
Distributed Data Management

Foundations
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Data-Intensive Applications

Consistency Models Distributed Computing

Overview

Foundations

Slide 2

Foundations

Distributed Data
Management

Thorsten Papenbrock

Big Data

Big Data

Definition

Slide 3

Thorsten Papenbrock

 Big data is a term for data sets that are so large or complex that traditional

database management tools or data processing software are inadequate to

deal with them.
 (Wikipedia 2017)

 The challenges include data …

 capturing

 storage

 extraction

 curation

 analysis

 search

 sharing

 transfer

 visualization

 querying

 updating

 privacy

If data is too big, too fast, or too hard for existing tools to process,
it is Big Data.

Foundations

Distributed Data
Management

data-processing application software

used to refer to the study and applications of big

2018

Big Data

Properties of Big Data – Gartner’s 3 V’s

Slide 4

Thorsten Papenbrock

Volume

 12 terabytes of Tweets (calculate sentiment analysis)

 350 billion annual meter readings (predict power consumption)

Velocity

 5 million daily trade events (identify potential fraud)

 500 million daily call detail records (predict customer churn faster)

Variety

 100’s of live video feeds from surveillance cameras (find persons)

 80% data growth in images, videos and documents

(improve customer satisfaction)

Examples for V’s: www.ibm.com/software/data/bigdata

Gartner’s 3 V’s: M. Beyer: Gartner Says Solving „Big Data“ Challenge Involves More Than Just
Managing Volumes of Data, www.gartner.com/it/page.jsp

http://www.ibm.com/software/data/bigdata/
http://www.gartner.com/it/page.jsp

Big Data

Properties of Big Data – More V’s

Slide 5

Thorsten Papenbrock

Veracity (Wahrhaftigkeit)

 Trust in correctness and completeness of the data

Viscosity

 Integration and dataflow friction

Venue

 Different locations that require different access & extraction methods

Vocabulary

 Different language and vocabulary

Value

 Added-value of data to organization and use-case

Virality

 Speed of dispersal among community

Variability

 Data, formats, schema, semantics change

Foundations

Distributed Data
Management

Big Data

Big vs. Large

Slide 6

Thorsten Papenbrock

Big Data can be very small:

 Example: streaming data from aircraft sensors

 A sensor produces an eight byte reading every second (8 byte/sec)

 Hundred thousand sensors on an aircraft

 About 2.7 GB of data in an hour of flying

(100,000 sensors x 60 min/hour x 60 sec/min x 8 bytes/sec)

 Difficult to process due to strong real-time requirements and on plane!

Not all large datasets are “big”:

 Example: video streams plus metadata

 A live TV stream sends about twenty megabyte per second (20 MB/sec)

 About 70 GB of data in an hour of streaming

(60 min/hour x 60 sec/min x 20 MB/sec)

 Easy to parse and process, because content is well structured

 The task at hand makes data “big” http://mike2.openmethodology.org/wiki/Big_Data_Definition

Foundations

Distributed Data
Management

Big Data

Big Data in Use – Business Data

Slide 7

Thorsten Papenbrock

Amazon.com

 Millions of back-end operations every day

 Catalog, searches, clicks, wish lists, shopping carts, third-party sellers, …

Walmart

 > 1 million customer transactions per hour

 2.5 petabytes (2560 terabytes)

Facebook

 250 PB, 600TB added daily (2013)

 1 billion photos on one day (Halloween)

FICO Credit Card Fraud Detection

 Protects 2.1 billion active accounts

Foundations

Distributed Data
Management

Big Data

Big Data in Use – Science

Slide 8

Thorsten Papenbrock

Large Hadron Collider

 150 million sensors: 40 million deliveries and 600 million collisions per sec

 Theoretically: 500 exabytes per day (500 quintillion bytes)

 Filtering: 100 collisions of interest per second ( 99.999% reduction rate)

 200 petabytes annual rate

Sloan Digital Sky Survey (SDSS)

 Began collecting astronomical data in 2000

 200 gigabyte per night; 140 terabytes overall

(more data in first few weeks than all data in the history of astronomy)

 Large Synoptic Survey Telescope, successor to SDSS since 2016

 Acquires that amount of data every five days!

