an experiment

1. Explain why and what you are going to test

2. Describe the test setup und environment

3. Describe what the test results look like and what can been seen

4. Explain expected results

5. Point out the reasons for significant, unexpected, surprising results

6. Analyse your findings and draw a conclusion for them



Research Process

Presentation of results

■ Abstract Writing (5 sentences)

□ Motivation: Why do we care about the problem and the results? This section should include the importance of your work, the difficulty of the area, 

and the impact it might have if successful.

□ Problem statement: What problem are you trying to solve? What is the scope of your work (a generalized approach, or for a specific 

situation)? Be careful not to use too much jargon.

□ Approach: How did you go about solving or making progress on the problem? Did you use simulation, analytic models, prototype construction, or 

analysis of field data for an actual product? What was the extent of your work (did you look at one application program or a hundred programs in twenty 

different programming languages?) What important variables did you control, ignore, or measure?

□ Results: What's the answer? Specifically, most good computer architecture papers conclude that something is so many percent faster, cheaper, smaller, 

or otherwise better than something else. Put the result there, in numbers. Avoid vague, hand-waving results such as "very", "small", or "significant." If you 

must be vague, you are only given license to do so when you can talk about orders-of-magnitude improvement. 

□ Conclusions: What are the implications of your answer? Is it going to change the world (unlikely), be a significant "win", be a nice hack, or simply 

serve as a road sign indicating that this path is a waste of time (all of the previous results are useful). Are your results general, potentially generalizable, or 

specific to a particular case?



Research Process

Presentation of results

Slide 38

■ Related Work

□ Name all related work

□ Describe it as much as it relevant for your approaches

□ Differentiate it from your work (or explain commonalities)

□ Name the weaknesses (if possible)

■ Avoid passive !!!

□ Always write who did what!

→ avoid passive!

□ Example: The sentence is converted to lower-case letters.

→ We convert the sentence to lowe-case letters.

→ The algorithm/function/actor/thread/process/worker/… 



Research Process

Presentation of results

Slide 39

■ Informal speach

□ “as“ and “since“ in the meaning of “because“ are informal speech

■ Be precise and put the adjectives, adverbs, … were they belong

□ Example: I worked on my thesis hardly.

→ I hardly worked on my thesis.

□ Example: I worked on my thesis only.

→ I only worked on my thesis.

→ I worked only on my thesis.

■ Mind the correct ordering of sentences (Yoda speach)

□ Example: I on my own wrote a letter.

→ I wrote a letter on my own. 



Research Process

Presentation of results

Slide 40

■ The Oxford-Comma

□ He collected books, papers, and documents.

□ He collected books, wrote papers and read documents.

■ The Introducer-Comma

□ However, …

□ Additionally, …

□ To achieve a goal, …

□ As we saw earlier, …



Research Process

Presentation of results

Slide 41

■ which vs. that

□ “that“

– There is never a “,“ in front of “that“

– Introduces a relative sentence that is necessary for the understanding of the 

main sentence

□ ”which”

– There is always a “,“ in front of “which“

– Introduces a relative sentence that gives additional information and is not 

necessary for the understanding of the main sentence



Research Process

Presentation of results

Slide 42

■ Reference formatting

□ Most importantly: Make the references consistent!

□ If you use one attribute for a “book“, 

then use it for all books

□ Use the same abbreviation pattern for all conference names

(not “Com. of the ACM” and “Communication of the ACM”)



Algorithm Research

■ Definition of goals

■ Engineering of ideas

■ Testing for correctness

■ Evaluation of performance

Research Process

Research Process Practical Hints and Clues

Cross-cutting concerns

■ Acquisition of data

■ Analysis of complexity

■ Presentation of results

Slide 43

■ Hints and Clues

□ Research → Reading

□ Research → Innovating

□ Research → Engineering

□ Research → Structured Working, Writing, and Presentation



Slide 44

Efficient Java Code



Algorithm design comes first

■ Utmost efficient code will not compensate for a bad algorithm

■ Think about data structures: trees, tries, hash tables, linked lists, arrays, heaps, … 
and algorithmic strategies: sorting, hashing, search strategies, … 
first, including their complexities

Avoid premature optimization

■ Create a working algorithm first

■ Measure and detect bottlenecks to optimize the hot spots of your code

Code efficiency can go along with good algorithm design

■ Study patterns/anti-patterns, coding idioms and best-practices

■ Research performant libraries

■ Stick to the two above points

■ That is: Achieve performance by design, not by hacking!

