
Distributed Data Management

Encoding and Communication
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

public class Employee {

 public String name;

 public String address;

 public transient int SSN;

 public int number; }

101000110111101100

public class Employee {

 public String name;

 public String address;

 public transient int SSN;

 public int number; }

Encoding Decoding

Communication

Overview

Encoding and Communication

Slide 4

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Overview

Encoding and Communication

Slide 5

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Encoding

Layering Data Models

Slide 6

Thorsten Papenbrock

1. Conceptual layer

 Data structures, objects, modules, …

 Application code

2. Logical layer

 Relational tables, JSON, XML, graphs, …

 Database management system (DBMS) or storage engine

3. Representation layer

 Bytes in memory, on disk, on network, …

 Database management system (DBMS) or storage engine

4. Physical layer

 Electrical currents, pulses of light, magnetic fields, …

 Operating system and hardware drivers

class TestSerial {

 public byte version = 100;

 public byte count = 0;

}

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

{
 “class”: TestSerial,
 “version”: “100”,
 “count”: “0”
}

 Node 1

Encoding

Network Connections are Physical

Slide 7

1. Conceptual layer

 Data structures, objects, modules, …

 Application code

2. Logical layer

 Relational tables, JSON, XML, graphs, …

 Database management system (DBMS) or storage engine

3. Representation layer

 Bytes in memory, on disk, on network, …

 Database management system (DBMS) or storage engine

4. Physical layer

 Electrical currents, pulses of light, magnetic fields, …

 Operating system and hardware drivers

 Node 2

1. Conceptual layer

 Data structures, objects, modules, …

 Application code

2. Logical layer

 Relational tables, JSON, XML, graphs, …

 Database management system (DBMS) or storage engine

3. Representation layer

 Bytes in memory, on disk, on network, …

 Database management system (DBMS) or storage engine

4. Physical layer

 Electrical currents, pulses of light, magnetic fields, …

 Operating system and hardware drivers

Encoding

Network Connections are Physical

Slide 8

Encoding

 “Representation of the data”

(or “Process of changing the representation”)

Serialization

 “Serial encoding of the data”

(or “Process of serializing a representation”)

 i.e. special case of encoding

 Serial formats:

 Char arrays in layer 2 (JSON, XML, …)

 Byte arrays in layer 3

Decoding (and Deserialization)

 The reverse of encoding (and serialization)

1. Conceptual layer

 Data structures, objects, modules, …

 Application code

2. Logical layer

 Relational tables, JSON, XML, graphs, …

 Database management system (DBMS) or storage engine

3. Representation layer

 Bytes in memory, on disk, on network, …

 Database management system (DBMS) or storage engine

4. Physical layer

 Electrical currents, pulses of light, magnetic fields, …

 Operating system and hardware drivers

Overview

Encoding and Communication

Slide 9

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Language-Specific Encoding

Two Different Representations

Slide 10

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Language specific formats

 Logical structures: objects, structs,

lists, arrays, hash tables, trees, …

 Optimized for efficient manipulation

by the CPU

 Standardized encoding formats

 Byte sequences: Native, JSON,

XML, protocol buffers, Avro, …

 Optimized for disk persistence,

network transmission, and inter-

process communication

Application In-memory Data Self-Contained Sequence Data

Application In-memory Data Self-Contained Sequence Data

Language-Specific Encoding

Two Different Representations

Slide 11

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Problems:

 Tied to a programming language

(language-specific data structures)

 Tied to an address space

(process-specific pointers)

Problems:

 Inefficient and complicated access

and manipulation operations due to

lack of pointers and serial byte

representation

serialization/
encoding

deserialization/
decoding/
parsing

Language-Specific Encoding

Serialization/Encoding

Slide 12

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Language-specific serialization formats

 Goal: convert in-memory data into byte sequence data back and forth

 Examples:

Serializable (Java), Kryo (Java), Marshal (Ruby), pickle (Python), …

Advantages

 Native language support; easy to use

 Default implementation for intra-language (distributed) communication

Problems

 Serialized data is still tied to a programming language.

 Deserialization of arbitrary, byte-encoded objects can cause security issues.

 Data versioning is complicated, i.e., lack of forward/backward compatibility.

 Performance is often an issue, because arbitrary object serialization can be

costly (e.g., Java Serializable is known to be inefficient).

1. Conceptual layer

2. Logical layer

3. Representation layer

4. Physical layer

Language-Specific Encoding

Example: java.io.Serializable

Slide 13

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

import java.io.*;

public class Employee implements java.io.Serializable {

 public String name;

 public String address;

 public transient int SSN;

 public int number;

 public Employee(String name, String address, int SSN, int number) {

 this.name = name;

 this.address = address;

 this.SSN = SSN;

 this.number = number;

 }

}

Java can serialize any class that
implement the Serializable interface

(serialization via reflection)

All fields must also be serializable or
explicitly marked as transient, i.e.,

non-serializable

https://www.tutorialspoint.com/java/java_serialization.htm

Language-Specific Encoding

Example: java.io.Serializable

Slide 14

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

import java.io.*;

public class SerializeDemo {

 public static void main(String [] args) {

 Employee e = new Employee("Diana Brown", "Citystreet 8, Jamestown", 42, 123);

 try {

 FileOutputStream fileOut = new FileOutputStream("/tmp/employee.ser");

 ObjectOutputStream out = new ObjectOutputStream(fileOut);

 out.writeObject(e);

 out.close();

 fileOut.close();

 } catch(IOException i) {

 i.printStackTrace();

 }

 }

}

Can be any output stream;
also to network etc.

Performs the actual
serialization using reflection

https://www.tutorialspoint.com/java/java_serialization.htm

Language-Specific Encoding

Example: java.io.Serializable

Slide 15

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

import java.io.*;

public class DeserializeDemo {

 public static void main(String [] args) {

 Employee e = null;

 try {

 FileInputStream fileIn = new FileInputStream("/tmp/employee.ser");

 ObjectInputStream in = new ObjectInputStream(fileIn);

 e = (Employee) in.readObject();

 in.close();

 fileIn.close();

 } catch(IOException | ClassNotFoundException i) {

 i.printStackTrace();

 }

 }

} https://www.tutorialspoint.com/java/java_serialization.htm

Performs the actual deserialization;
result is an object

Language-Specific Encoding

Example: java.io.Serializable

Slide 16

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Surprise!

■ The serialized objects are much larger than expected:

class TestSerial implements Serializable {

 public byte version = 100;

 public byte count = 0;

}

■ Size scales linearly (but not favorably)

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

serialization/
encoding

2 bytes + header (?) 51 bytes

Why?