Human Genome Project

 Human genome: 3,234.83 Mb

 Processing one genome originally took 10 years; now less than a day

Foundations

Distributed Data
Management

Big Data

Correlation vs. Causation

Slide 9

Thorsten Papenbrock

Foundations

Distributed Data
Management

Correlation

 Correlation describes a linear statistical relationship of two random variables

(or bivariate data), i.e., the values of both variables change synchronously.

Causation

 Causation describes a directed, semantic dependence of one variable

(= cause) to another variable (= effect) such that a change in the first

variable always causes a corresponding change in the second variable.

 Correlating variables might share the same causal variable.

 Correlation ≠ Causation

Big Data

Correlation vs. Causation

Slide 10

Thorsten Papenbrock

Foundations

Distributed Data
Management

Correlation

 “energy production of wind turbines” and “top-speed of sailing boats”

Causation

 “wind speed” causes “energy production of wind turbines”

 “wind speed” causes “top-speed of sailing boats”

 Correlation ≠ Causation

Big Data

Correlation vs. Causation

Slide 11

Thorsten Papenbrock

 Correlation ≠ Causation

 Examples:

Big Data

Correlation vs. Causation

Slide 12

Thorsten Papenbrock

 Correlation ≠ Causation

 Good science before Big Data:

hypothesize model test

Big Data

Correlation vs. Causation

Slide 13

Thorsten Papenbrock

 Correlation ≠ Causation

 Good science with Big Data:

 Hypothesizing is hard: Use discovered correlations to formulate them!

 Modeling is hard: Use automatically trained models!

 Testing is hard: Use Big Data to verify your model!

hypothesize model test

Big Data

Correlation vs. Causation

Slide 14

Thorsten Papenbrock

 Correlation ≠ Causation

 Good science with Big Data:

 If correlation holds for very large data sets, it’s likely a causation.

 Big Data Analytics: find correlations  derive causations

hypothesize model test

https://www.wired.com/2008/06/pb-theory

Big Data

Correlation vs. Causation

Slide 15

Thorsten Papenbrock

 Correlation = Causation ?

 Why did it fail here?

13 measurements 6 measurements

Big Data

Data Science

Slide 16

Thorsten Papenbrock

Big Data

Search
Crowd

Cluster analysis

Classification

Integration

Sentiment
Analysis

Signal
Processing

Pattern
recognition

Predictive
modeling

Anomalies
ML

NLP

Simulation

Time series

Visualization

Parallel
databases

Distributed
databases

Distributed
file systems

Rule mining

Cloud

Foundations

Distributed Data
Management

Consistency Models Distributed Computing

Overview

Foundations

Slide 17

Foundations

Distributed Data
Management

Thorsten Papenbrock

Big Data Data-Intensive Applications

Data-Intensive Applications

Building Blocks

Slide 18

Thorsten Papenbrock

Databases

 Data storage and persistence

Search indexes

 Keyword search and filtering

Caches

 Optimization of expensive and re-occurring queries

Visualization

 Presentation of data and control options to human users

Batch processing

 Processing of large amounts of accumulated data (transform, analyze)

Stream processing

 Processing of continuous data flows (operate, analyze, store)

Foundations

Distributed Data
Management

Design Concerns

1. Reliability

2. Scalability

3. Maintainability

Reliability

Data-Intensive Applications

Design Concerns

Slide 19

Thorsten Papenbrock

Foundations

Distributed Data
Management

Reliability

 “The system continues to work correctly (= correct functionality at the

desired level of performance) even in the face of adversity (= hardware

or software faults; human faults).”

 = fault-tolerance:

 Techniques to ensure Reliability:

 Careful design (clear interfaces, decoupling of code, …)

 Testing (fault-injection, unit/integration/system/random tests, …)

 Redundancy (RAID systems, failover systems, backups, …)

 Process isolation (allowing processes to crash and restart)

 Measuring, monitoring, and analyzing system behavior in production

fault/defect error failure

Data-Intensive Applications

Design Concerns

Slide 20

Thorsten Papenbrock

may cause may not cause

Foundations

Distributed Data
Management

!
!

Data-Intensive Applications

Design Concerns

Slide 21

Thorsten Papenbrock

Scalability

 “The system supports growths (in data volume, traffic volume, or complexity) with

reasonable ways of dealing with it (e.g. more resources).”