Before talking about efficient Java...

Slide 45



Java is not slow

■ But it is easy to write inefficient code 

(stressing garbage collection, autoboxing, thoughtless String-handling, …)

Before tweaking

■ Make sure you have a good algorithm

■ Detect bottlenecks (are you CPU, memory, or I/O bound?)

■ Create (micro-)benchmarks to measure the effects

■ Use benchmarks to pinpoint the problem

While tweaking

■ Continuously verify correctness with unit/integration tests

Bottlenecks

Slide 46



■ Inefficient algorithm

■ Inefficient loops

■ Garbage collector

■ Unoptimizable code

■ (Un-)Boxing

■ Inefficient string handling

■ Parallelization issues: starvation, too much synchronization etc.

CPU Bounds

Slide 47



■ Inefficient algorithm

■ Caching unnecessary objects

■ Objects too large

■ Overallocated strings, collections, maps

■ Oversized data types

Memory Bounds

Slide 48



■ Inefficient algorithm

■ Too many file/network accesses

■ Sequential vs. random access

■ Serialization inefficient

■ Serialized objects too large

■ Inefficient caching

I/O Bounds

Slide 49



■ Immutable objects are needed for good API design

■ Easy to use in defensive API design

■ Address immutable

class Person {

private final String name;

private final Address address;

public Person(final String name, final Address address) {

this.name = name;

this.address = address;

}

}

■ Person also immutable

Mutable vs. Immutable

Slide 50



■ Mutable objects are better for fast code

■ Harder to use in defensive API design

■ Address mutable

class Person {

private final String name;

private final Address address;

public Person(final String name, final Address address) {

this.name = name;

this.address = new Address(address);

}

}

■ What happens if we don’t copy the address?

Mutable vs. Immutable #2

Slide 51



■ Fetching data becomes expensive with immutable objects

Map<Person, Integer> personOccurences = new HashMap<>();

public void countOccurences(DataInput logFiles, int logCount) throws IOException {

for (int index = 0; index < logCount; index++) {

String name = logFiles.readUTF();

String place = logFiles.readUTF();

Person person = new Person(name, new Address(place));

final Integer oldValue = this.personOccurences.get(person);

this.personOccurences.put(person, oldValue == null ? 1 : (oldValue + 1));

}

}

■ Need to create a new Person and Address for each log entry

When to use mutable objects?

Slide 52



■ Use lookup object

Map<Person, Integer> personOccurences = new HashMap<>();

public void countOccurences(DataInput logFiles, int logCount) throws IOException {

Person person = new Person();

for (int index = 0; index < logCount; index++) {

String name = logFiles.readUTF();

String place = logFiles.readUTF();

person.setName(name);

person.getAddress().setPlace(place);

final Integer oldValue = this.personOccurences.get(person);

this.personOccurences.put(person, oldValue == null ? 1 : (oldValue + 1));

}

}

When to use mutable objects?

Slide 53



■ Anti-pattern

String name = new String("Peter");

■ String literals and interned strings are managed by string pool

□ Can be tested for equality with ==

■ Similar Integer.valueOf maintains small pool

□ [-128, 127] by default

□ "java.lang.Integer.IntegerCache.high"

■ Maintain pool if few different objects

□ That needs to be looked up often

□ XML attributes

Object Pools

Slide 55



■ EHCache provides map-like interface

□ Removes entries if a certain size is reached

□ Different strategies, LRU most often used

■ Data is spilled to disk if configured

■ Can use third tier caches as well

■ Useful if you want to maintain an object pool and you don’t know what is 

needed most

External Caching

Slide 56

“There are only two hard things in Computer 
Science: cache invalidation and naming things.”