Hexadecimal
Code

Language-Specific Encoding

Example: java.io.Serializable

Slide 17

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Serialization magic data specifies …

1. the serialization protocol (AC ED)

2. the serialization version (00 05)

3. the beginning of a new Object (0x73).

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 18

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Description of serialized class specifies …
1. beginning of a new class (0x72)
2. length of the class name (00 0A)
3. name of the class (53 […] 74)
4. serial version identifier (A0 […] F9)
5. various flags (e.g. 0x02 = serialization support)
6. number of fields in this class (00 02)

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 19

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Description of serialized class specifies …
7. field code of “version” representing “byte” (0x42)
8. length of the field name (00 05)
9. name of the field (63 […] 74 which is “version”)
10. field code of “count” representing “byte” (0x42)
11. length of the field name (00 07)
12. name of the field (76 […] 6E which is “count”)

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 20

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Write description of parent class

Description of parent class specification:

 Follows the same pattern as shown for the serialized class:
(1) class definition and (2) field definitions

 Recursively adds the parent’s parents until parent class is
Object

 No parent here, because parent is already Object

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 21

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Write description of parent class

Write data associated with serialized object

Data associated with serialized object …

1. The first value (78 70 which is 100 for “version”)

2. The second value (00 64 which is 0 for “count”)

 Byte-length of the values is known from their types

 Fields are own and inherited fields

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 22

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Write description of parent class

Write data associated with serialized object

Write descriptions of referenced classes
Description of referenced classes specification:

 Follow the same pattern as shown for the serialized class:
(1) class definition and (2) field definitions

 No specifications here, because the class TestSerial has
no referenced classes

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 23

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html

Java serialization algorithm:

Start

Write serialization magic data

Write description of serialized class

Write description of parent class

Write data associated with serialized object

Write descriptions of referenced classes

Write data associated with referenced objects

Stop

Data associated with referenced objects …

 Follows the same pattern as shown for the serialized object:
concatenation of byte encoded values

 No values here, because the class TestSerial has no

referenced classes

AC ED 00 05 73 72 00 0A 53 65
72 69 61 6C 54 65 73 74 A0 0C
34 00 FE B1 DD F9 02 00 02 42
00 05 63 6F 75 6E 74 42 00 07
76 65 72 73 69 6F 6E 78 70 00
64

Language-Specific Encoding

Example: java.io.Serializable

Slide 24

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

ACED00057372002464652E6870692E6F63746F7075732E74657374696E672E5465737
424324D6573736167655994F05992DBC3DA0200045A000876616C69646974795B000
4646174617400025B494C00036D617074000F4C6A6176612F7574696C2F4D61703B4
C00046E616D657400124C6A6176612F6C616E672F537472696E673B78700175720002
5B494DBA602676EAB2A5020000787000000003000000010000000200000003737200
116A6176612E7574696C2E486173684D61700507DAC1C31660D103000246000A6C6F
6164466163746F724900097468726573686F6C6478703F4000000000000C770800000
010000000027400046B65793174000676616C7565317400046B65793274000676616C
756532787400096D6573736167653432

class Message implements Serializable {

 private static final long serialVersionUID = 6455048433435395034L;

 int[] data = {1,2,3};

 String name = "message42";

 boolean validity = true;

 Map<String, String> map = Stream.of(new String[][] {

 { "key1", "value1" },

 { "key2", "value2" },

 }).collect(Collectors.toMap(data -> data[0], data -> data[1]));

}
290 byte

Language-Specific Encoding

Example: Kryo

Slide 25

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

010064652E6870692E6F63746F7075732E74657374696E672E5465737424324D65737
36167E501010402040601016A6176612E7574696C2E486173684D61F0010203016B65
79B1030176616C7565B103016B6579B2030176616C7565B2016D65737361676534B2
01

class Message implements Serializable {

 private static final long serialVersionUID = 6455048433435395034L;

 int[] data = {1,2,3};

 String name = "message42";

 boolean validity = true;

 Map<String, String> map = Stream.of(new String[][] {

 { "key1", "value1" },

 { "key2", "value2" },

 }).collect(Collectors.toMap(data -> data[0], data -> data[1]));

}
104 byte

Uses some optimizations that we will
see for other serializer in a minute!

Language-Specific Encoding

Example: Kryo without Class-Serialization

Slide 26

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

01010402040601006A6176612E7574696C2E486173684D61F0010203016B6579B1030
176616C7565B103016B6579B2030176616C7565B2016D65737361676534B201

class Message implements Serializable {

 private static final long serialVersionUID = 6455048433435395034L;

 int[] data = {1,2,3};

 String name = "message42";

 boolean validity = true;

 Map<String, String> map = Stream.of(new String[][] {

 { "key1", "value1" },

 { "key2", "value2" },

 }).collect(Collectors.toMap(data -> data[0], data -> data[1]));

}
 66 byte

Overview

Encoding and Communication

Slide 27

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

JSON/XML Encoding

Encoding Strategy

Slide 28

Thorsten Papenbrock

Example: XML

class TestSerial implements Serializable {

 public byte version = 100;

 public byte count = 0;

}

encoding

69 bytes

3C 54 65 73 74 53 65 72 69 61
6C 3E A2 02 03 C7 66 57 27 36
96 F6 E3 E3 13 03 03 C2 F7 66
57 27 36 96 F6 E3 EA 20 20 3C
63 6F 75 6E 74 3E 30 3C 2F 63
6F 75 6E 74 3E A3 C2 F5 46 57
37 45 36 57 26 96 16 C3 EA

<TestSerial>

 <version>100</version>

 <count>0</count>

</TestSerial>

s
e
ria

liz
a
tio

n

>51 bytes Java serialization
but language independent!

