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 Big data is a term for data sets that are so large or complex that traditional 

database management tools or data processing software are inadequate to 

deal with them. 
                                                                                                                               (Wikipedia 2017) 

 The challenges include data … 

 capturing 

 storage 

 extraction 

 curation 

 analysis 

 search 

 sharing 

 transfer 

 visualization 

 querying 

 updating 

 privacy 

If data is too big, too fast, or too hard for existing tools to process,  
it is Big Data. 
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data-processing application software 

used to refer to the study and applications of big 
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Volume 

 12 terabytes of Tweets (calculate sentiment analysis) 

 350 billion annual meter readings (predict power consumption) 

Velocity 

 5 million daily trade events (identify potential fraud) 

 500 million daily call detail records (predict customer churn faster) 

Variety 

 100’s of live video feeds from surveillance cameras (find persons) 

 80% data growth in images, videos and documents  

(improve customer satisfaction) 

 

Examples for V’s: www.ibm.com/software/data/bigdata  

Gartner’s 3 V’s: M. Beyer: Gartner Says Solving „Big Data“ Challenge Involves More Than Just 
Managing Volumes of Data, www.gartner.com/it/page.jsp 

http://www.ibm.com/software/data/bigdata/
http://www.gartner.com/it/page.jsp
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Veracity (Wahrhaftigkeit) 

 Trust in correctness and completeness of the data 

Viscosity 

 Integration and dataflow friction 

Venue 

 Different locations that require different access & extraction methods 

Vocabulary 

 Different language and vocabulary 

Value 

 Added-value of data to organization and use-case 

Virality 

 Speed of dispersal among community 

Variability 

 Data, formats, schema, semantics change 
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Big Data can be very small:  

 Example: streaming data from aircraft sensors 

 A sensor produces an eight byte reading every second (8 byte/sec) 

 Hundred thousand sensors on an aircraft 

 About 2.7 GB of data in an hour of flying  

(100,000 sensors x 60 min/hour x 60 sec/min x 8 bytes/sec) 

 Difficult to process due to strong real-time requirements and on plane! 

Not all large datasets are “big”: 

 Example: video streams plus metadata  

 A live TV stream sends about twenty megabyte per second (20 MB/sec) 

 About 70 GB of data in an hour of streaming 

(60 min/hour x 60 sec/min x 20 MB/sec) 

 Easy to parse and process, because content is well structured 

 The task at hand makes data “big” http://mike2.openmethodology.org/wiki/Big_Data_Definition  
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Amazon.com 

 Millions of back-end operations every day 

 Catalog, searches, clicks, wish lists, shopping carts, third-party sellers, … 

Walmart 

 > 1 million customer transactions per hour 

 2.5 petabytes (2560 terabytes) 

Facebook  

 250 PB, 600TB added daily (2013) 

 1 billion photos on one day (Halloween) 

FICO Credit Card Fraud Detection 

 Protects 2.1 billion active accounts 
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Large Hadron Collider 

 150 million sensors: 40 million deliveries and 600 million collisions per sec 

 Theoretically: 500 exabytes per day (500 quintillion bytes) 

 Filtering: 100 collisions of interest per second ( 99.999% reduction rate) 

 200 petabytes annual rate 

Sloan Digital Sky Survey (SDSS) 

 Began collecting astronomical data in 2000 

 200 gigabyte per night; 140 terabytes overall 

(more data in first few weeks than all data in the history of astronomy) 

 Large Synoptic Survey Telescope, successor to SDSS since 2016 

 Acquires that amount of data every five days! 

Human Genome Project  

 Human genome: 3,234.83 Mb 

 Processing one genome originally took 10 years; now less than a day 
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Correlation 

 Correlation describes a linear statistical relationship of two random variables 

(or bivariate data), i.e., the values of both variables change synchronously. 

Causation 

 Causation describes a directed, semantic dependence of one variable  

(= cause) to another variable (= effect) such that a change in the first 

variable always causes a corresponding change in the second variable. 

 Correlating variables might share the same causal variable. 

 Correlation ≠ Causation  

 



Big Data 

Correlation vs. Causation  

Slide 10 

Thorsten Papenbrock 

Foundations 

Distributed Data 
Management 

Correlation 

 “energy production of wind turbines” and “top-speed of sailing boats” 

Causation 

 “wind speed” causes “energy production of wind turbines” 

 “wind speed” causes “top-speed of sailing boats” 

 Correlation ≠ Causation  
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 Correlation ≠ Causation  

 Examples: 
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 Correlation ≠ Causation  

 Good science before Big Data: 

 

 

 

 

 

 
 

 

 

hypothesize model test 
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 Correlation ≠ Causation  

 Good science with Big Data: 

 

 

 

 

 

 
 

 

 Hypothesizing is hard: Use discovered correlations to formulate them! 