 Load:

 = measure to quantify scalability

 E.g.: requests per second (= throughput), cache hit rate, read/write ratio to disk, …

 Performance:

 = load a system can handle

 Usually calculated as the mean, median, or x-percentile of load measurements

 Reasoning:

a) How does an increasing load with fixed resources affect performance?

b) How much must the resources be increase when the load increases

and the performance should be fix?

Data-Intensive Applications

Design Concerns

Slide 22

Thorsten Papenbrock

Scalability (cont.)

 Approaches to cope with load:

 Vertical scaling (scale up)

 Add CPUs, RAM, Disk

 Replace entire machine

 Horizontal scaling (scale out)

 Add additional machines

 Scalable software design:

a) Manual scaling (a human scales

the system resources manually)

b) Elastic scaling (the system auto-

matically adds resources if the

load increases)

s
c
a
le

 u
p

scale out

The default strategy for
the past 40 years.

Became increasingly important in the
past years; probably the future default.

 Easier for programmers

 More expensive

Foundations

Distributed Data
Management

Data-Intensive Applications

Design Concerns

Slide 23

Thorsten Papenbrock

Maintainability

 “The system allows its productive, further development by different

engineers at different times in its operation.”

 Design principles to achieve maintainability:

 Operability: Make it easy for operators to keep the system running.

 Monitoring, documentation, testing, design patterns, …

 Simplicity: Make it easy for engineers to understand the system.

 Clear interfaces, abstraction layers, no over-engineering, …

 Evolvability: Make it easy for engineers to change the system.

 Agile techniques, test-driven development, pair programming, …

 See lectures “Software-Architecture” and “Software-Technique” for details!

 See also: “Spotify Engineering Culture”

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

Foundations

Distributed Data
Management

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

Data-Intensive Applications

Distributed Computing

Overview

Foundations

Slide 24

Foundations

Distributed Data
Management

Thorsten Papenbrock

Big Data

Consistency Models

Consistency Models

ACID

Slide 25

Thorsten Papenbrock

ACID

 The ACID consistency model stands for the following four guarantees:

 Atomicity: All operations in a transaction succeed or every operation

is rolled back.

 Consistency: Before the start and after the completion of a

transaction, the database is structurally sound.

 Isolation: Transactions do not contend with one another. Contentious

access to data is moderated by the database so that transactions

appear to run sequentially.

 Durability: The results of applying a transaction are permanent, even

in the presence of failures.

 Requires moderated data access, locks, and failover protection

 Ensures a safe and reliable data storage environment for applications

Foundations

Distributed Data
Management

Consistency Models

CAP

Slide 26

Thorsten Papenbrock

CAP Theorem

 It is impossible for a distributed data store to simultaneously provide more than

two out of the following three guarantees:

 Consistency: Every read receives the most recent write or an error. This

condition includes consistency from ACID, i.e., consistent transaction

processing, but also widens the scope from an individual node's data

consistency to cluster-wide data consistency.

 Availability: Every request receives a (non-error) response – without

guarantee that it contains the most recent write. Server crashes, query

congestion, or resource overload may deny service availability.

 Partition tolerance: The system continues to operate despite an arbitrary

number of messages being dropped (or delayed) by the network between

nodes. Only total network failure might cause the system to respond

incorrectly.

Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services", ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51–59

Usually stores
achieve all three,

but they must
drop one dimen-
sion if they are
distributed and
errors occur.

Foundations

Distributed Data
Management

Consistency Models

CAP

Slide 27

Thorsten Papenbrock

CAP

Availability

Consistency

Partition
Tolerance

Usually achieved by
simply not sharding, i.e.,

no data distribution.

If server or network errors occur,
try to recover and deny availability

until state is consistent.

If server or network errors
occur, respond with

whatever is accessible.

Foundations

Distributed Data
Management

CAP

Consistency Models

CAP

Slide 28

Thorsten Papenbrock

http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020

Foundations

Distributed Data
Management

Consistency Models

BASE

Slide 29

Thorsten Papenbrock

BASE

 The BASE consistency model relaxes CAP dimensions:

 Basic Availability: The database appears to work most of the time.

 Availability might be less than 100%

 “Most of the time” is often quantified as lower bound, e.g., 90%

 Soft-state: Stores don’t have to be write-consistent, nor do different

replicas have to be mutually consistent all the time.

 Stored data might be inconsistent, but the store can derive

consistent states

 Eventual consistency: Stores exhibit consistency at some later point

(e.g., lazily at read time).