1. Conceptual layer

2. Logical layer

3. Representation layer

4. Physical layer

JSON/XML Encoding

Structural Elements

Slide 29

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

<_id>Benno87</_id>

<username>ben</username>

<password>ughiwuv</password>

<contact>

 <phone>0331-1781254</phone>

 <email>ben87@gmx.de</email>

 <skype>benno.miller</skype>

</contact>

<access>

 <level>3</level>

 <group>user</group>

</access>

<supervisor>

 <ref>AnnaMT</ref>

 <id>1</id>

 <db>users</db>

</supervisor>

XML Format

{
 “_id”: 1,
 “username”: “ben”,
 “password”: “ughiwuv”,
 “contact”: {
 “phone”: 0331-1781471,
 “email”: “ben87@gmx.de”,
 “skype”: “benno.miller”
 },
 “access”: {
 “level”: 3,
 “group”: “user”
 },
 “supervisor”: {
 “$ref”: “AnnaMT”,
 “$id”: 1,
 “$db”: “users”
 }
}

JSON Format

Nested key-value pairs

Nested tagged values

JSON/XML Encoding

Structural Elements

Slide 30

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

<_id>Benno87</_id>

<username>ben</username>

<password>ughiwuv</password>

<contact phone = “0331-1781254
 email = “ben87@gmx.de”
 skype = “benno.miller” />

<access level = “3”
 group = “user” />

<supervisor ref = “AnnaMT”
 id = “1”
 db = “users” />

XML Format

{
 “_id”: 1,
 “username”: “ben”,
 “password”: “ughiwuv”,
 “contact”: {
 “phone”: 0331-1781471,
 “email”: “ben87@gmx.de”,
 “skype”: “benno.miller”
 },
 “access”: {
 “level”: 3,
 “group”: “user”
 },
 “supervisor”: {
 “$ref”: “AnnaMT”,
 “$id”: 1,
 “$db”: “users”
 }
}

JSON Format

Using attributes makes XML
much smaller, but the mix

of tags and attributes is also
harder to read.

JSON/XML Encoding

Lists

Slide 31

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

<employees>

 <employee>

 <firstName>John</firstName>

 <lastName>Doe</lastName>

 </employee>

 <employee>

 <firstName>Anna</firstName>

 <lastName>Smith</lastName>

 </employee>

 <employee>

 <firstName>Peter</firstName>

 <lastName>Jones</lastName>

 </employee>

</employees>

XML Format

{
 “employees”: [
 {
 “firstName”: “John”,
 “lastName”: “Doe”
 },
 {
 “firstName”: “Anna”,
 “lastName”: “Smith”
 },
 {
 “firstName”: “Peter”,
 “lastName”: “Jones”
 }]
}

JSON Format

Both formats are similarly expressive.

JSON/XML Encoding

Some Standardized Encodings

Slide 32

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

TOML
Tom’s Obvious, Minimal Language

JSON
JavaScript Object Notation

JSON
JavaScript Object Notation

SDL
Simple Declarative Language

XML
Extensible Markup Language

And many more: YAML, CSV, …

e.g., for Web Services

e.g., for REST-based services

JSON/XML Encoding

Standardized Encodings

Slide 33

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Advantages

 Language and address-space independence

 Human readability (sometimes)

 Ability to query and store in a structured manner

Problems

 No or only weak typing

 Number encoding is ambiguous and imprecise.

 No support for binary strings (only Unicode)

 Storing binary strings in Unicode increases data size (>33%).

 Schemata, if needed, require optional (complicated) schema support

(e.g., XML Schema)

 Without explicit schema definition, applications must define schemata.

 Large binary representation (if String is directly serialized into binary)

 Native encoding formats are typically more concise.

JSON distinguishes only strings and
numbers, but not int, float, or double;

XML sees all values as strings

Overview

Encoding and Communication

Slide 34

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Binary Encoding

Motivation

Slide 35

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Problems

 Unicode formats and their naïve binary encodings are large.

 Data types are lost.

Idea

 Encode Unicode formats into binary strings with format-specific encodings.

 Keep the original structure (attribute names, nesting, …).

Binary Encodings

 For JSON: MessagePack, BSON, BJSON, UBJSON, BISON, Smile, …

 For XML: WBXML, Fast Infoset, …

 For Code: Apache Thrift, Protocol Buffers, Apache Avro

1. Conceptual layer

2. Logical layer

3. Representation layer

4. Physical layer

Binary Encoding

MessagePack

Slide 36

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

{
 “userName”: “Martin”,
 “favoriteNumber”: 1337,
 “interests”: [“daydreaming”, “hacking”]
}

JSON Format
81 byte

66 byte

Object preamble

Alternating: data type (+ length) and value

Object field names are string values

Here: string-length < 16

Binary Encoding

Schema-based Binary Encoding

Slide 37

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Motivation

 MessagePack stores attribute names (and types) for each object.

 Redundant information that increases memory consumption

Idea

 Define the attributes (= fields) once for all objects.

 Define a schema!

 No need to encode the attributes and their size

Binary Encoding Libraries

 Apache Thrift (by Facebook)

 https://thrift.apache.org/

 Protocol Buffers (by Google)

 https://developers.google.com/protocol-buffers/

 …

both open
source since 2007

1. Conceptual layer

2. Logical layer

3. Representation layer

4. Physical layer

https://thrift.apache.org/
https://thrift.apache.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

{
 “userName”: “Martin”,
 “favoriteNumber”: 1337,
 “interests”: [“daydreaming”, “hacking”]
}

81 byte

struct Person {
 1: required string username,
 2: optional i64 favoriteNumber,
 3: optional list<string> interests
}

JSON Format

Thrift Struct

59 byte

Slide 38

Schema definition

Very similar to MessagePack,
but without field names

Binary Encoding

Thrift with BinaryProtocol

Backward compatibility

 Adding optional fields and
changing field names possible

 Changing field tags (or types)
breaks reading of old data

Binary Encoding

Thrift with CompactProtocol

Slide 39

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

{
 “userName”: “Martin”,
 “favoriteNumber”: 1337,
 “interests”: [“daydreaming”, “hacking”]
}

81 byte
JSON Format

struct Person {
 1: required string username,
 2: optional i64 favoriteNumber,
 3: optional list<string> interests
}

Thrift Struct

34 byte

Field tag + type in one byte

Variable-length
integer

Variable-length integers

 First bit in each byte encodes if more bytes follow or not
(0 = “last byte”, 1 = “more bytes to come”)

 Last bit of first byte encodes the integers sign
(0 = “+”, 1 = “–”)

Variable-length
integers

Binary Encoding

Protocol Buffers

Slide 40

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

{
 “userName”: “Martin”,
 “favoriteNumber”: 1337,
 “interests”: [“daydreaming”, “hacking”]
}

81 byte
JSON Format

message Person {
 required string username, = 1;
 optional i64 favoriteNumber, = 2;
 repeated string interests = 3;
}

P.B. message
Schema definition

33 byte

Put values with same
field tag in a list

Variable-length
integer

Variable-length
integers

Protocol Buffers are very similar to Thrift’s CompactProtocol

Binary Encoding

Avro

Slide 41

Apache Avro

 A binary encoding format developed as a sub-project of Hadoop in 2009

 https://avro.apache.org/

 Differences to Thrift and Protocol Buffers:

 No tag numbers: fields are matched by order in schema and byte sequence

 No field modifiers optional or required: optional fields have default values

 Special data type union: specifies multiple data types (and null if allowed)

 Nullable fields must have type union

Uses of Avro

 Apache Pig (query engine for Hadoop)

 Espresso (database management system)

 Avro RPC (remote procedure call protocol)

 …

record Person {
 string username;
 union{null,long} favoriteNumber=null;
 array<string> interests;
}

Avro record

Schema definition

https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/

Binary Encoding

Avro

Slide 42

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

{
 “userName”: “Martin”,
 “favoriteNumber”: 1337,
 “interests”: [“daydreaming”, “hacking”]
}

81 byte
JSON Format

record Person {
 string username;
 union{null,long} favoriteNumber=null;
 array<string> interests;
}

Avro record
Schema definition

32 byte

The data type is known;
the field is matched by sequence
 we only need the length!