 Modeling is hard: Use automatically trained models! 

 Testing is hard: Use Big Data to verify your model! 

hypothesize model test 
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 Correlation ≠ Causation  

 Good science with Big Data: 

 

 

 

 

 

 
 

 

 If correlation holds for very large data sets, it’s likely a causation. 

 Big Data Analytics: find correlations  derive causations  

hypothesize model test 

https://www.wired.com/2008/06/pb-theory 
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 Correlation = Causation ? 

 Why did it fail here? 

 

 

 

 

 

 

13 measurements 6 measurements 
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Big Data 

Search 
Crowd 

Cluster analysis 

Classification 

Integration 

Sentiment 
Analysis 

Signal 
Processing 

Pattern 
recognition 

Predictive 
modeling 

Anomalies 
ML 

NLP 

Simulation 

Time series 

Visualization 

Parallel 
databases 

Distributed 
databases 

Distributed  
file systems 

Rule mining 

Cloud 
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Databases 

 Data storage and persistence 

Search indexes 

 Keyword search and filtering 

Caches 

 Optimization of expensive and re-occurring queries 

Visualization 

 Presentation of data and control options to human users 

Batch processing 

 Processing of large amounts of accumulated data (transform, analyze) 

Stream processing 

 Processing of continuous data flows (operate, analyze, store) 
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Design Concerns 

1. Reliability 

2. Scalability 

3. Maintainability 
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Reliability 

 “The system continues to work correctly (= correct functionality at the 

desired level of performance) even in the face of adversity (= hardware 

or software faults; human faults).” 

 = fault-tolerance: 

  

 

 Techniques to ensure Reliability: 

 Careful design (clear interfaces, decoupling of code, …) 

 Testing (fault-injection, unit/integration/system/random tests, …) 

 Redundancy (RAID systems, failover systems, backups, …) 

 Process isolation (allowing processes to crash and restart) 

 Measuring, monitoring, and analyzing system behavior in production 

fault/defect                             error                               failure 

Data-Intensive Applications 

Design Concerns 
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may cause may not cause 
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Scalability 

 “The system supports growths (in data volume, traffic volume, or complexity) with 

reasonable ways of dealing with it (e.g. more resources).” 

 Load: 

 = measure to quantify scalability 

 E.g.: requests per second (= throughput), cache hit rate, read/write ratio to disk, … 

 Performance: 

 = load a system can handle 

 Usually calculated as the mean, median, or x-percentile of load measurements 

 Reasoning: 

a) How does an increasing load with fixed resources affect performance? 

b) How much must the resources be increase when the load increases  

and the performance should be fix? 
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Scalability (cont.) 

 Approaches to cope with load: 

 Vertical scaling (scale up) 

 Add CPUs, RAM, Disk 

 Replace entire machine 

 Horizontal scaling (scale out) 

 Add additional machines 

 Scalable software design: 

a) Manual scaling (a human scales 

the system resources manually) 

b) Elastic scaling (the system auto-

matically adds resources if the 

load increases) 

s
c
a
le

 u
p
 

scale out 

The default strategy for 
the past 40 years. 

Became increasingly important in the 
past years; probably the future default. 

 Easier for programmers 

 More expensive 
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Maintainability 

 “The system allows its productive, further development by different 

engineers at different times in its operation.” 

 Design principles to achieve maintainability: 

 Operability: Make it easy for operators to keep the system running. 

 Monitoring, documentation, testing, design patterns, … 

 Simplicity: Make it easy for engineers to understand the system. 

 Clear interfaces, abstraction layers, no over-engineering, … 

 Evolvability: Make it easy for engineers to change the system. 

 Agile techniques, test-driven development, pair programming, … 

 See lectures “Software-Architecture” and “Software-Technique” for details! 

 See also: “Spotify Engineering Culture” 

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/ 
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https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
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ACID 

 The ACID consistency model stands for the following four guarantees: 

 Atomicity: All operations in a transaction succeed or every operation 

is rolled back. 

 Consistency: Before the start and after the completion of a 

transaction, the database is structurally sound. 

 Isolation: Transactions do not contend with one another. Contentious 

access to data is moderated by the database so that transactions 

appear to run sequentially. 

 Durability: The results of applying a transaction are permanent, even 

in the presence of failures. 

 Requires moderated data access, locks, and failover protection 

 Ensures a safe and reliable data storage environment for applications 

Foundations 
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CAP Theorem 

 It is impossible for a distributed data store to simultaneously provide more than 

two out of the following three guarantees: 

 Consistency: Every read receives the most recent write or an error. This 

condition includes consistency from ACID, i.e., consistent transaction 

processing, but also widens the scope from an individual node's data 

consistency to cluster-wide data consistency. 

 Availability: Every request receives a (non-error) response – without 

guarantee that it contains the most recent write. Server crashes, query 

congestion, or resource overload may deny service availability. 