-- Phil Karlton Use caches carefully!



■ Anti-pattern

String alphabet = "";

for (char letter = 'a'; letter <= 'z'; letter++)

alphabet += letter;

■ Use String + only when you know what you are doing

□ Never use += inside a loop

□ Compiler does it on its own for

String name = firstName + " " + lastName;

■ Remember String is immutable, needs lots of copying

■ Use StringBuilder instead 

(StringBuffer is the thread-safe, i.e., slower version)

■ Consider using new String(…) instead of ….substring(…)

String Concatenation

Slide 57

Points to old String, i.e., 
entire old String is kept alive!



■ Beware of boxing and unboxing

□ Strongly degrades performance

Map<Person, Integer> personOccurences = new HashMap<>();

Person person = new Person(name, new Address(place));

final Integer oldValue = this.personOccurences.get(person);

this.personOccurences.put(person, oldValue == null ? 1 : (oldValue + 1));

■ Use fastutil or trove instead

Object2IntMap<Person> personOccurences = new Object2IntOpenHashMap<>();

this.personOccurences.defaultReturnValue(0);

Person person = new Person(name, new Address(place));

final int oldValue = this.personOccurences.getInt(person);

this.personOccurences.put(person, oldValue + 1);

■ Also: very many Integer objects (or the like) will eventually effect the GC. 

Fastutil & co can reduce the amounts of objects.

(Un-)Boxing

Slide 58

Get the int from an Integer without casting:

someInteger.intValue()



■ Often double is not needed and float is sufficient

■ Halves memory consumption

■ CPUs usually can perform more floating operation or with less cycles

■ Don’t ever use one of these types for currencies

Double vs. Float

Slide 59



■ Use final as often as possible

■ Helps to find programming errors

■ Helps compiler/JIT to inline

■ IMHO final parameters and variables should work most of the time

■ Final classes are also good if you don’t devise APIs

Final

Slide 60



■ Anti-pattern: Exception Driven Programming

int index = 0;

List<String> strings;

try {

while(true)

System.out.println(strings.get(index++));

} catch(IndexOutOfBoundsException e) {

}

■ To show errors, exceptions are essential and good

■ Should not be part of normal workflow

■ Primitive return times are better if the result is expected

■ Most time is spent in creating stack trace

Exception Handling

Slide 62



■ Always implement hashCode(), equals(), toString()

□ Eclipse and IntelliJ help to implement them

■ Use logging, especially in a multithreading environment

□ Popular libraries: SLF4J, log4j, Logback

□ Fine-grained configuration of which logs to display

■ Use constant boolean expressions for debug statements

□ Changing it to false allows compiler to remove all debug branches

public final static boolean DEBUG = true;

Debugging Tricks

Slide 63



■ Monitors your application

■ Shows memory consumption

■ Can be used for profiling (install sampler plugins)

■ Very useful to create memory dumps and to query them

□ Finds over-allocated strings and collections

□ Quickly shows you when your data structures are larger than expected

■ Can also be used for remote sessions

jVisualVM

Slide 64



Research Process – practical hints and clues

Engineering pitfalls

Slide 65



No thread-local 
copies of that value

Fully thread safe 
critical section

■ Try java.util.concurrent package first before custom solution

■ Use lock-free structures

□ ConcurrentLinkedQueue, ConcurrentHashMap

(Note that size() is not constant)

□ AtomicInteger, AtomicReference

■ Never use Vector, Hashtable

□ Synchronized versions of ArrayList, HashMap

□ But only for atomic operations

■ Never use volatile as substitution for synchronized blocks

□ Does not help with write-write conflicts

□ Useful for stop flags

Concurrency

Slide 66



■ General hints …

□ Use fastutil, TROVE, … for primitive collections

□ If your heap is full, your garbage collector will eat your CPU cycles

□ Objects need much more space than serialized representations

□ Profile before optimization! → jVisualVM

Research Process – practical hints and clues

Engineering pitfalls

Slide 68