 Avro associates data with two different schemata:

 Writer’s schema:

 The schema with which the data was written

 Fix for written data; might differ for other (newer/older) datasets

 Stored with the data (in same file, database, or connection handshake)

 Reader’s schema:

 The schema of the application reading the data

 Might change with the version of the application

 Stored in application

 When reading: Avro dynamically maps Reader’s and Writer’s schemata

 When writing: Avro uses the Reader’s schema

Binary Encoding

Avro: Writer’s and Reader’s schemata

Slide 43

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

“self-describing data”

Advantages

 Most compact binary encoding (compared with previous formats)

 Backward compatibility:

 Avro dynamically maps schemata at read-time and resolves differences

 Fields are mapped by name; no field tags that can break the encoding

 Default values account for missing fields

 Data types can change if conversion is possible

(e.g. int long, float string)

 Schema generation:

 Reader’s schemata can be generated from existing data

(no need to generate field tags that match a Writer’s schema)

Binary Encoding

Avro: W-R Mapping

Slide 44

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Data type Field name

long userID

union{null,int} favoriteNumber

string userName

array<string> interests

Data type Field name

string userName

union{null,long} favoriteNumber

array<string> interests

string photoURL

Writer’s schema Reader’s schema

Overview

Encoding and Communication

Slide 45

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Btw.: We did not discuss
encryption and authentication
here, which is also important but

something I leave to

“Internet Security” by Prof. Meinel

Communication

Motivation

Slide 46

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Processes communicate

 With themselves

 With other processes on the same machine

 With processes on remote machines over the network

 Data often needs to pass process boundaries!

Processes are heterogeneous

 Different languages, address spaces, access rights, hardware resources,

complexities, interfaces, …

 Communication models/protocols needed!

Process communication is expensive

 Communication channels (buses, network, memory, …) have limited

speed, bandwidth and throughput

 Number and size of messages matters!

The same also applies for
threads!

Communication

Internet Protocol Suite

Slide 47

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Sending of datagrams in local network

 Direct host-to-host messaging; no routing

 Addressing via MAC address

 e.g. 34:f3:9a:fa:fb:59

 Hardware dependent (drivers needed)

 Abstracting hardware details to above
layers

 Packetizing, (local) addressing,
transmission and receiving of data

Communication

Internet Protocol Suite

Slide 48

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Routing of datagrams across networks

 IP addresses

 for addressing and routing

 map to MAC addresses

 e.g. 172.17.5.57

 Abstracting the actual network topology to
above layers

 Packetizing, (global) addressing and
routing of data

Communication

Internet Protocol Suite

Slide 49

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Managing the datagram exchange

 host-to-host (via arbitrary hops)

 communication protocol

 communication channel

 Port numbers for application addressing

 e.g. 8080

 Abstracting communication details to
above layers

 Packetizing of data

TCP

 reliable (flow control)

 connection-based

 slow

 lost-message resents

 message ordering

 error correction

 duplicate removal

 congestion control

UDP

 unreliable

 connectionless

 fast

Communication

Internet Protocol Suite

Slide 50

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Creation and interpretation of data

 “Your application”

 Use the (reliable or unreliable) channels
(identified by IP + Port) to send/receive
data

 Higher level communication protocols

 client-server

 peer-to-peer

 “IP + Port + Applications” is a service

encrypted communication

large file transfer

access control

email

messaging

Communication

Internet Protocol Suite

Slide 51

Thorsten Papenbrock

Serialized

Data

Serialized

Data

TCP

Header

Serialized

Data

TCP

Header

IP

Header

Serialized

Data

TCP

Header

IP

Header

Frame

Header

Frame

Header

More in Prof. Meinel’s lecture
“Internet and WWW Technologies”

Communication

Communication Principle

Slide 52

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Communication

 Message format: agreement on model, schema, and encoding of messages

 Protocol: agreement on how messages are exchanged

 Von Neumann architecture:

 Messages may contain

data and/or instructions.

 Application needs to

interpret the messages.

build upon

build upon

build upon

Dataflow through Databases

 information storage and

retrieval

Dataflow through Services

 service calls with responses

Message-Passing Dataflow

 asynchronous messages

Communication

Models of Dataflow

Slide 53

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Process 1 Process 2

Process 1 Process 2

Process 1 Process 2

Process 1 and 2 can be the same
(send a message to myself)

Communication

Models of Dataflow

Slide 54

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Databases

Message-Passing

Services

“I have a new booking
request!

Someone should

handle it …”

“I have a new booking
request!

Can you handle it?”

“I have a new booking
request!

Book it!”

Communication

Models of Dataflow

Slide 55

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Databases

 Data

 No response

 Non-blocking

 Asynchronous

 No addressing

Message-Passing

 Messages

 Maybe response

 Usually non-blocking

 Asynchronous

 Addressing recipient

Services

 Function calls

 Response

 Blocking

 Synchronous

 Addressing recipient

Overview

Encoding and Communication

Slide 56

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Dataflow via Databases

Communication Principle

Slide 57

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Processes write data to and read data from a database:

 Communication through manipulation of (persistent) global state

 Requires commonly understood model, schema, and encoding:

 Model: relational, key-value, wide-column, document, graph, …

 Schema: either schema-on-read or schema-on-write

 Encoding: Unicode, binary, …

 Implicit message exchange:

 No explicit sender or receiver (think of broadcast messages)

 Varying message lifetimes:

 Data can quickly be overwritten (= overwritten message is lost)

 Data can stay forever (known as: data outlives code)

 Shared memory parallel applications are very similar w.r.t. this model

Every data value is a message

Overview

Encoding and Communication

Slide 58

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Dataflow via Services

Communication Principle

Slide 59

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Communication Structure

 Service:

 An API that can be accessed by other (remote) processes

 Identified by IP + Port

 Offers functions that may take arguments (= a send message)

and return values (= a receive message)

 Offered functions define fine-grained restrictions on what can be

communicated and what not

(different from database APIs, which are more open)

Asymmetric Communication

 Communicating processes have two roles:

 Server: exposes a service that other processes can see and use

 Client: connects to a server’s service and calls functions

Server Client

Service

Dataflow via Services

Service-Oriented Architecture (SOA)

Slide 60

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 A server process can, again, become a client to some other server.

