

Themes

- KG embeddings with LMs input
- Jointly KG embedding and LMs
- LMs with KG component as input

KG embeddings with LMs input

- Xu, J., Qiu, X., Chen, K., & Huang, X. (2017). <u>Knowledge Graph Representation with Jointly Structural and Textual Encoding.</u> IJCAI.
- Yao, Liang et al. "KG-BERT: BERT for Knowledge Graph Completion." ArXiv abs/1909.03193 (2019).
- Wang, Liang et al. "<u>SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models.</u>" ACL (2022):

Jointly KG embedding and LMs

- Wang, Zhen et al. "Knowledge Graph and Text Jointly Embedding." EMNLP (2014).
- Sun, Tianxiang et al. "Colake: Contextualized Language and Knowledge Embedding." COLING (2020).
- Wang, Xiaozhi et al. "<u>KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation.</u>" *Transactions of the Association for Computational Linguistics* 9 (2021): 176-194.

LMs with KG component as input

- Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., & Liu, Q. (2019). <u>ERNIE: Enhanced Language Representation with Informative Entities</u>. ACL
- Liu, Weijie et al. <u>"K-BERT: Enabling Language Representation with Knowledge Graph."</u>

 AAAI (2020).
- Fichtel, Leandra et al. "Prompt Tuning or Fine-Tuning Investigating Relational Knowledge in Pre-Trained Language Models." AKBC (2021).

Themes

KG embeddings with LMs input (Maluna)

- Xu, J., Qiu, X., Chen, K., & Huang, X. (2017). <u>Knowledge Graph Representation with Jointly Structural and Textual Encoding.</u> IJCAI.
- □ Yao, Liang et al. "KG-BERT: BERT for Knowledge Graph Completion." ArXiv abs/1909.03193 (2019).
- □ Wang, Liang et al. "SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models." ACL (2022):

Jointly KG embedding and LMs (Kien)

- Wang, Zhen et al. "Knowledge Graph and Text Jointly Embedding." EMNLP (2014).
- □ Sun, Tianxiang et al. "CoLAKE: Contextualized Language and Knowledge Embedding." COLING (2020).
- Wang, Xiaozhi et al. "<u>KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation.</u>" *Transactions of the Association for Computational Linguistics* 9 (2021): 176-194.

LMs with KG component as input (Lukas)

- Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., & Liu, Q. (2019). <u>ERNIE: Enhanced Language</u> <u>Representation with Informative Entities</u>. ACL
- Liu, Weijie et al. <u>"K-BERT: Enabling Language Representation with Knowledge Graph."</u> AAAI (2020).
- □ Fichtel, Leandra et al. "<u>Prompt Tuning or Fine-Tuning Investigating Relational Knowledge in Pre-Trained Language Models.</u>" *AKBC* (2021).

Context (LMs)

GLOVE

GloVe: Global Vectors for Word Representation by Jeffrey Pennington et al.

January 2, 2014

TRANSFORMER

Attention Is All You Need by Ashish Vaswani et al

June 12, 2017

BERT

BERT: Pre-training of Deep Bidirectional Transformers for...

October 11, 2018

January 16, 2013

WORD2VEC

Word2Vec Paper by Tomas Mikolov et al

July 15, 2016

FASTTEXT

Enriching Word Vectors with Subword Information by Piotr Bojanowski et al

February **15, 2018**

ELMO

Deep contextualized word representations by Matthew E. Peters et al

Poster Session

- 21st July at 14:00
- Posters
 - A1 (templates available at owncloud choose your poison)
 - https://owncloud.hpi.de/s/fiTqpyWZI2QAcD8
 - 18th July deadline for provided printing service
- Minute madness before the session
- Consultation during paper research
 - Arrange with us by email ~2 weeks

Knowledge Graphs

Gerhard Weikum, Xin Luna Dong, Simon Razniewski and Fabian Suchanek (2021), "Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases", Foundations and Trends® in Databases: Vol. 10: No. 2-4, pp 108-490. http://dx.doi.org/10.1561/1900000064 (Chapter 1)

Language Models

Dan Jurafsky and James H. Martin, "Speech and Language Processing" (3rd ed. draft) https://web.stanford.edu/~jurafsky/slp3/ (Chapter 9)

Language Models As or For Knowledge Bases

Simon Razniewski , Andrew Yates , Nora Kassner and Gerhard Weikum https://arxiv.org/abs/2110.04888