 Partition tolerance: The system continues to operate despite an arbitrary 

number of messages being dropped (or delayed) by the network between 

nodes. Only total network failure might cause the system to respond 

incorrectly. 

Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services", ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51–59 
 

Usually stores 
achieve all three, 

but they must 
drop one dimen-
sion if they are 
distributed and 
errors occur.  
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CAP 

 

Availability 

 

 

Consistency 

 

Partition 
Tolerance 

Usually achieved by 
simply not sharding, i.e., 

no data distribution.  

If server or network errors occur, 
try to recover and deny availability 

until state is consistent.  

If server or network errors 
occur, respond with 

whatever is accessible.  
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http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020 
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BASE 

 The BASE consistency model relaxes CAP dimensions: 

 Basic Availability: The database appears to work most of the time. 

 Availability might be less than 100% 

 “Most of the time” is often quantified as lower bound, e.g., 90% 

 Soft-state: Stores don’t have to be write-consistent, nor do different 

replicas have to be mutually consistent all the time. 

 Stored data might be inconsistent, but the store can derive 

consistent states 

 Eventual consistency: Stores exhibit consistency at some later point 

(e.g., lazily at read time). 

 Usually consistent within milliseconds 

 Does not mean “no-consistency”, which would be fatal for a store 

BASE = “not (fully) ACID”  

Foundations 
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BASE 

 In comparison to ACID often means: 

 
ACID BASE 

Transactions Programmer managed 

Strong consistency Weak consistency 

Isolation Last write wins 

Robust database Simple database 

Simpler application code Harder application code 

Conservative (pessimistic) Aggressive (optimistic) 
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What is a distributed system? 

 

 

 

 

 

 

 

One machine 

One big machine 

Multiple, connected machines 

Data in multiple 
caches, in memory, 

on disk … 

Control-flow over 
multiple cores, 
CPUs, GPUs, … 

Independent 
systems connected 

via network 
Specialized racks 

with shared 
infrastructure … 
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What is a distributed system? 

 

 

 

 

 

 

 

Do the system components 
need to work together? 
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Practical Definition: 

“A distributed computing system […] is a number of autonomous processing 

elements (not necessarily homogeneous) that are interconnected by a 

computer network and that cooperate in performing their assigned task.”  

                                       (M. Tamer Özsu, Patrick Valduriez: “Principles of Distributed Database Systems”) 

 

shared-nothing systems 
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Topological Definition: 

“A distributed computing system is a (fully) decentralized network of 

computing elements/stations, i.e., one that has multiple roots.” 

Foundations 
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peer-to-peer 
systems 

single-client or 
single-master 

systems 
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Topological Definition: 

“A distributed computing system is a (fully) decentralized network of 

computing elements/stations, i.e., one that has multiple roots.” 
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Examples: 

 BitTorrent file 
sharing clients 

 Bitcoin miner 
networks 

 InterPlanetary 
File System 
(IPFS) that 
connects 
arbitrary 
computers to a 
DFS storing 
hypermedia 

Examples: 

 Weather 
stations and 
their central 
control station 

 Human workers 
and the central 
MTurk web 
service in 
Amazon 
Mechanical Turk  
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Parallel Computing 

Parallelization 

 Multiple processing units perform work  

simultaneously, i.e., in parallel 

 Long tradition in databases 

 One approach to address Big Data issues 

 

Trends 

 Multicore CPUs 

 E.g. java.util.concurrent or pthread  

 General-purpose computing on GPUs (GPGPU) 

 E.g. OpenCL or CUDA 

 Cluster frameworks 

 E.g. Hadoop MapReduce, Spark, or Flink 
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Distributed computing vs. multi-threading: 

 Shared nothing: 

 Communication and data sharing only via messaging 

 No shared memory, shared process resources, shared error handling, 

shared garbage collection, … 

 Autonomous systems: 

 Synchronization only via messaging 

 No mutexes, semaphores, atomic counters, lock-free data structures, 

blocking queues, … 
 

 More constricted parallelism: 

 A distributed algorithm can run parallel on one machine but  

a multi-threaded algorithm (usually) cannot run on many machines. 
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Approaches 

 Task parallelism: 

 Breaks the task into sub-tasks that are processed in parallel 

 Each processing unit performs a different subtask 

 Usually OLTP: Akka, RabbitMQ, Kafka, … 

 Data parallelism: 

 Breaks the data of a task into packages that are processed in parallel 

 Each processing unit performs the same task on different data 

 Usually OLAP: MapReduce, Spark, Flink, … 

 Instruction-level parallelism: 

 Breaks the task into instructions that are processed in parallel 

 One processing element performs multiple instructions simultaneously 

 In hardware: instruction pipelining, superscalar, branch prediction, … 

t 

t1 t2 t3 t4 t5 

d1 d2 d3 d4 d5 
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