 (Distributed) systems of interacting processes

 Services should be self-contained black box components that represent

logical activities hiding lower-level services.

 Microservice architecture:

 Variant of SOA where services are particularly fine-grained and the

protocol is lightweight

Examples

Web Browser Apps Online Games

Dataflow via Services

Communication Principle

Slide 61

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Service-Oriented Architecture (SOA)

 Microservice architecture

 Example

 A light-weight application framework for Java
with support for microservice development

https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/

https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/

Dataflow via Services

Communication Principle

Slide 62

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Service-Oriented Architecture (SOA)

 Microservice architecture

 Example: Mastering Chaos - A Netflix Guide to Microservices

https://www.youtube.com/watch?v=CZ3wIuvmHeM

 Client knows:

 How to address the server (IP + Port)

 How to send data (serialization + packaging)

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Dataflow via Services

Motivation for Service Protocols

Slide 63

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Client Server

Dataflow via Services

Motivation for Service Protocols

Slide 64

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Client Server

interface interface

Interface:

 of the service
functions

 added during client
implementation

Dataflow via Services

Motivation for Service Protocols

Slide 65

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Client Server

interface interface

p
ro

to
c
o
l

p
ro

to
c
o
l

Protocol:

 function call data

 data function call

(w.r.t. given interface)

 A protocol that allows processes to directly call functions in remote processes

(i.e., cause procedures to execute in different address spaces).

 The object-oriented equivalent is remote method invocation (RMI)

 Remote procedures are called like normal (local) procedures.

 Tight coupling between processes

 Requires the service’s interface on server and client.

 Implements the protocol for transmitting a function call.

 The RPC framework use the interface to

automatically generate two proxies.

 Stub

 function call data

 Skeleton

 data function call

Dataflow via Services

Remote Procedure Call (RPC)

Slide 66

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Both work very similarly.

Dataflow via Services

Remote Procedure Call (RPC)

Slide 67

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Client
code

interface

Client
stub

RPC
runtime

TCP/UDP

Network

Client

Server
code

interface

Server
skeleton

RPC
runtime

TCP/UDP

Server

service

1. Client calls a remote procedure and waits.

2. Stub accepts the procedure call and

serializes both the call and its parameters.

3. RPC Runtime sends the serialized call

via TCP/UDP to the server.

4. Skeleton accepts procedure call, deserializes

the message and calls the corresponding

service procedure with the given parameters.

5. Server handles the call and returns a result.

6. Skeleton accepts the result and

serializes it.

7. RPC Runtime sends the serialized result

via TCP/UDP back to the client.

8. Stub accepts the result, deserializes it

and forwards it to the waiting client.

9. Client awakes and accepts the result.

1

2

3

4

5

6

7

8

9

1. Client calls a remote procedure and waits.

2. Stub accepts the procedure call and

serializes both the call and its parameters.

3. RPC Runtime sends the serialized call

via TCP/UDP to the server.

4. Skeleton accepts procedure call, deserializes

the message and calls the corresponding

service procedure with the given parameters.

5. Server handles the call and returns a result.

6. Skeleton accepts the result and

serializes it.

7. RPC Runtime sends the serialized result

via TCP/UDP back to the client.

8. Stub accepts the result, deserializes it

and forwards it to the waiting client.

9. Client awakes and accepts the result.

Dataflow via Services

Remote Procedure Call (RPC)

Slide 68

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Client
code

interface

Client
stub

RPC
runtime

TCP/UDP

Network

Client

Server
code

interface

Server
skeleton

RPC
runtime

TCP/UDP

Server

service

1

2

3

4

5

6

7

8

9

RPC calls block the client

Dataflow via Services

Remote Procedure Call (RPC)

Slide 69

Thorsten Papenbrock

Rendezvous protocol

 Handshake protocol for

sending large blocks of

data.

 Avoid sending data to

processes that cannot

accept them

(at the moment).

 Before data is sent, the

receiver needs to

acknowledge that it is

ready to accept data.

Dataflow via Services

Remote Procedure Call (RPC)

Slide 70

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 RPC/RMI are protocols of which many framework implementations exist.

 RPC/RMI implementations can be language specific and language agnostic:

 Language specific:

interface is written in same language; often the programming language itself

 Language agnostic:

interface is written in some RPC/RMI dialect; compiles to different programming languages

 The RPC/RMI protocols propose blocking (= synchronous) communication

but it is easy to turn the idea into non-blocking (= asynchronous) communication:

 e.g. procedure calls may immediately return “Future” or “Promise” objects

 The concept of providing a communication interface in the programming language and

hiding the communication protocol in a runtime is used by all messaging frameworks.

 Understanding RPC/RMI provides a good understanding of any messaging system.

Dataflow via Services

Remote Procedure Call (RPC)

Slide 71

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Strengths of RPC/RMI

 RPC/RMI frameworks are well suited for machine to machine communication

(remote calls appear like local calls; program does not leave its own language).

 RPC/RMI frameworks are easy to use

(automatic code generation and abstraction of the messaging details).

 RPC/RMI frameworks are extensive

(no restrictions other than those the interface language has).

 RPC/RMI frameworks offer good performance

(highly optimized messaging, because the runtime controls both ends of

the communication and no third party needs to understand the messages).

Dataflow via Services

Remote Procedure Call (RPC)

Slide 72

Thorsten Papenbrock

Weaknesses of RPC/RMI

 RPC/RMI cause a tight coupling of server and client code.

(interface changes always concern both)

 Local and remote function calls are, in fact, very different.

 Local function calls are predictable: they succeed or fail, throw proper exceptions or

starve processing; can handle same pointers and data types than caller

 Remote function calls are unpredictable: they fail silently, succeed but responses get

lost, are unavailable; cannot handle the caller’s pointers (and all data types)

 RPC/RMI code may be hard to debug and test.