 Usually consistent within milliseconds

 Does not mean “no-consistency”, which would be fatal for a store

BASE = “not (fully) ACID”

Foundations

Distributed Data
Management

Consistency Models

BASE

Slide 30

Thorsten Papenbrock

BASE

 In comparison to ACID often means:

ACID BASE

Transactions Programmer managed

Strong consistency Weak consistency

Isolation Last write wins

Robust database Simple database

Simpler application code Harder application code

Conservative (pessimistic) Aggressive (optimistic)

Foundations

Distributed Data
Management

Data-Intensive Applications

Consistency Models

Overview

Foundations

Slide 31

Foundations

Distributed Data
Management

Thorsten Papenbrock

Big Data

Distributed Computing

Distributed Computing

Definition

Slide 32

Thorsten Papenbrock

What is a distributed system?

One machine

One big machine

Multiple, connected machines

Data in multiple
caches, in memory,

on disk …

Control-flow over
multiple cores,
CPUs, GPUs, …

Independent
systems connected

via network
Specialized racks

with shared
infrastructure …

Distributed Computing

Definition

Slide 33

Thorsten Papenbrock

What is a distributed system?

Do the system components
need to work together?

Foundations

Distributed Data
Management

Distributed Computing

Definition

Slide 34

Thorsten Papenbrock

Practical Definition:

“A distributed computing system […] is a number of autonomous processing

elements (not necessarily homogeneous) that are interconnected by a

computer network and that cooperate in performing their assigned task.”

 (M. Tamer Özsu, Patrick Valduriez: “Principles of Distributed Database Systems”)

shared-nothing systems

Foundations

Distributed Data
Management

Distributed Computing

Definition

Slide 35

Thorsten Papenbrock

Topological Definition:

“A distributed computing system is a (fully) decentralized network of

computing elements/stations, i.e., one that has multiple roots.”

Foundations

Distributed Data
Management

peer-to-peer
systems

single-client or
single-master

systems

Distributed Computing

Definition

Slide 36

Thorsten Papenbrock

Topological Definition:

“A distributed computing system is a (fully) decentralized network of

computing elements/stations, i.e., one that has multiple roots.”

Foundations

Distributed Data
Management

Examples:

 BitTorrent file
sharing clients

 Bitcoin miner
networks

 InterPlanetary
File System
(IPFS) that
connects
arbitrary
computers to a
DFS storing
hypermedia

Examples:

 Weather
stations and
their central
control station

 Human workers
and the central
MTurk web
service in
Amazon
Mechanical Turk

Distributed Computing

Parallel Computing

Parallelization

 Multiple processing units perform work

simultaneously, i.e., in parallel

 Long tradition in databases

 One approach to address Big Data issues

Trends

 Multicore CPUs

 E.g. java.util.concurrent or pthread

 General-purpose computing on GPUs (GPGPU)

 E.g. OpenCL or CUDA

 Cluster frameworks

 E.g. Hadoop MapReduce, Spark, or Flink

Distributed Computing

Distinction

Slide 38

Thorsten Papenbrock

Distributed computing vs. multi-threading:

 Shared nothing:

 Communication and data sharing only via messaging

 No shared memory, shared process resources, shared error handling,

shared garbage collection, …

 Autonomous systems:

 Synchronization only via messaging

 No mutexes, semaphores, atomic counters, lock-free data structures,

blocking queues, …

 More constricted parallelism:

 A distributed algorithm can run parallel on one machine but

a multi-threaded algorithm (usually) cannot run on many machines.

Foundations

Distributed Data
Management

Distributed Computing

Parallel Computing

Slide 39

Thorsten Papenbrock

Approaches

 Task parallelism:

 Breaks the task into sub-tasks that are processed in parallel

 Each processing unit performs a different subtask

 Usually OLTP: Akka, RabbitMQ, Kafka, …

 Data parallelism:

 Breaks the data of a task into packages that are processed in parallel

 Each processing unit performs the same task on different data

 Usually OLAP: MapReduce, Spark, Flink, …

 Instruction-level parallelism:

 Breaks the task into instructions that are processed in parallel

 One processing element performs multiple instructions simultaneously

 In hardware: instruction pipelining, superscalar, branch prediction, …

t

t1 t2 t3 t4 t5

d1 d2 d3 d4 d5
Foundations

Distributed Data
Management