(code generation; possibly hiding of network errors)

Good/modern RPC frameworks make
differences explicit and forward errors
transparently so that application code
can (and should!) handle these issues.

Good/modern RPC frameworks make
differences explicit and forward errors
transparently so that application code
can (and should!) handle these issues.

Dataflow via Services

Remote Procedure Call (RPC)

Slide 73

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Actual RPC implementations

https://en.wikipedia.org/wiki/Remote_procedure_call

… Thrift-based

… Protocol Buffers-based

… Avro-based

https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call

Dataflow via Services

Popular Service Protocols

Slide 74

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

HTTP

 Used by the largest SOA systems on the planet, e.g., the World Wide Web.

(HTTP) REST

 If you need clearer conventions for HTTP service APIs.

(e.g. to make them easier to maintain and better machine consumable)

 Used by many Web applications to connect front- and backend systems.

(HTTP + RPC) SOAP

 If you develop heterogeneous distributed systems that need to communicate

not only data but also instructions (i.e., method calls).

 Used by many large scale, heterogeneous distributed systems.

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 75

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Definition

 A stateless, synchronous request-response application protocol for

distributed, collaborative, and hypermedia information systems

 The foundation for communication in the World Wide Web

 Hypertext: structured text that uses logical links (hyperlinks) between

nodes containing text (usually HTML)

Technical Details

 Message format: designed for hypertext, but works for any text format

 Based on the TCP transport layer protocol

 Uniform Resource Locators (URLs) / Uniform Resource Identifier (URI)

to find services and resources:

 scheme:[//[user[:password]@]host[:port]][/path]

 E.g.: http://hpi.de/naumann/people/thorsten-papenbrock

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 76

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Definition

 A stateless, synchronous request-response application protocol for

distributed, collaborative, and hypermedia information systems

 The foundation for communication in the World Wide Web

 Hypertext: structured text that uses logical links (hyperlinks) between

nodes containing text (usually HTML)

Technical Details

 Message format: designed for hypertext, but works for any text format

 Based on the TCP transport layer protocol

 Uniform Resource Locators (URLs) / Uniform Resource Identifier (URI)

to find services and resources:

 scheme:[//[user[:password]@]host[:port]][/path]

 E.g.: http://hpi.de/naumann/people/thorsten-papenbrock

Client Server

interface interface
p
ro

to
c
o
l

p
ro

to
c
o
l

Well defined functions:
GET, POST, PUT, DELETE, …

Well defined messages:

header fields and text data

Library/program that implements the
well defined HTTP interface

(e.g. web browser, curl, libashttp,
 java.net.HttpURLConnection)

HTTP defines the message format and protocol
so that two different HTTP implementations,
i.e., different runtimes can communicate.

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 77

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

HTTPs

 HTTP over Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

 Features:

 Privacy through symmetric encryption

 Authentication through public-key cryptography

 Integrity through checking of message authentication codes

Session (HTTP/1.1)

 A sequence of network request-response transactions:

1. Client establishes a TCP connection to server port (typically port 80).

2. Client sends an HTTP message.

3. Server sends back a status line with a message of its own.

4. Client sends next HTTP message or closes the TCP connection.

optional

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 78

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Request Methods

 GET: Retrieve information from the target resource using a given URI (no side effects).

 HEAD: Like GET, but response contains only status line and header section (no content).

 POST: Send data to the target resource; the resource decides what to do with the data.

 PUT: Send data to the target resource; replace the content of the resource with that data.

 DELETE: Removes all content of the target resource.

 CONNECT: Establishes a tunnel to the server identified by a given URI.

 OPTIONS: Describe the communication options for the target resource.

 TRACE: Performs a message loop back test along with the path to the target resource.

optional

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 79

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Examples

 GET http://hpi.de/naumann/people/thorsten-papenbrock/publications HTTP/1.1

 absolute URI: for requests to a proxy, which should forward the request

 no additional header fields

 GET /naumann/people/thorsten-papenbrock/publications HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.hpi.de:80

Accept-Language: en-us

 relative URI: for request to origin server

 some header fields as example

optional

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 80

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Examples

 POST /naumann/people/thorsten-papenbrock/publications HTTP/1.1

Host: www.hpi.de:80

Content-Type: text/xml; charset=utf-8

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

<publication>A Hybrid Approach to Functional Dependency Discovery</publication>

 post a new publication entry to the publications resource (should be appended)

 flags indicate utf-8 formatted xml content and ask to keep the connection open

PUT would replace all publi-
cations with the new one

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 81

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Response Message Pattern

 A status-line: <protocol version> <status code> <reason-phrase>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Status codes

 1xx: Informational: the request was received and the process is continuing.

 2xx: Success: the action was successfully received, understood, and accepted.

 3xx: Redirection: further action must be taken in order to complete the request.

 4xx: Client Error: the request contains incorrect syntax or cannot be fulfilled.

 5xx: Server Error: the server failed to fulfill an apparently valid request.

optional

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 82

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Response Message Pattern

 A status-line: <protocol version> <status code> <reason-phrase>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Example

 GET http://www.my-host.com/my-new-homepage.html

 HTTP/1.1 200 OK

 Date: Mon, 24 Jul 2017 12:28:53 GMT

 Server: Apache/2.2.14 (Win32)

 Last-Modified: Sat, 22 Jul 2017 13:15:56 GMT

 Content-Length: 98

 Content-Type: text/html

 Connection: Closed

 <html><body><h1>Welcome to my homepage!</h1></body></html>

optional

Dataflow via Services

Hypertext Transfer Protocol (HTTP)

Slide 83

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

The cURL Program

 Library and command-line tool for transferring data using various protocols

 Originally developed as “see url” in 1997

 Examples:

 curl -i -X GET http://localhost:8080/datasets

 curl -i -X GET http://localhost:8080/datasets/by/csv

 curl -i -X POST -d '{"name":"Planets","ending":"csv","path":"datasets"}'

 -H 'Content-Type:application/json;charset=UTF-8‘

 http://localhost:8080/datasets

 curl -i -X DELETE http://localhost:8080/datasets/1

 curl -i -X GET http://localhost:8080/datasets/1

 curl -i -X PUT -d '{"name":"Planets","ending":"csv","path":"datasets"}'

 -H 'Content-Type:application/json;charset=UTF-8‘

 http://localhost:8080/datasets/1

Dataflow via Services

Representational State Transfer (REST)

Slide 84

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 A design philosophy for HTTP services:

 Resources are the main concept

 CRUD (create, read, update, delete) operations on resources should

use their corresponding HTTP methods

 Focus on simplicity

 OpenAPI Specification:

 Creates the RESTful contract for your API.

 RESTful contract describes all resources and their supported methods.

 a language-agnostic interface description for the RESTful API

 Implemented in, e.g., the Swagger framework

(see https://swagger.io/)

No method miss-use like
GET ...publications/?delete_id=42

which is typical for many HTTP services

https://swagger.io/
https://swagger.io/

Dataflow via Services

Simple Object Access Protocol (SOAP)

Slide 85

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

 An XML-based RPC protocol for making network API requests

 Uses functions as main concepts (in contrast to resources in REST)

 Often implemented on top of HTTP but waiving most of its features

 Comes with its own standards (the web service framework WS[…])

 Idea:

 A server describes the API of its service in a WSDL document

(Web Service Description Language; an XML dialect)

 A client can use the WSDL document to generate the API code in its

own programming language and then call the API functions

 Both server and client can access the API in their own language

 Both programming languages and their IDEs must support SOAP for code

and message generation

 Interoperability without this support is difficult

Dataflow via Services

Simple Object Access Protocol (SOAP)

Slide 86

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Server

(C++)

Client

(Java)

Service
(C++)

WSDL

C++ interface Java interface

Ja
v
a
 p

ro
to

c
o
l

C
+

+
 p

ro
to

c
o
l

Server

(C++)

Client

(Java)

Service
(C++)

WSDL

C++ interface Java interface

Ja
v
a
 p

ro
to

c
o
l

C
+

+
 p

ro
to

c
o
l

<?xml version="1.0"?>

<definitions name="Booking">

 <message name="getBookingRequest">
 <part name=“user" type="xs:string"/>
 <part name=“house" type="xs:string"/>
 </message>

 <message name="getAvailabilityResponse">
 <part name=“available" type="xs:boolean"/>
 </message>

 <portType name="BookingPort">
 <operation name="processBooking">
 <input message="getBookingRequest"/>
 <output message="getAvailability Response"/>
 </operation>
 </portType>

Dataflow via Services

Simple Object Access Protocol (SOAP)

Slide 87

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Simple Object Access Protocol (SOAP)

 Simple example:

WSDL File

public interface BookingPort {

 public boolean processBooking(String user, String house);

}

A simple, language-agnostic interface definition

WSDL File

 <binding name="BookingBinding" type="BookingPort">
 <soap:binding
 style="document“
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="processBooking">
 <soap:operation
 soapAction="http://example.com/processBooking "/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="BookingService">
 <documentation>A SOAP booking service</documentation>
 <port
 name="BookingPort"
 binding="BookingBinding">
 <soap:address location="http://example.com/booking"/>
 </port>
 </service>

</definitions>

<?xml version="1.0"?>

<definitions name="Booking">

 <message name="getBookingRequest">
 <part name=“user" type="xs:string"/>
 <part name=“house" type="xs:string"/>
 </message>

 <message name="getAvailabilityResponse">
 <part name=“available" type="xs:boolean"/>
 </message>

 <portType name="BookingPort">
 <operation name="processBooking">
 <input message="getBookingRequest"/>
 <output message="getAvailability Response"/>
 </operation>
 </portType>

Dataflow via Services

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP)

 Simple example:

WSDL File (cont.)

Binding of an interface to concrete
HTTP SOAP calls

Bundling of service calls to
a SOAP service WSDL File

Overview

Encoding and Communication

Slide 89

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Dataflow via Message-Passing

Communication Principle

Slide 90

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Communication

 An object-oriented paradigm that models all communication between objects

(in different threads or processes) via asynchronous exchange of messages

 Objects send messages to other objects via queues

 Message (also known as “mail”):

 Container for data that implies information or commands

 Often carries metadata, e.g., sender and receiver information

 The recipient decides how and if it handles a certain message

 Message queue (also known as “mailbox”):

 Data structure (queue or list) assigned to communicating object(s)

 Buffers incoming messages for being processed

 Messages in the queue are (usually) ordered by time of arrival

 Messages in a queue are processed successively in their order

Message queue

Messages can have any format
understood by sender and receiver

to enable replies

Dataflow via Message-Passing

Communication Principle

Slide 91

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Principles

 Encapsulation

 Communicating objects have private state and private behavior.

 Still objects communicate, i.e., cause other objects to react on their

messages.

 Communicate “what” is to be done not “how”.

 Distribution

 Messages can pass through busses, channels, networks, …

 Message-passing system resolves addresses and automatically routes

messages from senders to receivers.

 Allows objects to be transparently distributed, i.e., objects must not

know where their communication partners actually are.

Dataflow via Message-Passing

Communication Principle

Slide 92

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Principles

 Asynchronicity

 Messaging is asynchronous, i.e., the sender does not wait for a reply.

 Synchronous communication can be implemented on top of

asynchronous messaging with certain protocols.

 Enables reactive programming:

 Instead of following a fixed calculation plan, the algorithm

dynamically reacts to changes in the data.

 Reaction = changing state (= variables) or behavior (= code)

 Writing a reactive algorithm is more like declaring rules for how

to react on certain input changes rather than defining a step-by-

step execution plan.

 Reactivity helps to optimize runtime, robustness and elasticity.

Dataflow via Message-Passing

Message Broker

Queue 1

Message Broker

Process 3 Process 4

Queue 2 Queue 3

Process 1 Process 2

Slide 93

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Dataflow via Message-Passing

Message Broker

Slide 94

Thorsten Papenbrock

Message Broker

 Also called message queue or message-oriented middleware

 Part of the message-passing framework that delivers messages from their

senders to the appropriate queues and, finally, to the receiver(s).

 Resolves sender an receiver addresses (objects must not know ports/IPs).

 Can apply binary encoding on messages when delivered between processes.

 Routing:

 One-to-one messages

 One-to-many messages (broadcasting)

 Advantages:

 Decouples sender and receiver objects (maintainability)

 Buffers messages if receiver is unavailable or overloaded (reliability)

 Redirects messages if receiver crashed (robustness)

Dataflow via Message-Passing

Communication Principle

Slide 95

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

General message delivery

 Processes can …

 create named message queues.

 subscribe to existing message queues.

 send messages to a queue.

 The message broker assures that send messages are delivered to some/all

subscriber of a queue.

Message-passing frameworks

 Commercial:

 TIBICO, IBM WebSphere, webMethods, …

 Open source:

 Apache Kafka, RabbitMQ, ActiveMQ, HornetQ, NATS, …

Dataflow via Message-Passing

Examples

Slide 96

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Now

 RabbitMQ

 MPI

Later

 Kafka

 Akka

 Spark

 Flink

Dataflow via Message-Passing

Example: RabbitMQ – Sending a Message

Slide 97

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Create a connection to the message broker
running on localhost.

Create a channel to a queue; the queue
is created if it does not exist yet.

Send the message encoded
as an array of bytes.

Close all channels
and the connection.

https://www.rabbitmq.com/getstarted.html

Dataflow via Message-Passing

Example: RabbitMQ – Receiving a Message

Create a connection to the message broker
running on localhost.

Create a channel to a queue; the queue
is created if it does not exist yet.

Create a callback object that can buffer
and consume messages from a queue.

Decode any received byte message.

Subscribe the new consumer to the queue;
the broker will call it with messages of that queue.

https://www.rabbitmq.com/getstarted.html

Dataflow via Message-Passing

Example: RabbitMQ – Receiving a Message

This is metadata that pure RPCs are lacking:
 Encoding, timestamp, sender, priority, … of the message

https://www.rabbitmq.com/getstarted.html

Dataflow via Message-Passing

Example: RabbitMQ – Example in Python

Further APIs:

 Ruby, PHP, C#, JavaScript, Go,
Elixir, Objective-C, Swift, …

https://www.rabbitmq.com/getstarted.html

Dataflow via Message-Passing

Example: MPI

https://computing.llnl.gov/tutorials/mpi/

 Message Passing Interface

 A specification for a family of message-passing libraries

(MVAPICH, Open MPI, Intel MPI, IBM Spectrum MPI, …)

 Popular implementations for C, C++ and Fortran

 Platform dependent (message broker is usually Linux-based)

 Strength:

 Performance

(highly optimized messaging; can exploit special hardware features)

 Weakness:

 Complexity

(many low-level messaging functions; developer needs to ensure

correct parallelism)

Dataflow via Message-Passing

Example: MPI – Send and Receive

https://computing.llnl.gov/tutorials/mpi/

Dataflow via Message-Passing

Example: MPI – Send and Receive

https://computing.llnl.gov/tutorials/mpi/

= all known processes of the cluster

= our process ID in the cluster

If this is process 0, first send and
then receive a message.

If this is process 1, first receive and
then send a message.

Many further
environment functions exist.

Dataflow via Message-Passing

Example: MPI – Send and Receive

https://computing.llnl.gov/tutorials/mpi/

 MPI library = message broker
MPI system buffer = message queue

MPI_Send() blocking
 MPI_ISend() non-blocking

Dataflow via Message-Passing

Example: MPI – blocking & synchronous

https://computing.llnl.gov/tutorials/mpi/

Blocking

 Send() call returns if the data was send.

 The message in the send buffer can safely be modified.

 Synchronous

 The receiving side acknowledged having received the data.

 Asynchronous

 The system buffer acknowledged having received the data

(the system buffer copied the data and will make sure it gets send).

Non-Blocking

 Send() call returns immediately.

 The message in the send buffer should not be modified.

In this terminology,
RabbitMQ, Kafka, Akka and other
JVM-based message broker are
non-blocking + asynchronous

(messages should not be modified
but arrived in the message broker)

Dataflow via Message-Passing

Actor Model

Slide 106

Encoding and
Communication

Distributed Data
Analytics

Thorsten Papenbrock

Actor Model

 A stricter message-passing model that treats actors as the universal

primitives of concurrent computation.

 Actor:

 Computational entity (private state/behavior)

 Owns exactly one mailbox (cannot subscribe to more or less queues)

 Reacts on messages it receives (one message at a time)

 Actor reactions:

 Send a finite number of messages to other actors

 Create a finite number of new actors

 Change own state, i.e., behavior for next message

 Actor model prevents many parallel programming issues

(race conditions, locking, deadlocks, …)

“The actor model retained more of
what I thought were good features

of the object idea”
Alan Kay, pioneer of object orientation

Actor 1 Actor 2

Message Broker

Dataflow via Message-Passing

Actor Model

Slide 107

Thorsten Papenbrock

“Let it crash” philosophy

 Distributed systems are inherently prone to errors

(because there is simply more to go wrong/break)

 Message loss, unreachable mailboxes, crashing actors …

 Make sure that critical code is supervised by some entity that knows how

errors can be handled

 Then, if an error occurs, do not (desperately) try to fix it: let it crash!

 Errors are propagated to supervisors that can deal better with them

 Example: Actor discovers a parsing error and crashes

 Maybe message was corrupted in message transfer

 Its supervisor restarts the actor and resends the message

Actor 1 Actor 2

Actor

Actor

Actor

Dataflow via Message-Passing

Actor Model

Slide 108

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Advantages over pure RPC

 Fault-tolerance

 “Let it crash!” philosophy to heal from unexpected errors

 Automatic restart of failed actors; resent/re-route of failed messages

 Errors are expected to happen and implemented into the model:

 Deadlock/starvation prevention

 Asynchronous messaging and private state actors prevent many

parallelization issues

 Parallelization

 Actors process one message at a time but different actors operate

independently (parallelization between actors not within an actor)

 Actors may spawn new actors if needed (dynamic parallelization)

Actor 1 Actor 2

Dataflow via Message-Passing

Actor Model

Slide 109

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Popular Actor Frameworks

 Erlang

 Actor framework already included in the language

 First popular actor implementation

 Most consistent actor implementation

(best native support and strongest actor isolation)

 Akka

 Actor framework for the JVM (Java and Scala)

 Most popular actor implementation (at the moment)

 Orleans

 Actor framework for Microsoft .NET

 E.g. Halo (PC game)

Actor 1 Actor 2

A lot more on Akka in
our upcoming hands-on!

Encoding and Communication

Summary

Slide 110

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Encoding and Communication

Summary

Slide 111

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Encoding

 Language-Specific Encoding

 JSON/XML Encoding

 Binary Encoding

Communication

 Dataflow via Databases

 Dataflow via Services

 Dataflow via Message-Passing

Encoding and Communication

Outlook

Slide 112

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams

https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams

Suppose we have a linked list
that is implemented as shown
in the following code snippet:

Check yourself

public class IntLinkedList {

 int size;

 IntNode first;

 IntNode last;

 …

 private static class IntNode {

 int item;

 IntNode next;

 IntNode prev;

 }

 …

}

Question 1:

Give reasons why the default
Java serializer should not be
used here.

Question 2:

How would a more
reasonable serialization look
like?

Slide 113

Encoding and
Communication

Distributed Data
Management

Tobias Bleifuß

Distributed Data Analytics

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

